Eliminating Digunction from Propositional L ogic
Programs under Stable Model Preservation*

Thomas Eiter, Michael Fink, Hans Tompits, and Stefan Woltran

Institut fiir Informationssysteme 184/3, Technische Universitdt Wien,
Favoritenstrale 9-11, A-1040 Vienna, Austria
{eiter,mchael ,tonpits, stefan}@r.tuw en. ac. at

Abstract. Ingeneral, disjunction is considered to add expressive power to propo-
sitional logic programs under stable model semantics, and to enlarge the range of
problems which can be expressed. However, from a semantical point of view,
disjunction is often not really needed, in that an equivalent program without dis-
junction can be given. We thus consider the question, given a disjunctive logic
program P, does there exist an equivalent normal (i.e., disjunction-free) logic
program P’? In fact, we consider this issue for different notions of equivalence,
namely for ordinary equivalence (regarding the collections of all stable models
of the programs) as well as for the more restrictive notions of strong and uniform
equivalence. We resolve the issue for propositional programs, and present a sim-
ple, appealing semantic criterion for the programs from which all disjunctions can
be eliminated under strong equivalence; testing this criterion is cONP-complete.
We also show that under ordinary and uniform equivalence, this elimination is
always possible. In all cases, there are constructive methods to achieve this. Our
results extend and complement recent results on simplifying logic programs un-
der different notions of equivalence, and add to the foundations of improving
implementations of Answer Set Solvers.

1 Introduction

Disjunctive logic programming is an extension to normal logic programming which is
generally considered to add expressive power to logic programs under stable model se-
mantics, and to enlarge the range of problems which can be expressed. This view is
supported by results on the expressiveness of disjunctive logic programs (DLPs) over
finite structures, which show that properties at the second level of the Polynomial Hi-
erarchy (PH) can be expressed by inference from function-free (Datalog) DLPs [11],
while by normal logic programs only properties at the first level can be expressed [28].
However, from a semantical point of view, disjunction is often not really needed, in that
an equivalent normal logic program (NLP, i.e., without disjunction) can be given. For
example, in [10], it was shown that in the presence of functions symbols, DLPs have
over Herbrand models the same expressive power as NLPs, namely 7} .

With the rise of Answer Set Programming as a program solving paradigm, in which
solutions are computed in the answer sets resp. stable models of a logic program, at-
tention has been directed to the expressiveness of logic programs in terms of the whole

* This work was partially supported by the Austrian Science Fund (FWF) under projects Z29-
NO04 and P15068-INF, as well as by the European Commission under projects FET-2001-37004
WASP and 1ST-2001-33570 INFOMIX.

152 Thomas Eiter et al.

collection of their answer sets per se rather than their intersection (resp. union) as in
cautious and brave reasoning, respectively), cf. [20]; related to this is preliminary work
on the expressiveness of formalisms such as default logic and circumscription [13, 19].

In particular, equivalence of logic programs in terms of their collections of stable
models has been considered, as well as the refined notions of strong equivalence, cf.
[16,29, 30, 24,17, 4], and uniform equivalence [7, 8, 25], which dates back to [27,18].
Two DLPs P; and P; are strongly equivalent (resp., uniformly equivalent), if, for any
set R of rules (resp., set of atoms R), the programs P; U R and P, U R are equivalent
under the stable semantics, i.e., have the same set of stable models.

Strong and uniform equivalence can be utilized for program optimization, cf. [30,
22, 8], taking into account possible incompleteness of a program, where not all rules
are known at the time of optimization, respectively varying input data given by atomic
facts are respected. This is in particular helpful for optimizing components which are
embedded into a more complex logic program. Note that as recently discussed by Pearce
and Valverde [25], uniform and strong equivalence are essentially the only concepts of
equivalence obtained by varying the logical form of the program extensions.

A natural issue in this context is the expressiveness of disjunction in rule heads,
i.e., whether it really adds expressive power. This is indeed the case, as can be seen
on the simple example of the program P = {a V b «}: This program is not strongly
equivalent to any normal logic program P’ (cf. [30]). However, as easily seen P is
equivalent to the NLP P’ = {a + not b, b < not a} since for both the stable models
are X1 = {a} and X, = {b}, and furthermore P is also uniformly equivalent to P’
(this is immediate from the result that rewriting a head-cycle free program to a normal
logic program by standard shifting preserves uniform equivalence [7]). On the other
hand, the enriched program P = {a Vb + , < a,b} is strongly equivalent to the
program P’ = {a « notb, b + nota, < a,b}.

This raises the question of a criterion which tells when disjunctions can be elimi-
nated, and a method for deciding, given a disjunctive logic program P, does there exist
an equivalent normal (i.e., disjunction-free) program P’? We study this issue for propo-
sitional programs, on which we focus here, and make the following contributions:

— We present a simple, appealing semantic characterization of the programs from
which all disjunctions can be eliminated under strong equivalence. The charac-
terization is based on the strong-equivalence models (SE-models) [29, 30] which
rephrase models in the more general logic of here-and-there [16] in logic program-
ming terms. In fact, we show that this property holds for a program P if and only
if the collection of SE-models (X,Y") of P is closed under here-intersection, i.e.,
whenever (X,Y’) and (X',Y) are SE-models of P, then also (X N X',Y) is an
SE-model of P. In more familiar terms, this condition is equivalent to the prop-
erty that for each classical model Y of P, the Gelfond-Lifschitz reduct PY of P is
semantically Horn if models X not contained in Y are disregarded.

— We further show that under ordinary and uniform equivalence, this elimination is
always possible. In all three cases, we obtain a constructive method to rewrite a
DLP P to an equivalent normal logic program P’. In general, the rewriting will be
of exponential size (if it exists), but this will be unavoidable in practice.

— Finally, we show that testing whether for a given propositional DLP P a strongly
equivalent NLP P’ exists is cONP-complete.

Eliminating Disjunction from Propositional Logic Programs 153

Our results extend and complement recent results on simplifying logic programs un-
der different notions of equivalence, cf. [22, 30, 8]. They might be utilized for deciding
whether a given disjunctive problem representation for a system such as such as DLV
[6] or GnT [14] can, in principle, be replaced by an equivalent non-disjunctive repre-
sentation, as well as for (automated) rewriting of disjunctive problem representations.

