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Abstract. Predicting potential links between nodes in a network is a
problem of great practical interest. Link prediction is mostly based on
graph-based features and, recently, on approaches that consider the se-
mantics of the domain. However, there is uncertainty in these predictions;
by modeling it, one can improve prediction results. In this paper, we pro-
pose an algorithm for link prediction that uses a probabilistic ontology
described through the probabilistic description logic crALC. We use an
academic domain in order to evaluate this proposal.

1 Introduction

Many social, biological, and information systems can be well described by net-
works, where nodes represent objects (individuals), and links denote the rela-
tions or interactions between nodes. Predicting a possible link in a network is
an interesting issue that has recently gained attention, due to the growing inter-
est in social networks. For instance, one may be interested on finding potential
friendship between two persons in a social network, or a potential collaboration
between two researchers. Thus link prediction [12, 20] aims at predicting whether
two nodes (i.e. people) should be connected given that we know previous infor-
mation about their relationships or interests. A common approach is to exploit
the network structure, where numerical information about nodes is analyzed
[12, 20, 9]. However, knowledge about the objects represented in the nodes can
improve prediction results. For instance consider that the researchers Joe and
Mike do not have a publication in common, thus they do not share a link in a
collaboration network. Moreover, graph features do not indicate a potential link
between them. However, they have published in the same journal and they both
teach the same course in their respectively universities. This information can be
an indication of a potential collaboration between them. Given this, approaches
that are based on the semantics related to the domain of the objects represented
by the nodes [21, 18] have been proposed. In some of them, an ontology modeling
the domain and the object interests were used in the prediction task.

However, there is uncertainty in such predictions. Often, it is not possible
to guarantee the relationship between two objects (nodes). This is maybe due



to the fact that information about the domain is incomplete. Thus, it would
be interesting if link prediction approaches could handle the probability of a
link conditioned on the information about the domain. In our example, knowing
that the probability of the relationship between Joe and Mike conditioned on
the knowledge of them publishing in the same journal and teaching the same
course is high implies a link between them in the network; otherwise, a link is
not suggested. In graph-based approaches, probabilistic models learned through
machine learning algorithms were used for link prediction. Some examples of
probabilistic models are Probabilistic Relational Model (PRM) [6], Probabilistic
Entity Relationship Model (PERM) [7] and Stochastic Relational Model (SRM)
[22]. On approaches based on semantic we claim that ontologies must be used
to model the domain. Therefore, to model uncertainty, probabilistic approaches,
such as probabilistic ontologies, must be considered.

An ontology can be represented through a description logic [2], which is typi-
cally a decidable fragment of first-order logic that tries to reach a practical bal-
ance between expressivity and complexity. To encode uncertainty, a probabilistic
description logic (PDL) must be contemplated. The literature contains a number
of proposals for PDLs [8, 10, 19, 13]. In this paper we adopt a recently proposed
PDL, called Credal ALC (crALC) [4, 16, 5], that extends the popular logic ALC
[2]. In crALC one can specify sentences such as P (Professor|Researcher) = 0.4,
indicating the probability that an element of the domain is a Professor given
that it is a Researcher. These sentences are called probabilistic inclusions. Exact
and approximate inference algorithms that deal with probabilistic inclusions
have been proposed [4, 5], using ideas inherited from the theory of Relational
Bayesian Networks (RBN)[11].

In this paper, we propose to use a probabilistic ontology defined with the
PDL crALC for semantic link prediction.

The paper is organized as follows. Section 2 reviews basic concepts of PDLs
and crALC. Section 3 presents our algorithm for semantic link prediction through
the PDL crALC. Experiments are discussed in Section 4, and Section 5 con-
cludes the paper.

2 Probabilistic Description Logics and crALC
Description logics (DLs) form a family of representation languages that are typi-
cally decidable fragments of first order logic (FOL) [2]. Knowledge is expressed
in terms of individuals, concepts, and roles. The semantic of a description is
given by a domain D (a set) and an interpretation ·I (a functor). Individuals
represent objects through names from a set NI = {a, b, . . .}. Each concept in the
set NC = {C, D, . . .} is interpreted as a subset of a domain D. Each role in the
set NR = {r, s, . . .} is interpreted as a binary relation on the domain.

