MODELS'11 Workshop - EESSMod 2011

Building VECM-based Systems with a Model
Driven Approach: an Experience Report

Maurizio Leotta, Gianna Reggio, Filippo Ricca, and Egidio Astesiano

Dipartimento di Informatica e Scienze dell’Informazione - DISI
Universita di Genova
16146 Genova, Italy
{maurizio.leotta|gianna.reggio|filippo.ricca|astes}@disi.unige.it

Abstract. Recently, we took part in a project with two local companies
about the creation of a UML-based Model Driven rigorous method to
develop VECM-based systems. VECM is a way to abstract from the details
of different Enterprise Content Management (ECM) systems used within
the same organization. This report details the experience made using our
method to develop V-Protocol: a system able to protocol, sign and archive
public competition announcements received by a company.

1 Introduction

The authors have been recently involved in the VirtualECM project! aimed at
developing the VECM technology and a UML-based Model Driven (MD) rigorous
method for building systems based on VECM. A VECM-based system (shortly
V-System) is a system that uses the VECM software interface (Sect. 2). In a
nutshell, a VECM abstracts the basic operations offered by an ECM. An ECM
is a system used to capture, manage, store, and deliver enterprise content. It
provides operations on documents such as: createDocument() and deleteDocu-
ment(). There are a lot of ECM systems available on the market, e.g., Alfresco
(open source), SharePoint (Microsoft), Oracle Content Management (Oracle),
and Documentum (EMC).

On the top of this heterogeneous ECM environment, usually, the companies
build their systems using several ECM systems characterized by different inter-
faces; for example, a bank that uses an ECM system to manage credit transfer
and another one for loans. Often, the consequence of this practice is the develop-
ment of a system highly coupled with the underlying ECM systems. The VECM
software interface solves this problem. In practice, the VECM allows to develop
systems not tied to the specific characteristics of a particular ECM.

In this paper we propose a UML rigorous method useful to develop VECM-
based systems (Sect. 3). It follows the MD approach [2] for the development
of software systems. In particular, several UML models are created starting
from the business process model to obtain a detailed design model that can

! VirtualECM project was supported by “Programma Operativo Regionale POR-FESR
(2007-2013)”, Liguria, Italy

-38 -

MODELS'11 Workshop - EESSMod 2011

2 Maurizio Leotta, Gianna Reggio, Filippo Ricca, and Egidio Astesiano

be transformed/refined in a running system. We have applied this method to
build V-Protocol, the selected case study for the project, which is a system used
to protocol, sign and archive public competition announcements received by a
company.

2 VECM and ECM

In this section we explain what a VECM is and report on the factors that have
motivated the development of the VECM software interface, which is the aim of
the VirtualECM project.

There are a lot of ECM systems available on the market. Even if each of them
has some distinguishing features, they provide substantially the same operations
often called in different ways and with different parameters.

Usually, in a big company it is possible to find different ECM systems chosen
by and used in different branches of the same organization. This can happen
for several reasons: for example because different branches of the same company
have chosen different ECM systems for money matters, licence or specific char-
acteristics. Thus, a company often has to build a system in an heterogeneous
ECM environment using different underlying ECM systems. The result of this
practice is a system that interacts with different ECM systems with their own
interfaces, languages, and characteristics. Systems built in this way are tightly
coupled to the set of used ECM systems, and thus tend to exhibit well-known
problems (e.g., difficulties in changing, reusing, and testing software).

That problem can be solved with an additional layer of abstraction placed
between the system and the different ECM systems. Such software layer is called
VECM, a sort of virtualization of ECM systems. In practice, without the VECM
a system has to interact with a set of different ECM systems and it has to
know their different interfaces; instead, with the VECM a system has to know
only the VECM interface. The management of the interaction with the different
underlying ECM systems is totally delegated to the VECM. When the system
uses a functionality offered by the VECM, it does not to know what type of
ECM is actually used. In this way it is possible to replace an ECM with another
without problems.

Fig. 1 shows a simplified definition of the functionalities offered by the VECM,
which are an abstraction of a well defined subset of operations typically offered
by an ECM. As we can see, the VECM operations cover different areas and work
on or produce content.