2 Preiminaries

We deal with propositional disjunctive logic programs, containing rules of form
a1 V---Va < ai41,--.,0m, N0t Amy1,-- ., N0t an,

n > m > 1 > 0, where all a; are atoms from a finite set of propositional atoms, At,
and not denotes default negation. The head of r is the set H(r) = {a4,...,a;}, and
the body of r is the set B(r) = {ait1, ..., am, not am1, ..., nota,}.\We also use
B*(r) = {aj1,---,am} and B=(r) = {am+1, - - - , an}. Moreover, for a set of atoms
A ={ay,...,a,}, not A denotes {notay,...,notan}.

A rule r is normal, if I < 1; positive, if n = m; and Horn, if it is normal and
positive. If H(r) = @ and B(r) # 0, then r is a constraint; if B(r) = @, r is a fact,
writtenasa, V--- Vaq if I > 0, and as L otherwise.

A disjunctive logic program (DLP) P is a finite set of rules. It is a normal logic
program (NLP) (resp., positive, Horn), if every » € P is normal (resp., positive, Horn).

We recall the stable model semantics for DLPs [12, 26]. Let I be an interpretation,
i.e., a subset of At. Then, I satisfies a rule r, denoted I |= r, iff I = H(r) whenever
I = B(r), where I = H(r) iffa € I for some a € H(r), and I = B(r) iff (i) each
a € Bt(r)istruein I, ie.,a € I,and (i) eacha € B~ (p) isfalseinI,i.e,a & I.
Furthermore, I is a model of a program P, denoted I |= P, iff I |=r, forall r € P.

The reduct, rf, of a rule r relative to a set of atoms I is the positive rule r’ such
that H(r') = H(r) and B(r') = B*(r) if IN B~ (r) = 0, and is void otherwise. The
Gelfond-Lifschitz reduct of a program P is the positive program P = {r! | r € P}.
An interpretation I is a stable model of a program P iff I is a minimal model (under set
inclusion) of PZ. By SM(P) we denote the set of all stable models of P.

Lemmal. Let PheaDLPand X C Y’ C Y. Then, X |= PY implies X = PY.

The result is seen by the observation that Y C Y implies P¥ C PY'. Thus, X |= PY’
implies X = PY. In particular, for X = Y”’, X = P implies X = PY, forany XCY.

Several notions of equivalence for logic programs have been considered in the liter-
ature (see, e.g., [16, 18, 27]). Under stable semantics, two DLPs P and () are regarded
as equivalent, denoted P = Q, iff SM(P) = SM(Q). The more restrictive forms of
strong equivalence [16] and uniform equivalence [27, 18] are as follows:

Definition 1. Let P and () be two DLPs. Then,

(i) P and @ are strongly equivalent, denoted P =, @, iff, for any set R of rules, the
programs P U R and Q U R are equivalent,i.e, PUR= QU R.

(ii) P and @ are uniformly equivalent, denoted P =,, @, iff, for any set F' of non-
disjunctive facts, P U F and) U F are equivalent,i.e, PUF = QU F.

154 Thomas Eiter et al.

Obviously, P =5 @ implies P =, @ but not vice versa. Both notions of equivalence,
however, enjoy interesting semantical characterizations. As shown in [16], strong equiv-
alence is closely related to the non-classical logic of here-and-there, which was adapted
to logic-programming terms by Turner [29, 30]:

Definition 2. A pair (X,Y) with X,Y C At such that X C Y is called an SE-
interpretation (over At). By INT 4, we denote the of all SE-interpretations over A¢. An
SE-interpretation (X,Y’) is an SE-model of a DLP P, if Y | P and X = PY.By
M (P) we denote the set of all SE-models of P.

Proposition 1 ([29, 30]). For every DLP P and @, P=,Q iff M;(P)=M,(Q).
SE-models also can be used to determine the stable models of a program.

Proposition 2 ([23,16]). Let P be a DLP. Then, Y € SM(P) iff (YY) € M, (P)
and,foreach X C Y, (X,Y) ¢ M (P).

Recently, the following pendant to SE-models, characterizing uniform equivalence
for (finite) logic programs has been defined [7].

Definition 3. Let P be a DLP and (X,Y) € M(P). Then, (X,Y") is UE-model of P
iff, for every (X',Y) € M,(P), itholds that X C X' implies X' =Y. By M, (P) we
denote the set of all UE-models of P.

Proposition 3 ([7]; cf. also [25]). For any DLP P and @, P=,Q iff M, (P)=M,(Q).
This test can be reformulated as follows.

Proposition 4. For DLPs P and @, P=,Q iff M,(P)CM,(Q) and M, (Q)CM,(P).

Proof. From Proposition 3, P=,Q iff M,(P) C M,(Q) and M,(Q) C M,(P).

Clearly, M, (R) C M4(R) holds for any DLP R, which immediately gives the only-if
direction. For the if direction, suppose P #, @.Hence, there exists an SE-interpretation
(X,Y), such that either (i) (X,Y) € M,(P) and (X,Y) ¢ M,(Q); or (i) (X,Y) €
M,(Q)and (X,Y) ¢ M,(P). For (i), we have two cases, by definition of UE-models.
First, (X,Y)¢M,(Q). But then, M, (P)CM,(Q) cannot hold. Second, there exists a
set X' with X CX'CY such that (X', Y)eM,(Q). But (X', Y)¢M,(P) since (X,Y)
€ M,(P), hence M, (Q)CM,(P) cannot hold. The argument for (ii) is analogous. O

As a final result here, we characterize the set of SE-models of a disjunctive rule.

Proposition 5. Let r be a disjunctive rule, and (X,Y’) an SE-interpretation. Then,
(X,Y) € M,(r) holds iff one of the following conditions is satisfied: (i) X = H(r);
(i) Y & B(r); or (iii) X £ Bt (r)and Y = H(r).