Several probabilistic descriptions logics (PDLs) have appeared in the litera-
ture. Heinsohn [8], Jaeger [10] and Sebastiani [19] consider probabilistic inclusion
axioms such as PD(Professor) = α, meaning that a randomly selected object is a
Professor with probability α. This characterizes a domain-based semantics: prob-



abilities are assigned to subsets of the domain D. Sebastiani also allows inclusions
such as P (Professor(John)) = α, specifying probabilities over the interpretations
themselves. For example, one interprets P (Professor(John)) = 0.001 as assigning
0.001 to be the probability of the set of interpretations where John is a Professor.
This characterizes an interpretation-based semantics.

The PDL crALC is a probabilistic extension of the DL ALC that adopts an
interpretation-based semantics. It keeps all constructors of ALC, but only allows
concept names on the left hand side of inclusions/definitions. Additionally, in
crALC one can have probabilistic inclusions such as P (C|D) = α or P (r) = β
for concepts C and D, and for role r. If the interpretation of D is the whole
domain, then we simply write P (C) = α. The semantics of these inclusions is
roughly (a formal definition can be found in [5]) given by:

∀x ∈ D : P (C(x)|D(x)) = α,

∀x ∈ D, y ∈ D : P (r(x, y)) = β.

We assume that every terminology is acyclic; no concept uses itself. This as-
sumption allows one to represent any terminology T through a directed acyclic
graph. Such a graph, denoted by G(T ), has each concept name and role name
as a node, and if a concept C directly uses concept D, that is if C and D appear
respectively in the left and right hand sides of an inclusion/definition, then D
is a parent of C in G(T ). Each existential restriction ∃r.C and value restriction
∀r.C is added to the graph G(T ) as nodes, with an edge from r and C to each
restriction directly using it. Each restriction node is a deterministic node in that
its value is completely determined by its parents.

Example 1. Consider a terminology T1 with concepts A,B, C, D. Suppose
P (A) = 0.9, B v A,C v B t ∃r.D, P (B|A) = 0.45, P (C|B t ∃r.D) = 0.5, and
P (D|∀r.A) = 0.6. The last three assessments specify beliefs about partial overlap
among concepts. Suppose also P (D|¬∀r.A) = ε ≈ 0 (conveying the existence of
exceptions to the inclusion of D in ∀r.A). Figure 1 depicts G(T ).

Fig. 1. G(T ) for terminology T in Example 1 and its grounding for domain D = {a, b}.



The semantics of crALC is based on probability measures over the space of
interpretations, for a fixed domain. Inferences, such as P (Ao(a0)|A) for an ABox
A, can be computed by propositionalization and probabilistic inference (for exact
calculations) or by a first order loopy propagation algorithm (for approximate
calculations) [5].

3 Link Prediction by using crALC
In this section we describe how to apply the PDL crALC for semantic link
prediction. We borrowed some syntax from the graph-based approach where
each node (a person in a social network) is represented by A,B, C, and we are
interested in defining whether a link between A and B is suitable given there is
no link between these nodes. Interests between the nodes are modeled through a
probabilistic ontology represented by the PDL crALC. The prediction link task
can be described as:

Given:
• a network defining relationship between objects;
• an ontology represented by crALC describing the domain of the objects;
• the ontology role that defines the semantic of the relationship between

objects;
• the ontology concept that describes the network objects.

Find:
• a revised network defining relationship between objects.

The proposed algorithm for link prediction receives a network of a specific
domain. For instance, in a collaboration network the nodes represent researchers
and the relationship can have the semantic ”has a publication with” or ”is ad-
vised by”. Therefore, the ontology represented by crALC describes the domain
of publications between researchers, having concepts like Researcher, Publication,
StrongRelatedResearcher and NearCollaborator and roles like hasPublication,
hasSameInstitution and sharePublication. This ontology can be learned automat-
ically through a learning algorithm as the ones proposed in [15, 17]. Thus, the
nodes represent instances of one of the concepts described in the PDL crALC
and the semantic of the links is described by one of the roles in the PDL crALC.
These concept and role must be informed as inputs to the proposed algorithm.
The link prediction algorithm is described in Algorithm 1.