3 The Method

We propose a method for the development of systems based on the VECM that
follows the MD approach. The starting point is a UML model representing the
target business process including at least an activity diagram and the final result
is a detailed design model that can be transformed into a running system. In

-39 -

MODELS'11 Workshop - EESSMod 2011

Building VECM-based Systems with a Model Driven Approach 3
EventManager StoreManager AttributeManager TypeManager VersionManager
VECM

TransactionManager ClassificationManager
TransformationManager FolderManager ProtocolManager
createFolder(Path) protocol(Content)
deleteFolder(Path) sign(Content)
ContentManager copyFolder(Path, Path)

readContent(Path) : Content PermissionManager

createContent(File) : Content applyPermissionToFolder(Path, Permission)

saveContent(Content) applyPermissionToContent(Content, Permission)

updateContent(Content) Y

deleteContent(Content) ResearchManager

researchParameter(Parameter) : sequence(Content)
researchFullText(string) : sequence(Content)

Cfmtent <<datatype>> <<datatype>> <<datatype>>
name : string Parameter File Permission
permission : Permission
type : ContentType <<Enum>> <<datatype>>
path : Path ContentType Path
file : File

Fig. 1. UML presentation of the VECM functionalities

our method, the activity diagrams used to represent the business processes are
created following the “precise style” introduced in [6].

In a nutshell, the “precise style” prescribes that the participants of a busi-
ness process are explicitly listed and precisely modelled with UML by means of
classes. Moreover, the behavioural view of the business process is given by an
activity diagram where the basic activities and the conditions are written by
respectively using the language for the actions of UML and OCL (the textual
language for Boolean expressions part of UML). Thus, our UML precise model
of a business process consists of: a class diagram, introducing the classes needed
to type its participants, the list of its participants, and an activity diagram rep-
resenting its behaviour, where all nodes (arcs) are decorated by operations calls
(OCL expressions). From a previous study, we have seen that this style improves
the quality of the business process models expressed as activity diagrams [5], and
that it is better than a “light stile” [1].

The method for developing a V-System consists of four phases:

— Business Process Modelling
— V-System Placement
V-System High Level Design
— V-System Detailed Design

We present our method using the Protocol case study selected in the Vir-
tualECM project for the realization of a demonstrator named V-Protocol. The
system V-Protocol has been developed by the two companies following the above

-40-

MODELS'11 Workshop - EESSMod 2011

4 Maurizio Leotta, Gianna Reggio, Filippo Ricca, and Egidio Astesiano

four phases. The Protocol case study is about the management of the announce-
ments of public competitions received by a company. It can shortly be described
in this way: “First an announcement is received by the company and managed
by a clerk. Subsequently, the announcement is checked by a clerk to verify its
validity, and if it is valid the announcement is protocolled, digitally signed and
saved in a repository”.

3.1 Phase 1: Business Process Modelling

The first phase of our method consists in describing the business process/domain
“as it is”, i.e., by means of the UML model called BusinessProcessModel that
represents the business before the introduction of the system based on the VECM.
At this level the UML model has to be close as much as possible to the given
description of the business. Participants of the business will have a name and
will be typed by a class with stereotype either <businessWorker> (human being)
or <system> (hardware/software systems). Also the business objects will have
a name and will be typed by a class stereotyped by <businessObject>>.

Since it is not possible to use the V-System in the BusinessProcessModel and
moreover the textual description could be incomplete or quite abstract, in some
cases it could be difficult assigning the activities involving a business object to
a business worker or to a system (e.g., in the business underlying the Protocol
case study, it is not specified who will protocol, sign and save an announcement).
In those cases, it is advisable assigning such activities directly to the business
objects over which they will be executed. We have decided to describe those
activities in the model using the passive form (e.g., DOC.saved() in Fig. 2).

The result of this activity in the Protocol case study is a UML model reported
in Fig. 2. That model is composed by two diagrams: an activity diagram and a
class diagram. In the activity diagram, as reported in the side note, there are two
business workers (the operator and the verificator) and two business objects (an
announcement and a document). Note that in the class diagram the operations of
Document are given in passive form, and that the created() operation is declared
as static because in this phase it is not known who creates the document.

3.2 Phase 2: V-System Placement
The aim of the second phase is deciding which of the activities described in
the previous phase will be performed by the V-System. The placement of the
V-System is done using a swimlane labelled by the name of the system (in our
case V-Protocol). During this phase a set of models are created and finally a
UML model called PlacementModel is obtained. The activities that have to be
performed by the V-System will be placed inside the swimlane, the others will
remain outside. It could happen that an activity is not totally of competence
of the V-System: in this case the activity has to be subdivided in two or more
sub-activities assigned to different participants.
The placement is correct only if the following constraints are observed:

— at least one activity is placed inside the V-System swimlane (no activities in

the swimlane mean that the system will do nothing);