Proof. By definition, (X,Y) € M,(r) iff Y |= r, and X |= Y. The former holds iff
Y EH(r),Y £ Bt(r),orY £ B~ (r). The latter holds iff X = H(r), X £ B*(r),
orY [B (r). Hence, (X,Y) € M,(r) iffY £ B~ (r) or

)
)
(Yl:H()vY[;éB+) (X|=H VX[;éB+(r)). (1)

Eliminating Disjunction from Propositional Logic Programs 155

Clearly, Y = Bt (r) implies X & B*(r) and, furthermore, X |= H(r) implies Y =
H(r). From this, it is easily verified that (X,Y) satisfies (1) iff either Y = B*(r),
X E H(r) (i.e., (i), or jointly X £ B*(r)and Y = H(r) (i.e., (iii)), holds. Hence,
we have that (X,Y) € M,(P) iffeither Y = B~(r), Y [~ Bt (r), (i), or (iii) holds.
Finally, Y £ B~ (r) or Y} B*(r) holds exactly iff Y [= B(r) (i.e., (ii)) holds. O

3 Strong Equivalence

We start with some informal discussion. Consider the following logic programs, each
of them having r = a V b « as its only disjunctive rule.

P ={aVvb<+} P,={aVb+;a+}
P;={aVb+;a+ b} Py ={aVb+;a+;+ notb}
P; ={aVb<+;a+« b+ notb} Ps={aVb+;a+;b+}
Pr={aVb+;a+ bbb+ a} Py ={aVb+;«a,b}

Py ={aVb+; nota; notb}

Let us first compute the SE-models (over At = {a, b}) of these programs:*

Ms(Py) = { (ab,ab), (a,ab), (b,ab), (a,a), (b,d) };
My(Py) = Ms(P3) = { (ab,ab), (a,ab), (a,a) };
Ms(Py) = Ms(Ps) = { (ab,ab), (a,ab) };
My(Ps) = Ms(Pr) = { (ab,ab) };

Ms(PS) :{ (aaa)a (bab) };

Ms(Py) = { (ab,ab) (a,abd), (b,ad) }.

A good approximation to derive corresponding strongly equivalent normal logic pro-
grams is to replace a V b < by the rules a + notb;b < nota, i.e., by the usual
shifting technique. It is left to the reader to verify that this replacement works for Ps,
Py, Ps, and Pg, but not for P, P;, Py, P, and Py. In fact, for the latter programs
this replacement yields an additional SE-model (@, ab). In some of these cases we can
circumvent this problem by adding further rules. As is easily seen, adding a «+ to Ps,
P, and Py, respectively, solves this problem, since (§, ab) ¢ M;(a «), and, for each
(X,Y) € My(Py), (X,Y) € Ms(a <) holds (i € {3,5,7}). For P, and P, this does
not work. As we will see soon, there is no normal logic program strongly equivalent to
P, or Py.

Let us have a closer look at the difference between the SE-models of a disjunctive
rule and its corresponding shifting rules.

Proposition 6. For a disjunctive rule, r, define

r~ ={p« B(r),not (H(r) \ {p}) | p € H(r)}; and
S, ={(X,Y) € INT4 | X £ H(r),X £ B*(r),Y = B~(r),|Y N H(r)| > 1}.

Then, My(r—) = My(r) U S,.

! We write ab instead of {a, b}, a instead of {a}, etc.

156 Thomas Eiter et al.

Proof. In what follows let r, denote that rule in = with H(r,) = p.

Clearly, we have S, C M;(r~) and M,(r) C My(r™). In particular, the former
relation can be seen by the fact that, for each r, € »=, Y [~ B~ (r,) holds, since
Y N H(r)| > Land (H(r) \ {p}) C B~ (ry).

It remains to show M,(r—) C My(r) U S,. Therefore, let (X,Y) € Ms(r™)
and suppose (X,Y) ¢ M(r). We show that (X,Y) € S,.. Towards a contradiction,
suppose (X,Y") ¢ S,.. Since (X,Y") ¢ M,(r), we get by Proposition 5 that X = H(r),
Y E B(r), and either X = B*(r) or Y £ H(r). We have two cases.

First,if Y & H(r), i.e., [YNH(r)| = 0, this clearly contradicts (X,Y) € M (r™).
Otherwise, if Y |= H(r), we have X |= B*(r), and we get |[Y N H(r)| = 1, otherwise
(X,Y) € S,. LetY N H(r) = {p} and consider the rule r,. Obviously, Y = B~ (r,).
Moreover, we have X |= Bt (r,) = BT (r). Butthen, X |~ H(r),i.e., XN H(r) =0,
yields p ¢ X, and thus contradicts (X,Y) € M;(r). |

In other words, S, contains all SE-interpretations (X,Y") such that X & ¥ with
Y = B(r) and |Y N H(r)| > 1. Thus, M,(r) and S, are disjoint, although, for each
(X,Y) €S, Y |=rholds.

Hence, if we have a disjunctive program P with a disjunctive rule r € P; we
can replace r by »— but this may yield additional SE-models from S,.. (The same
observation can be found in [7], see Theorem 4.3). In particular, this is the case if
T = Ms(P\ {r}) NS, # 0. So, in addition to »—, we add the following rules which
under certain circumstances eliminate all elements from 7" but none from M (P).

Proposition 7. For any sets, X,Y, Z C At, define the set of rules
rxyy,z ={p+ X,not (At\ Z) |[pe Y}

Then, (X', Y') € INT,; is SE-model of rx y,z iff one of the following conditions
holds: ()Y C X', QXY ;Y € Z;or() X € X' andY CY'.

Proof. Letp € Y and r, the corresponding rule in rxy,z with H(r,) = p. By Propo-
sition 5, (X', Y") € M,(rp) iff one of the following conditions hold: (i) X' = H(r,)
(ie,pe X'); (i)Y' }£ B(r,) (ie., either X Y' orY' ¢ Z); or (iii) X' £ Bt (r,)
andY' |= H(r,) (i.e., X € X'andp € Y'). Forany two rulesr,,r, € rx,y, z, We have
B(rp) = B(rg). Thus, (X',Y") € M,(rx,y,z) iff either (ii), or, forany r, € rx.v,z,
(i) or (iii) holds. For the latter relations consider two cases. If X C X', the relation
holds iff p € X' foreach r, € rx v, z, i.e., for each p € Y. Hence, the relation holds
iffY C X' IfX ¢ X"andY ¢ X' then from (iii) p € Y for each p € Y. Hence,
Y C Y has then to hold. O

The rules rx v,z play a central role and will be subsequently applied in several
ways. However, we mention that 7 x,y,z may contain redundant rules, for instance if
we have X C Y. It can be shown that then, rx v,z =; rx y\x,z Which reduces the
number of rules. However, for technical reasons we subsequently do not pay attention
to this potential optimization.