The algorithm starts looking for all pairs of instances of the concept C defined
as the concept that provides the semantic for the network nodes. For each pair
it checks whether the corresponding nodes exist in the network (this can be
improved by exploring graph-based properties). If not the probability of the
link is calculated through the probability of the defined role conditioned on
evidence. The evidence is provided by the instances of the ontology. As many
instances the ontology have the better is the inference performed. The inference
is performed through the Relational Bayesian network build from ontology O. If
the probability inferred is greater than a threshold then the corresponding link



Require: a network N , an ontology O, the role r( , ) representing the semantic of
the network link, the concept C describing the objects of the network and a
threshold.

Ensure: a revised network Nf

1: define Nf as N
2: for all pair of instances (a, b) of concept C do
3: if does not exist a link between nodes a and b in the network N then
4: infer probability P (r(a, b)|evidences) using the RBN created through the

ontology O
5: if P (r(a, b)|evidences) > threshold then
6: add a link between a and b in network Nf

7: end if
8: end if
9: end for

Algorithm 1: Algorithm for link prediction through crALC.

is added to the network. Alternatively, when the threshold to be considered is
not known a priori, a rank of the inferred links based on their probability is done
and the top-k, where k would be a parameter, are chosen.

4 Preliminary Results

Experiments were run over a collaborative network of researchers. Data was ga-
thered from the Lattes curriculum platform 3, the public repository for Brazilian
curriculum researchers. In this platform, every researcher has a unique Lattes
code that allows one to link to other researchers according to: shared publica-
tions, advising tasks, and examination board participations. Given this collabo-
rative network we are interested in predicting further links among researchers in
order to either promote further collaborations (suitable co-workers to research
tasks would be suggested) or gather information about research groups. Due
to form-filling errors there are many missing links among researchers; thus, we
are unable to completely state co-working relationships using only the Lattes
platform.

To tackle link prediction we firstly have collected information about 1200
researchers and learned a probabilistic ontology [15, 17], represented by the PDL
crALC, for modeling their research interests. A simplified probabilistic ontology

3 http://lattes.cnpq.br/



is given by:

P (Publication) = 0.3
P (Board) = 0.33
P (sharePublication) = 0.22
P (wasAdvised) = 0.05
P (hasSameInstitution) = 0.14
P (sameExaminationBoard) = 0.31

ResearcherLattes ≡ Person
u(∃hasPublication.Publication
u∃advises.Person u ∃participate.Board)

P (PublicationCollaborator | Researcher u ∃sharePublication.Researcher) = 0.91
P (SupervisionCollaborator | Researcher u ∃wasAdvised.Researcher) = 0.94
P (SameInstitution | Researcher u ∃hasSameInstitution.Researcher) = 0.92
P (SameBoard | Researcheru

∃sameExaminationBoard.Researcher) = 0.92
P (NearCollaborator | Researcher u ∃sharePublication.∃hasSameInstitution.

∃sharePublication.Researcher) = 0.95
FacultyNearCollaborator ≡ NearCollaborator

u ∃sameExaminationBoard.Researcher

P (NullMobilityResearcher | Researcher u ∃wasAdvised.
∃hasSameInstitution.Researcher) = 0.98

StrongRelatedResearcher ≡ Researcher
u (∃sharePublication.Researcher u
∃wasAdvised.Researcher)

InheritedResearcher ≡ Researcher
u (∃sameExaminationBoard.Researcher u
∃wasAdvised.Researcher)

In this probabilistic ontology concepts and probabilistic inclusions denote mu-
tual research interests. For instance, a PublicationCollaborator inclusion refers to
Researchers who shares a Publication, thus relates two nodes (Researcher) in a col-
laboration graph. Therefore, the concept Researcher and the role sharePublication
are inputs to the algorithm we proposed in Algorithm 1.