-41 -

MODELS'11 Workshop - EESSMod 2011

Building VECM-based Systems with a Model Driven Approach 5
BusinessWorkers:
OP.present(ANN
OP : Operator (P {)) <<businessObject>>
VER : Verificator \l/ Document
BusinessObjects: B created(Announcement) : Document
ANN : Announcement G)OC = Document.created(ANND protocolled()
DOC : Document \l/ signed()
saved()
C ANS = VER.control(DOC)) deleted()
[else] 0..1 01
[ANS] <<businessObject>>
Announcement
DOC.protocolled()
\|/ <<businessWorker>>
Operator
(DOC.deleted()) (DOC.signed() present(Announcement)
<<businessWorker>>
DOC.saved() Verificator
control(Document) : boolean
(a) Activity Diagram (b) Class Diagram

Fig. 2. Protocol Case Study: BusinessProcessModel

— no activities performed by business workers are inside the swimlane (the sys-
tem cannot replace the behaviour of a human being that it is unpredictable
and not computable, e.g., an examiner of future employees or of the artistic
value of a novel);

— at least an activity should be placed on the border of the swimlane (such an
activity will result in communication between the system and some external
entity);

— no activity flow (control and object) can cross the swimlane boundary (a
crossing flow means a hidden communication between the system and some
external entities).

Therefore only the following types of activities can be placed inside the V-
System swimlane:

— passive activity of a business object: this means that the V-System will exe-
cute the activity on the object (e.g., DOC.saved());

— activity performed by a pre-existing system: this means that the system
under development will replace the existent system in the execution of the
activity.

Since that is not allowed to place an activity assigned to a business worker
inside the V-System swimlane, if the activity has to be performed by the V-
System then it can be placed inside the swimlane only after a model refactoring

-42 -

MODELS'11 Workshop - EESSMod 2011

6 Maurizio Leotta, Gianna Reggio, Filippo Ricca, and Egidio Astesiano

step in which the activity has to be assigned to a participant stereotyped by
<system> (or <businessObject> using the passive form). This means that the
system will perform an activity that previously was done by a human.

During the placement of the V-System in presence of constraints violations
the following cases can occur:

— the placement becomes corrected after performing one or more business pro-
cess model refactoring;

— it is not possible to refactor the model to satisfy the constraints; in such
case the developer has to either change the placement or to conclude that
the intended system is not doable.

The result of this phase is the PlacementModel, having the form of a Busi-
nessProcessModel where part of the activity diagram is included in one swimlane
named as the system to develop.

The creation of the PlacementModel (that for space limitations we do not
report here) for V-Protocol has required a model refactoring step in order to
create the activities for the messages exchange between the participants. For
example, the activity control(DOC) has been broken in several activities because
it involve both the operator and the system.

3.3 Phase 3: V-System High Level Design

The goal of this phase is providing a high level design of the V-System with a
detailed description of the activities carried out by the system. During this phase
a UML model called DesignModel is produced.

We start from the PlacementModel and perform a refinement step. For each
participant of type <businessWorker> and <system>> in the activity diagram we
introduce a swimlane labelled by its name. In this model, the involved partic-
ipants communicate using two type of UML actions: — the call action? (D)
used when a participant sends a message to another one and — the accept action
() used when a participant receives a message from another one.

At this level of description, all the activities in the V-System swimlane are
reported as executed by the system as a whole. There are no details about the
inner structure of the V-System (e.g., information about the number of ECM
used).

In Fig. 3 we report the DesignModel for the Protocol case study. It contains
three swimlanes: one is for V-Protocol and two are dedicated to the business
workers that interact with it. The operator, the verificator and V-Protocol per-
form some actions on the business objects announcement and document. The
business process implemented by V-Protocol is triggered by the arrival of a mes-
sage with attached an announcement (each message exchange is depicted in the
activity diagram by means of a dashed line). The starting message is sent by
OP (see Fig. 3). The system interacts also with the verificator that checks the
correctness of the document. In the end, V-Protocol executes some operations
on the document DOC (e.g., VProtocol.save(DOC)) and next the process stops.

2 We are aware that only send signal actions can be represented in this way, but here
we use this icon also for call actions.