Definition 4 (here-intersection). 2 For any pair of SE-interpretations, (X,Y) and
(X',Y) of INT4¢, their here-intersection is the SE-interpretation (X N X', Y").

2 The first component of an SE-interpretation refers to the world of here’ when logically inter-
preted in the logic of here-and-there, cf. [23].

Eliminating Disjunction from Propositional Logic Programs 157

Recall our examples. The difference between P; and Py on the one side, and Ps,
Ps, and P; on the other side, is captured by the following property.

Definition 5. For any logic program P, we say that P is closed under here-intersection
iff M, (P) satisfies this property.

Lemma 2. Each normal LP is closed under here-intersection.

Proof. Since P is normal, PY is Horn. Then, X | PY and X' = PY immediately
implies X N X' = PY since, each Horn program P, satisfies the intersection property:
X EPand X' |= P implies X N X' |= P'. |

This leads us directly to our first central theorem.

Theorem 1. Let P be a DLP over At. Then, there exists a NLP) over At, such that
P and @ are strongly equivalent iff P is closed under here-intersection.

Proof. The only-if direction is immediate by Lemma 2. For the if direction, assume
P is closed under here-intersection, let » € P be disjunctive, let P, = P\ {r}, and
consider the logic program

P, = P Ur”Ufp, with #p, = U TX\Y,Z
where
STT(P) ={(X,Y,2) | (X,Z2) e S,NM(P7),X CY,(Y,Z) € Ms(P),
VW:XCY' CcY = (Y',2) ¢ My(P)}.

Intuitively, S (P) collects, for each (X, Z) € S, which is also SE-model of P, the
minimal SE-models (Y, Z) of P above X (with fixed Z). Note that by definition of S,
forany (X,Z) € INTay, (X, X, Z) ¢ S}(P) but (X, Z) € S, implies existence of an
Y with X CY C Zsuchthat (X,Y, Z) € S}(P), since forY = Z, (Y, Z) € M;(P)
holds (again by definition of S;.).

We proceed with the proof and show M, (P) = M,(Ps). Clearly, if this holds, the
above transformation sequentially applied to all disjunctive rules in P yields a normal
logic program strongly equivalent to P. First observe that, by Proposition 6, we have

My(P;) = Mg(P, Ur™ Ufp,)
= My(P7)N Ms(r7) N Ms(7p,)
= My(P7)N (Mg(r) U S,) N Ms(7p,)
= (My(P7) N My(r) 0 M, (7)) U (Mo(P7) N S, 0 Mi(7p,))
= (Ms(
The strategy for the remainder of the proof is as follows. We first show that T' =
Ms(P7)NS, N My(#p,) = 0. Then, it remains to show M, (Ps) = Ms(P)N M, (7 p,).

We show T' = 0. Let (X,Z) € S,. If (X,Z) ¢ Ms(P;), we immediately have
(X, Z) ¢ T.Otherwise, (X, Z) € M,(P,"). From above we know that then there exists

P)N M, (#p,)) U (Mo(P7) 0 S, 0 M, ().

158 Thomas Eiter et al.

atriple (X,Y, Z) € SI(P) with X C Y C Z. Thus, we have rx,y,z C #p,. We now
show that (X,Z) ¢ M,(rx,v,z). Assume the contrary, i.e., (X,Z) € My(rx,v,z).
Then, by Proposition 7 one of the following conditions has to hold: (i) Y C X, (ii)
X g Z, (iii))Z € Z,or(iv) X € XandY C Z. (i) does not hold since we have
X C Y; (ii) since X C Z, which follows from X C Y C Z; (iii+iv) do not hold
trivially. Contradiction.

It remains to show that M (P) = Ms(P) N M4(7p,), i.e., that M (P) C My (¥p,)
holds. Clearly, if 7p, is empty we are done. Hence, suppose 7#p, # 0. We show that,
for each rx v,z C #p, and each (X', Z') € M,(P), (X', Z') € M,(rx,v,z) holds.
Towards a contradiction, letrx v,z C 7p,, (X', Z") € M;(P), and suppose (X', Z") ¢
M,(rx,y,z). Onthe one hand, fromrx v,z C 7p,, we have (X,Y, Z) € SI(P), which
implies that (a) (X,Z) € S, N M (P); (b) (Y,Z) € My(P);and(c) X CY C Z
hold. On the other hand, by Proposition 7, (X', Z') satisfies the following conditions
for being a counter SE-model of rx v,z: ()Y € X', (2) X C Z',(3) Z' C Z, and (4)
XCX'orYg2Z.

By assumption, (X', Z') € M,(P). Hence, X' = PZ and Z' = PZ. Moreover,
by (3), Z' C Z holds. By Lemma 1, we get X' = PZ and Z' = PZ, and from (b)
we get (Y, Z) € M,(P), and thus Z |= P. Hence, (X',Z) € M,(P) and (Z',Z) €
M,(P). Now P is closed under here-intersection yielding (Y N X', Z) € M,(P), and
(Y NZ',Z) € Ms(P). We use (4) to distinguish between the following two cases.

X C X":By(c), X C Y,andthus X C (Y n X'). On the other hand, from (1),
we have Y ¢ X'. This implies (Y N X') C Y. Hence,wehave X C (Y NX') C Y.
Together with (a) and (Y N X', Z) € M(P) this clearly contradicts (X,Y,Z) €
S!(P), since Y is not minimal anymore.