To perform inferences and therefore to obtain link predictions, a proposition-
alization step (a resulting relational Bayesian network) is required.

In addition, a collaboration graph, based on shared publications, was also
defined. Statistical information was computed accordingly. Figure 2 depicts col-
laborations among 303 researchers. Several relationships and clusterings can also
be observed.

If we carefully inspect this collaboration graph (Figure 3 shows a subgraph
obtained from Figure 2) we could be interested, for instance, in predicting links
among researchers from different groups.

Thus, in Figure 3 one could further investigate whether a link between re-
searcher R (red octagon node) and the researcher B (blue polygon node) is
suitable. In order to infer this, the probability of a possible link between R and
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Fig. 2. Collaboration graph among researchers.

B is calculated, P (link(R, B)|E), where E denotes evidence about researchers
such as publications, institution, examination board participations and so on.
The role sharePublication is the one defining the semantic of the links in the
graph. Therefore, it is through it that we must calculate P (link(R, B)|E). Since
the concept PublicationCollaborator is defined by the role sharePublication and
considering as evidence Researcher(R) u ∃hasSameInstitution.Researcher(B) one
can infer P (link(R, B)|E) through:
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Fig. 3. Collaboration subgraph.

P (PublicationCollaborator(R) |Researcher(R)
u∃hasSameInstitution.Researcher(B)) = 0.57.

If we took a threshold of 0.60, the link between R and B would not be
included.

One could gain more evidence, such as information about nodes that in-
directly connect these two groups (Figure 3), denoted by I1, I2. The inference
would be

P (PublicationCollaborator(R) |Researcher(R)
u∃sharePublication(I1).∃sharePublication(B)
u∃sharePublication(I2).∃sharePublication(B)) = 0.65.

Because more information was provided the probability inferred was different.
The same threshold now would preserve the link.

Other inferences are possible by considering the suggestion of links between
surrounding nodes, i.e. nodes directly linked to the two nodes R and B , denoted
by R1, . . . , Rk, and B1, . . . , Bn respectively. For each i = 1, ..., k and j = 1, ..., n,
calculates P (link(Ri, Rj)|E) and P (link(Bi, Bj)|E).



As a rule, if we are interested in discovering whether A and B could be linked,
probabilistic inference P (link(A,B)) should be performed.

In a more general framework, graph information could be useful to deal with a
large number of link predictions. Note that graph adjacency allow us to address
probabilistic inference for promising nodes. In a naive approach, each pair of
nodes in the collaboration graph would be evaluated so, multiple probabilistic
relational Bayesian inference calls would be required.

On the other hand, if graph-based information is used, such naive scheme
could be improved. In our approach, two nodes are probabilistically evaluated
if there is a path between them (number of incoming/outgoing edges, number
of mutual friends, node distances are also considered). Thus, numerical graph-
based information guides the inference process in the relational Bayesian network
(linked to the probabilistic ontology). In addition, other candidates sharing any
kind of evidence are also evaluated, i.e., interests based features (linked to onto-
logical knowledge) allow us to further explore link prediction.

Alternatively, by completing an overall link predicting task we can devise
further functionalities to the resulting collaboration network. The resulting graph
can be considered as being a probabilistic network, i.e., probabilities inferred for
each link could be denote strenght of the relationship.

5 Conclusion

We have presented an approach for predicting links that resorts both to graph-
based and ontological information. Given a collaborative network, e.g., a social
network, we encode interests and graph features through a crALC probabilistic
ontology. In order to predict links we resort to probabilistic inference. Prelimi-
nary results focused on an academic domain, and we aimed at predicting links
among researchers. These preliminary results showed the potential of the idea.

Previous combined approaches for link prediction [3, 1] have focused on ma-
chine learning algorithms [14]. In such schemes, numerical graph-based features
and ontology-based features are computed; then both features are input into a
machine learning setting where prediction is performed. Differently from such
approaches, in our work we adopt a generic ontology (instead of a hierarchi-
cal ontology, expressing only is-a relationships among interests). Therefore, our
approach uses more information about the domain to help the prediction.
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