-43 -

MODELS'11 Workshop - EESSMod 2011

Building VECM-based Systems with a Model Driven Approach 7
OP V-PROTOCOL VER
OP.uploadAnnouncement(ANN) >— |- -) V-PROTOCOL.receiveAnnouncement(ANN)
Vi
GDOC = V-PROTOCOL.createDocument(ANND 3
\Vi
V-PROTOCOL.sendNotification(DOC) >- ---F > VER receiveNotification(DOC)

Vi

BusinessWorkers:
OP : Operator
VER: Verificator

ANS = VER.control(DOC)

Systems:
V-PROTOCOL : V-Protocol

> V-PROTOCOL.receiveResponse(ANS) ol ¥ VER.sendResponse(ANS) >

v else] é

V-PROTOCOL.delete(DOC)

V-PROTOCOL.protocol(DOC)
V-PROTOCOL sign(DOC)

BusinessObjects:
ANN : Announcement
DOC : Document

(a) Activity Diagram

<<system>> protocol(D : Document) <<businessWorker>>

V-Protocol post D.refNumber.notEmpty () Verificator
receiveAnnouncement(Announcement) sign(D : Document) receiveNotification(Document)
createDocument(Announcement) : Document |- - [Pt DS EL i) control(Document) : Boolean

createDocument(A : Announcement
sendNotification(Document) post results.an(nouncement =A an)d sendResponse(boolean)

receiveResponse(boolean) results.signature.isEmpty () and
protocol(Document) results.refNumber.is Empty () <<businessWorker>>
sign(Document) Operator
save(Document) <<businessObject>> uploadAnnouncement(Announcement)
delete(Document) =
<<businessObject>> 0.1 | refNumber : ReferenceNumber <<datatype>> <<datatype>>
Announcement 0.1 signature : DigitalSignature DigitalSignature ReferenceNumber

(b) Class Diagram

Fig. 3. Protocol Case Study: DesignModel

In Fig. 3(b), we show the class diagram associated with the activity diagram
of Fig. 3(a). The class diagram is used to type and specify the stereotype of
each participant and to specify attributes and/or operations of each participant.
Moreover, the class diagram can contain datatypes (e.g., DigitalSignature) used
to type attributes or operation parameters. The activity diagram created at this
level ought to be structured [7] because unstructured diagrams make difficult

-44 -

MODELS'11 Workshop - EESSMod 2011

8 Maurizio Leotta, Gianna Reggio, Filippo Ricca, and Egidio Astesiano

the translation of business process models into executable models (e.g., written
in BPEL [3]) that often offer structured-programming constructs only.

The models created following our method can be enriched at each phase with
other UML diagrams or details that increase the level of information provided;
for example in the class diagram in Fig. 3(b) we added some constraints.

3.4 Phase 4: V-System Detailed Design

The fourth and last phase produces a UML model called ArchitectureModel that
depicts the system architecture.

¢

> PROT.receiveAnnouncement(ANN)

REPOSITORY_1 : <<VECM>>
REPOSITORY_2 : <<VECM>>

\Vi REPOSITORY_3 : <<VECM>>
PROT : Protocoller
DOC = REPOSITORY_1.createContent(ANN) ANN : Announcement
DOC : Document
\V
PROT.sendNotification(DOC)
\V/
> PROT.receiveResponse(ANS)

[else]
[ANS] \]/

(REPOSITORY_2 protocol(DOC))[REPOSITORY72.deleteContent(DOC))
(REPOSITORY_2.sign(DOC))

(REPOSITORY_3.saveContent(DOC))

(a) Activity Diagram

<<orchestrator>> <<file>>
Protocoller Announcement

receiveAnnouncement(Announcement)

sendNotification(Document) <<content>>
receiveResponse(boolean) Document
(b) Class Diagram
' 2: << >>
=< 2> PROT : Protacoller —j
— REPQSITORY 3 : <<VECM>>

(c) Object Diagram

Fig. 4. Protocol Case Study: ArchitectureModel

-45-

MODELS'11 Workshop - EESSMod 2011

Building VECM-based Systems with a Model Driven Approach 9

The detailed design is given in terms of the subsystems that constitute the
system. The subsystems can be: (1) one or more VECMs that abstract the under-
lying ECMs; (2) an orchestrator that coordinates the execution of the different
VECMs and, if necessary, performs some data elaborations. Note that all the
computations not assignable to the VECMs are done by the orchestrator. More-
over, the orchestrator manages the interaction with the outside participants (e.g.,
sending and receiving messages). At this level, for simplicity, the participants not
included in the V-System swimlane are removed from the model. The attention
is uniquely focused on the V-System architecture.

The subsystems that are typed by VECM can perform only a predefined set
of operations (see Fig. 1). All the operations not supported by VECM have to be
executed by the orchestrator and if it is not possible they have to be substituted
by calls to external services and this require a modification of the V-System
design.

In Fig. 4 we show the V-Protocol ArchitectureModel. The system is composed
by four subsystems: one orchestrator (Protocoller) and three repositories of type
VECM. All the operations performed by the repositories are included in the UML
presentation of the VECM functionalities in Fig. 1. Note that the repositories do
not communicate each other.