X ¢ X':We have a similar argumentation. By (4), Y ¢ Z' holds, yielding (Y N
Z') C Y. Moreover,by (2) X C Z'and by (¢c) X C Y hold. Thus, X C (Y n Z").
Again, we have X C (YN Z') Cc Y,and by (a) and (Y N Z',Z) € M,(P), this
contradicts (X,Y, Z) € S (P). o

Let us apply the construction of Ps as used in the proof to the examples discussed
in the beginning of the section (except P; and Py which are not closed under here-
intersection). They all have r = a V b « as their only disjunctive rule. Hence, S, =
{(D, ab)}. Consider now S!(P;). Clearly, if S, N Ms((P;);) = , r is just replaced
by »—. This applies to i € {2, 4,6, 8}. For programs ¢ € {3,5,7}, S, N M((F;);) =
{(®, ab)}, and by the SE-models of the respective programs we get Sl (Ps) = SI(Ps) =
{(@,a,ab)}and S} (P;) = {(0, ab,ab)}. Thusin P and Ps, exchange r by 7= Urp 4 b,
with 7g , o = {a <} (under assumption At = {a,b}). This goes well conform from
our informal analysis in the beginning of the section. Finally, for P, we use 7¢ qp 4p
instead of ¢ , 45, yielding the following normal program {a < not b; b < not a;a <+;
b <—;a + b;b «+ a;} which is obviously strongly equivalent to {a «;b +;}. The
latter has (ab, ab) as its only SE-model and thus is strongly equivalent to P;.

4 Uniform Equivalence

The intuitive problems in constructing a uniform equivalent normal logic program from
a given disjunctive program are very similar to those observed in the case of strong

Eliminating Disjunction from Propositional Logic Programs 159

equivalence. Consider a program having as its only disjunctive rule ». Again, a good
starting point is to replace r by its corresponding shifting rules »—. But now, an SE-
model (X,Y) from S,. only comes into play, iff it is also UE-model of the rest program,
i.e, foreach X' with X C X' CY, (X", Y) € Ms(P\ {r}) implies X' =Y. Thus, if
we want to eliminate such an SE-model, the problem of eliminating further SE-models,
which should be retained, is less complicated compared to the case of strong equiva-
lence. Roughly speaking, because of this difference we are always able to construct a
uniformly equivalent normal program. For instance, all our example programs P;—Pq
except P; are uniformly equivalent to the program resulting from P; with r replaced
by »—. P;, however, matches exactly the case where (@), ab) is UE-model of the rest
program P; \ {r}. Adding rules as a < or b « (or both of them) circumvents the
problem. Hence, in some (but less) cases we again have to add further rules, but as is
seen in proof below, the difference to the construction of P is very subtle.

Theorem 2. For each DLP there exists a uniform equivalent NLP.

Proof. Again, we give a step-by-step transformation. So, let » be a disjunctive rule in a
DLP P, P = P\ {r}, and consider the program

P, = Pr_ ur—u TAPu with fpu = U rX,Z,7
(X,2,2)eS](P)

where S!(P) is defined as in the proof of Theorem 1. Note that the only difference
between P, and P, is that here we just consider those triples (X,Y, Z) from ST (P)
where Y = Z. To proceed with the proof, observe that analogously to the proof of
Theorem 1, we get

My(P,) = (Mo(P) N My(p,)) U (Mo(PD) N S, N M (GR)). ()

We show M, (P) = M,(P,). By Proposition 4, this holds iff both M, (P) C M(FP,)
and M, (P,) C M,(P) hold.

We first show M, (P) C M,(P,), which clearly implies M, (P) C M,(P,) imme-
diately. Note that if #p, is empty we are done, since then M(P) C Ms(P)N M,(7p,)
holds trivially. So consider #p, # (. We show that, for each rxy,y C #p, and
each (X',Y') € M,(P), (X', Y") € M,(rx,y,y) holds. Towards a contradiction, let
rx,v,y C 7p,, (X',Y') € Ms(P), and suppose (X', Y") ¢ M,(rx,v,v). On the one
hand, since rx v,y C 7#p,, we have (a) (X,Y) € S,NM (P), (b) X C Y, and (c) for
each SE-interpretation (U,Y) with X C U, (U,Y) € M,(P) impliesU =Y. On the
other hand, (X', Y") satisfies the following conditions for being a counter SE-model of
rx,v,y, by Proposition 7: (i) Y ¢ X', (ii) X CY”, (i)Y' C Y, and (iv) X C X' or
Y Z Y'. We use (iv) for distinguishing between the following two cases:

First, assume X C X'. Clearly, X' C Y holdsand by (i) X' # Y and by (iii) Y’ C
Y hold. We get X C X’ C Y. Moreover, X' = PY" holds, since (X',Y") € M,(P).
By Lemma 1, we get X’ = PY and Y = P holds by (a), i.e., since (X,Y) € S,.
Hence (X',Y) € M,(P), which clearly is in contradiction to (c).

Second, assume X ¢ X'. By (iv), then Y € Y. Together with (iii) we have Y’ C
Y. Moreover, X C Y’ holds by (ii). Since (X',Y’) € M,(P), Y' = PY' holds.

160 Thomas Eiter et al.

Lemma 1 yields Y/ = PY, and since Y = P, we have (Y',Y) € M,(P) with
X CY' CY. Again this is in contradiction to (c).

It remains to show M, (P,) C My(P). In fact we show M, (P,) N T = { with
T = M,(P7)NS,.NM,(7p,). By inspecting (2), it is seen that M, (P,)NT = @ implies
My(P,) C My (P) N M(7p,) which shows the claim since M (P) N Ms(7p,) C
M (P) holds trivially. To derive M, (P,) NT = @, we show, for any (X,Y) € S, N
M,(P;), that either (X,Y) ¢ M,(P,) or (X,Y) ¢ M,(#p,). So, fix some (X,Y) €
Sr N M(P,~). We consider two cases.

Assume (X,Y,Y) ¢ SI(P). Hence, there exists a set X C X’ C Y such that
(X"Y) € My(P). We know that (X, X,Y) ¢ SI(P). Thus, X C X'. We already
have shown M(P) C M,(P,), yielding (X',Y) € M,(P,). But then, (X,Y) ¢
My(P,),since X C X' CY.

Soassume (X,Y,Y) € S} (P)andthusrx y,y C 7p,. However, we have (X,Y) ¢
M,(rx,vy,v), since none of the following conditions from Proposition 7 is satisfied:
() YCX, (i) XZV, (iii)) YZY, or (iv) XZX and Y CY'. For (i+ii) this is seen by the
fact that (X,Y")€S, and thus X CY". (iii+iv) trivially fail. Hence, (X, Y)¢M,(#p,).

O

As already discussed above, the only program from our examples P;—Py which is
not uniformly equivalent after replacing r by »— is P;. However, since P; is closed
under here-intersection, we already know how to derive a strongly (and thus uniformly)
equivalent normal logic program from the proof of Theorem 1. In fact, one can ver-
ify that (P;)s = (Pr).. For an example program P which is not closed under here-
intersection and has 7p, # @, with r € P disjunctive, consider P = {a V b «;
a < ¢,b;b « c,a} over At = {a, b, c}. The SE-models of P are given as follows:

M;(P) = {(abc, abc), (ab, abc), (ab, ab),
(a3 abc)’ (a5 ab)7 (a’ a)7 (b5 abc)’ (b5 ab)7 (b5 b)}'

Indeed, P is not closed under here-intersection. Let r = a V b. We have that .S, is given
by {(0, ab), (0, abc), (¢, abe) } and as can be verified, S, N M, (P,") = S,.. Moreover,

ST(P) = {(0,a,ab), (0, b,ab), (0, a,abc), (B, b, abc), (c, abe, abe)}.

Only the last triple, (c, abe, abe), is applied in the construction of #p, . In fact, we have
to add 7. gbe,ape (Which is given by {a < ¢;b « ¢;¢ « ¢}) to P~ U r~. For the
resulting program P,, we then have M, (P,) = M4 (P) U {(d, ab), (0, abc)}, but the
“critical” SE-interpretation, (¢, abc), has been eliminated. In fact, M, (P) = M,(P,)
holds, since neither (@, ab) nor (@, abc) is UE-model of P,.

5 Ordinary Equivalence

Finally, we discuss how to derive normal logic programs which are ordinary equiva-
lent to given disjunctive ones. By Theorem 2, such programs always exist and, for a
given program P, P, clearly does the job, since uniform equivalence implies ordinary
equivalence. However, we give two further alternatives. The first is motivated by an
enumeration of stable models, while the second one optimizes P,. To start with, we
state the following result which is easily seen from Proposition 7.

Eliminating Disjunction from Propositional Logic Programs 161

Proposition 8. M(rp,y,y)={(X",Y") € INTp; | YCX' orY'ZY}, forany Y CAt.
Theorem 3. Let P be DLP. Then, SM(P) = SM(P) with P = Uy s aq(p) T0,v,v-

Proof. LetY € SM(P). Then, foreachY’ € SM(P),eitherY Z Y'orY =Y'. By
Proposition 8, (Y,Y) € M,(P). Towards a contradiction, suppose Y ¢ SM(P). By
Proposition 2, there exists a X C Y such that (X,Y) € M,(P). In particular, we must
have (X,Y’) € ry y,y. But by Proposition 8, it is easily seen that this is contradicted by
X CY.Thus, Y € SM(P).

Conversely, suppose Y € SM(P) andY ¢ SM(P). Thatis, (X,Y) € M,(P)
forsome X C Y. Then, Y ¢ Y’ foreachY' € SM(P). We have (X,Y) € rpy+ v,
for each Y’ € SM(P) by Proposition 8. Thus, (X,Y) = P with X C Y. But this
contradicts Y € SM(P). O

The following construction would be more “structure-preserving” and, to some ex-
tend, “optimizes” the program P,.

Theorem 4. Let P be DLP and » € P. Then, SM(P) = SM(F,) with
P, = PT_ Jr™ U7A‘Pe with ’Fpe = {T(D,Z,Z | rx,z,z C ’Fpu, Z € SM(P)}

Proof. Let Y € SM(P). Obviously, Y = P~ and, by Proposition 6, Y | r—.
Moreover, #p, C P, which implies, by Theorem3,Y |= #p,. Thus, Y |= P,. It remains
to show that no X C Y, yields an SE-model (X,Y") of P.. Towards a contradiction,
suppose some X C Y suchthat (X,Y) € M (P.). Clearly, (X,Y) € M,(P,"), hence,
sinceY € SM(P), (X,Y) ¢ M(r) must hold. Then, by Proposition 6, (X,Y) € S,.
We have (X,Y) € S, N My(P;-)andY € SM(P), and thus get rp vy € P. by
construction. By Proposition 8, (X,Y) ¢ M,(rg,y,y) Which contradicts (X,Y) €
M;(P.). Thus, no (X,Y) € M,(P,) with X C Y exists. Thismeans Y € SM(P,).
Conversely, let Y € SM(P,). This implies Y |= P. Towards a contradiction,
suppose Y ¢ SM(P), i.e., there exists X C Y, such that (X,Y) € M,(P). By
Proposition 6, (X,Y) € My(P- Ur™).Since Y ¢ SM(P), we have Y ¢ Y,
for each Y’ € SM(P). By Proposition 8, (X,Y) € M,(rg,y,y) for each Y’ with
Y ¢ Y'. Hence, (X,Y)eM,(P.). By Proposition 2, this contradicts Y eSM(P,). O

To summarize, given a DLP P with r € P disjunctive, we are able to construct (via
a replacement of r by normal rules) a logic program P, which is ordinary equivalent to
P; aprogram P, which is uniformly equivalent to P; and, whenever P is closed under
here-intersection, a program P, which is strongly equivalent to P. All these programs
are of the form

P uUr~ Urp, fora € {e,u,s}.

By definition of #p_, we furthermore can state that | P.| < |P,| and P, C P;. Hence,
our method can be seen as a uniform framework for all important notions of equiva-
lence. Moreover, our results extend and generalize methods based on shifting disjunc-
tions, since the outcome of these methods coincides with the presented rewriting P,,
whenever 7p_ is empty. In particular, concerning equivalence in terms of stable mod-
els, we present a semantic criterion (in contrast to the syntactic criterion of head-cycle
free programs, cf. [1]) which allows for shifting. Concerning equivalence in terms of
UE-models, we generalize an observation made in [7] (see Theorem 4.3).

162 Thomas Eiter et al.

6 Complexity Issues

Finally, we deal with some related complexity issues. We can express the test for a
DLP P of being closed under here-intersection via the following normal logic program,
which is linear in the size of P.