4 Lessons Learnt

Based on the experience that we have acquired during the development of our
method, we summarize the lessons learnt and discuss opportunities for future
research.

— It is possible to apply MD to build VECM-based applications without invest-
ing in complex tools and expensive training. It is sufficient a UML design
tool (e.g., Visual Paradigm?®) and a basic knowledge of UML. In the case of
the VirtualECM project the involved companies had an adequate expertise
for the execution of the method.

— Usually business process descriptions and models used in practice and given
as starting point to develop a system are ambiguous, inconsistent, over-
specific or too generic. Often, models given in “light style” format [6] seem
very simple and easy to understand but often they contain subtle flaws that
could bring to different interpretations and meanings. Using the “precise
style” helps to reduce more common errors and flaws [5].

— The use of VECM is complementary to the use of SOA and not an alternative,
given that they differ in the level of application. Indeed, VECM can be placed
above a set of SOA-based ECM that though they have a SOA-based interface,
the signatures of their operations are not standardized. For this reasons also
in a SOA-based ECM environment it is useful to adopt VECM. Moreover,
VECM exposes a SOA interface so it can be invoked as a web service.

3 a UML modeller covering all kinds of UML diagram types. See http://www.visual-
paradigm.com/

- 46 -

MODELS'11 Workshop - EESSMod 2011

10 Maurizio Leotta, Gianna Reggio, Filippo Ricca, and Egidio Astesiano

— Methods for developing ECM based systems are difficult to find. Some tools
that permit to integrate different ECMs exist (e.g., ECM integration layer
of SAP NetWeaver or FusionEnterprise) but they are part of complex tech-
nology platforms. Instead VECM is a light interface that does not require
complex and expensive solutions.

— The adoption of CMIS* [4] does not replace the use of VECM. Indeed, even
if CMIS will reach in the future a great diffusion among ECM users, a lot of
companies will still use obsolete ECMs.

— Currently, the two companies involved in the VirtualECM project imple-
mented by hand the system as a web application starting from the V-Protocol
Architecture Model. Future work will be devoted to automate this task.

5 Conclusion and Future Work

In this experience report we have presented: (i) an MD method useful to de-
velop VECM-based systems and (ii) its application to the development of the
V-Protocol case study. Preliminary applications of our method (as the one re-
ported here) show its effectiveness.

Future work will be devoted to refine our method and test it with more
complex real case studies. We also intend developing a tool able to assist the
designer in the construction of VECM-based systems. The tool should automati-
cally transform the orchestrator produced during V-System Architecture Design
phase in executable code.

References

1. F. Di Cerbo, G. Dodero, G. Reggio, F. Ricca, and G. Scanniello. Precise vs. Ultra-
Light Activity Diagrams - An Experimental Assessment in the Context of Business
Process Modelling. In D. Caivano, M. Oivo, M. Baldassarre, and G. Visaggio,
editors, Product-Focused Software Process Improvement, volume 6759 of Lecture
Notes in Computer Science, pages 291-305. Springer Berlin / Heidelberg, 2011.

2. S. Kent. Model driven engineering. In M. J. Butler, L. Petre, and K. Sere, editors,
IFM, volume 2335 of Lecture Notes in Computer Science, pages 286-298. Springer,
2002.

. OASIS. Web Services Business Process Execution Language, v. 2.0. Standard, 2007.

. OASIS. Content Management Interoperability Services, v. 1.0. Standard, 2010.

5. G. Reggio, M. Leotta, and F. Ricca. Precise is better than Light - A Document
Analysis Study about Quality of Business Process Models. In Proceedings of 1st
International Workshop on Empirical Requirements Engineering (EmpiRE 2011 co-
located with RE 2011). IEEE Digital Library (to Appear), 2011.

6. G. Reggio, F. Ricca, E. Astesiano, and M. Leotta. On Business Process Modelling
with the UML: a Discipline and Three Styles. Technical Report DISI-TR-11-03, Di-
partimento di Informatica e Scienze dell’Informazione (DISI), Universita di Genova,
Ttaly, April 2011. [Online]: http://softeng.disi.unige.it/tech-rep/ TECDOC.pdf.

7. M. H. Williams and H. L. Ossher. Conversion of Unstructured Flow Diagrams to
Structured Form. The Computer Journal, 21(2):161-167, 1978.

QIS

Content Management Interoperability Services is an OASIS specification for improv-
ing interoperability between Enterprise Content Management systems

-47 -