Definition 6. Let P be a DLP over atoms V and let V, V{/, V{/, Vi, Vi, VJ, and u be
disjoint new atoms. Define

Py = {v + notv; 6 < notv |v eV} €))
U {v} < v, not 0j; U; « notv; |v € V,i € {1,2}} (4)
U {« B(r),not H(r) | r € P} (5)
U {« B*(r}),not B~ (r),not H(r}) | r € P,i € {1,2}} (6)
U {v < vj,vy v eV} (7
U {u < Bt (r}),not B=(r),not H(r) | r € P} (8)
U {« notu}. 9)

Intuitively, the program Pg works as follows. Rules (3) guess an interpretation Y’
of P and rules (5) check that Y is a model of P. Similarly, rules (4) guess subsets X
and X, of Y such that both are models of PY, which is enforced by (6). Hence, (3)—(6)
"compute’ all pairs of SE-models (X1,Y") and (X»,Y) of P.

Now, rules (7) compute the intersection Xy N X» and via rules (8) the new atom
u can be derived iff the intersection does not model PY, i.e. iff (X; N X5,Y) is no
SE-model of P. The constraint (9) kills all models of P for which this is not the case,
i.e. for which (X; N X»,Y") is an SE-model of P. Thus, (7)—(9) ensure that Py has no
stable model iff P is closed under here-intersection. Formally, we have:

Theorem 5. ADLP P is closed under here-intersection iff Pg has no stable model.
Based on this, we derive the following complexity result.

Theorem 6. Let P be a DLP. Then, checking whether there exists a normal logic pro-
gram @ strongly equivalent to P is complete for coNP.

Proof. By Theorem 5, and the linear encoding from Definition 6 we get that closed-
ness under here-intersection is in coNP. By Theorem 1, we immediately get the coNP-
membership part.

We show coNP-hardness of this problem by a reduction to the coNP-complete prob-
lem of deciding whether At is the unique model of a positive DLP.

Let P be a positive DLP over the alphabet At, let v, v’ be new atoms, and consider
the program

Q=PU{vVv ;v At; v « At}

We prove that @ is closed under here-intersection iff At is the unique model of P.

The if direction is straight forward: If At is the unique model of P then, by con-
struction, At U {v,v'} is the unique model of @, and since @ is positive — and hence
constant under reduction — @ is trivially closed under here-intersection.

Eliminating Disjunction from Propositional Logic Programs 163

For the only-if direction assume @ is closed under here-intersection and, towards
a proof by contradiction, suppose there exists a model M C At of P. Then both,
M U {v}and M U {v'} are models of @ and thus also both, (M U {v}, At U {v,v'})
and (M U{v'}, AtU{v,v'}) are SE-models of (). However, (M, AtU{v,v'}) isnotan
SE-model of @, since M = v V v’ «. This contradicts the assumption that @ is closed
under here-intersection, hence At is the unique model of P.

We have shown coNP-hardness of deciding whether a DLP P is closed under here-
intersection which immediately implies coNP-hardness of checking whether there ex-
ists a normal logic program @ strongly equivalent to P by Theorem 1. O

Another interesting issue is the size of the rewriting of a given DLP P into an
equivalent NLP @ (if it exists). Using the constructive methods presented in this paper
the rewriting is of exponential size, in general. However there is strong evidence that
this is unavoidable. Let DLP and NLP denote the classes of all DLPs and NLPs,
respectively (over atoms At).

Theorem 7. For each ITF-hard family F of DLPs such that there exist e-equivalent
NLPs, there does not exist a polynomial rewriting f : 7 — NLP suchthat P =, f(P),
e € {u, s}, for every DLP P of F, unless the Polynomial Hierarchy (PH) collapses.

Proof. (Sketch) Towards a contradiction, assume that for a positive DLP P, a polyno-
mial rewriting f : P — NLP exists and consider the I7-hard problem of checking
whether, for some atom A, not A is a cautious consequence of P ([9]).

Then, we could guess an NLP f(P) =: P’ in nondeterministic polynomial time.
Furthermore, checking P =, P’ is in coNP (even in case of uniform equivalence, since
P is positive and P’ is normal, i.e. head-cycle free [7]). As well, checking whether
P' |=. not A is in coNP (since P’ is normal). Thus, the I -hard problem of deciding
P =, not A would be in X, a contradiction unless PH collapses. |

Also for rewritings under ordinary equivalence, we cannot avoid an exponential
blow up unless PH collapses.

Theorem 8. There is no polynomial rewriting f : DLP — NLP suchthat P = f(P)
for every P € DLP, unless PH collapses.

Proof. (Sketch) This can be shown by using nonuniform complexity classes as in [3, 2,
13], following closely the line of proof there that the existence of a polynomial model-
preserving mapping g : CIRC — PL from propositional circumscription CIRC' to
classical propositional logic PL would imply that coNP C P/poly, i.e., the class of
problems decidable in polynomial time with polynomial advice. This inclusion implies
a collapse of PH. The proof can be easily adapted, where the mapping g, CIRC, and
PL are replaced with f, (positive) DLP, and NLP, respectively. O

Clearly Theorem 7 implies Theorem 8, but the proof of the latter does not refer to
non-uniform complexity classes, and is thus more accessible. We remark that in terms
of [13], DLP is a stronger formalism than NLP unless PH collapses. Furthermore,
Theorem 8 remains true for generalized rewritings f which admit projective extra vari-
ables, i.e., P=f(P)| ¢, where f(P) is on atoms At' D At and f(P)a. denotes the
restriction of the stable models of f(P) to the original atoms At. Indeed, such an f
would imply coNPCNP/poly, which again means that PH collapses.

164 Thomas Eiter et al.
7 Conclusion

In this work, we derived new results on the relationship between propositional dis-
junctive and normal logic programs under the stable model semantics, by investigating
whether disjunctions in a given program P can be replaced by normal rules, in such
a way that this modification does not change the set of SE-models (resp. UE-models,
stable models) of P. In a bigger picture, such a rewriting technique allows to obtain
a strongly (resp. uniformly, ordinary) equivalent normal logic program from a given
disjunctive logic program.

Our results show that under ordinary and uniform equivalence, this rewriting is
always possible. In the case of strong equivalence we identified an appealing semantic
criterion based on so-called here-intersection. The rewriting itself is based on the well-
known (local) shifting of disjunctive rules, but extends this method by an addition of
further rules, which take the semantic of the entire program into account. Hence, this
rewriting is in general hard to obtain, and has to be exponential in the worst case under
widely accepted complexity theoretic assumptions.

These results complement recent considerations on simplification techniques un-
der different notions of equivalence, cf. [22, 30, 8], and thus add to the foundations of
improving implementations of Answer Set Solvers.

Moreover, we showed that the problem of deciding whether a DLP is closed under
here-intersection, i.e., deciding whether there exists a strongly equivalent NLP, is com-
plete for coNP, answering a question left open in [8]. As a by-product, we presented an
encoding of this test via a normal logic program. Note, however, that this test may also
be treated by SAT-solvers. Thus, we also contributed to a line of research in ASP, which
relies on the application of classical propositional logic (or QBFs) to deal with certain
problems in logic programming [15, 5, 24].

Further issues concern a closer investigation of adding extra variables, as well as of
the newly derived class of DLPs closed under here-intersection. One the one hand, we
are interested in the expressibility of such programs. On the other hand, it is an open
question whether this class allows for optimizations of algorithms used in disjunctive
logic programming engines such as DLV.

References

1. R. Ben-Eliyahu and R. Dechter. Propositional semantics for disjunctive logic programs.
Annals of Mathematics & Atrtificial Intelligence, 12:53-87, 1994.

2. M. Cadoli, F. Donini, and M. Schaerf. Space efficiency of propositional knowledge repre-
sentation formalisms. Journal of Artificial Intelligence Research, 13:1-31, 2000.

3. M. Cadoli, F. Donini, M. Schaerf, and R. Silvestri. On compact representations of proposi-
tional circumscription. Theoretical Computer Science, 182(1-2):183-202, 2000.

4. D.J. de Jongh and L. Hendriks. Characterizations of strongly equivalent logic programs in
intermediate logics. Theory and Practice of Logic Programming, 3(3):259-270, 2003.

5. U. Egly, T. Eiter, H. Tompits, and S. Woltran. Solving advanced reasoning tasks using quan-
tified Boolean formulas. In Proc. AAAI-00, pp. 417-422. AAAI / MIT Press, 2000.

6. T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative problem-solving using the DLV
system. In J. Minker, ed., Logic-Based Artificial Intelligence, pp. 79-103. Kluwer, 2000.

10.

11.
12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

217.
28.

29.

30.

Eliminating Disjunction from Propositional Logic Programs 165

T. Eiter and M. Fink. Uniform equivalence of logic programs under the stable model seman-
tics. Tech. Rep. INFSYS RR-1843-03-08, Inst. fiir Informationssysteme, TU Wien, 2003.
Preliminary Report. Short version in Proc. ICLP-03, to appear.

T. Eiter, M. Fink, H. Tompits, and S. Woltran. Simplifying logic programs under uniform
and strong equivalence. Manuscript, submitted, July 2003.

T. Eiter and G. Gottlob. On the computational cost of disjunctive logic programming: Propo-
sitional case. Annals of Mathematics & Artificial Intelligence, 15(3/4):289-323, 1995.

T. Eiter and G. Gottlob. Expressiveness of stable model semantics for disjunctive logic
programs with functions. Journal of Logic Programming, 33(2):167-178, 1997.

T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog. ACM TODS, 22(3):364-417, 1997.
M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.
New Generation Computing, 9:365-385, 1991.

G. Gogic, H. Kautz, C. H. Papadimitriou, and B. Selman. The comparative linguistics of
knowledge representation. In Proc. IJCAI-95, pp. 862-869. Morgan Kaufmann, 1995.

T. Janhunen, 1. Niemeld, P. Simons, and J.-H. You. Partiality and disjunctions in stable model
semantics. In Proc. KR-00, pp. 411-419. Morgan Kaufmann, 2000.

C. Koch and N. Leone. Stable model checking made easy. In Proc. 1JCAI-99, pp. 70-75.
Morgan Kaufmann, 1999.

V. Lifschitz, D. Pearce, and A. Valverde. Strongly equivalent logic programs. ACM Trans-
actions on Computational Logic, 2(4):526-541, 2001.

F. Lin. Reducing strong equivalence of logic programs to entailment in classical proposi-
tional logic. In Proc. KR-02, pp. 170-176. Morgan Kaufmann, 2002.

M. J. Maher. Equivalences of logic programs. In Minker [21], pp. 627-658.

V. W. Marek, J. Treur, and M. Truszczyhski. Representation theory for default logic. Annals
of Mathematics & Artificial Intelligence, 21(2-4):343-358, 1997.

W. Marek and J. Remmel. On the expressibility of stable logic programming. Theory and
Practice of Logic Programming, 3(4-5):551-567, 2003.

J. Minker, editor. Foundations of Deductive Databases and Logic Programming. Morgan
Kaufman, Washington DC, 1988.

M. Osorio, J. Navarro, and J. Arrazola. Equivalence in answer set programming. In Proc.
LOPSTR-01, LNCS 2372, pp. 57-75. Springer, 2001.

D. Pearce. A new logical characterisation of stable models and answer sets. In Non-
Monotonic Extensions of Logic Programming (NMELP 1996), LNCS 1216, pp. 57-70.
Springer, 1997.

D. Pearce, H. Tompits, and S. Woltran. Encodings for equilibrium logic and logic programs
with nested expressions. In Proc. EPIA-01, LNCS 2258, pp. 306-320. Springer, 2001.

D. Pearce and A. Valverde. Some types of equivalence for logic programs and equilibrium
logic. In Proc. Joint Conf. on Declarative Programming (APPIA-GULP-PRODE), 2003.

T. Przymusinski. Stable semantics for disjunctive programs. New Generation Computing,
9:401-424, 1991.

Y. Sagiv. Optimizing Datalog programs. In Minker [21], pp. 659-698.

J. Schlipf. The expressive powers of logic programming semantics. Journal of Computer
and System Sciences, 51(1):64-86, 1995. Abstract in Proc. PODS 90, pp. 196-204.

H. Turner. Strong equivalence for logic programs and default theories (made easy). In Proc.
LPNMR-01, LNCS 2173, pp. 81-92. Springer, 2001.

H. Turner. Strong equivalence made easy: nested expressions and weight constraints. Theory
and Practice of Logic Programming, 3(4-5):609-622, 2003.

