
Web application for recognition of mathematical formulas?

Jan Stria1 and Daniel Pr̊uša2

1 Charles University, Malostranské nám. 25, 118 00 Prague 1, Czech Republic
stria.jan@gmail.com

2 Czech Technical University, Center for Machine Perception
Karlovo nám. 13, 121 35 Prague 2, Czech Republic

prusapa1@cmp.felk.cvut.cz

Abstract. We present a system for on-line mathematical
formulas recognition. The main principles of the method
we applied for recognition are explained. It is based on the
structural construction paradigm and utilizes a sort of two-
dimensional grammars called coordinate grammars. Gram-
mar productions are used to model spatial relationships
among mathematical symbols. The system itself has been
developed as a web application in HTML5. We give details
on its client-server architecture and user interface. We also
discuss advantages of the chosen approach.

1 Introduction

Mathematical formulas recognition is a task of grow-
ing importance. There are two domains in which it
can be applied. The first one covers scanned math-
ematical texts (books or notes) we want to convert
into an electronic form automatically. We speak about
off-line formulas recognition. Another situation arises
when we need to support entering formulas into ap-
plications in a natural way, i.e. by drawing them by
hand. This can be done on a tablet or simply using
a mouse. In such a case, we do not recognize raster
images but rather sets of strokes and we speak about
on-line recognition.

Several approaches to formulas recognition have
been described in the literature [20, 8, 6]. A tax-
onomy of the methods can be found in [2].
Only few published papers offer a publicly avail-
able implementation for evaluation. We mention
three known applications giving good results. Infty
project [17, 16] targets primarily off-line recognition,
however, it includes a module for on-line recognition
as well. xMathJournal [27] is a commercial software
product which serves as a sophisticated calculator for
handwritten mathematics. Microsoft Windows 7 pro-
vides a simple tool calledMath Input Panel. It allows to
draw a formula, recognize it, copy the result into the
clipboard and paste it to other programs (e.g. Micro-
soft Word).

The approach we chose is motivated by the struc-
tural construction paradigm presented by M.I. Schle-

? The authors were supported by the Grant Agency of the
Czech Republic under project P103/10/0783.

singer and V. Hlavac in [15]. It is a general framework,
suitable for recognition of objects exhibiting a rich
structure. It has been also applied for musical
scores [14] and electric circuits [5]. The power of the
structural construction is in driving symbols segmen-
tation by the structural analysis, avoiding thus er-
rors that could be normally done during a standalone
segmentation. Some of the known methods solve this
by error recovery techniques, but such techniques are
more complicated and less natural.

Our work is incremental. We started with the sim-
plistic subset of formulas and the proof-of-concept re-
cognition system implemented in Java [10, 11]. Later
we adopted the system to on-line inputs written on
a tablet and we also extended the set of supported
formulas [12].

This paper reports our recent results. We focus
on two topics. Principles of the developed recogni-
tion method are outlined in Section 2. We introduce
a revised formalism of the previously used two-dimen-
sional grammars – so called coordinate grammars. The
grammars model relationships among formula sym-
bols. The system itself has been completely rewritten
in C# and includes several improvements. The new
priority was also make the system accessible by a web
application in which the user draws a formula and re-
ceives the output in TeX or MathML format. The web
application architecture, implementation in HTML5
and user interface design are described in Section 3.

2 Method proposed for formulas
recognition

The method consists of two phases which are com-
mon in pattern recognition – elementary symbols de-
tection and structural analysis. In our case, the first
phase does not make any final decision what the ele-
mentary symbols are. Instead of it, only candidates to
such symbols are selected. It is completely up to the
structural analysis to decide then, which of the candi-
dates are really parts of the formula and what is their
meaning in the formula structure.

We have chosen grammar based structural analy-
sis, since it allows to express the syntax of the whole

48 Jan Stria, Daniel Pr̊uša

formula and fits thus well to the structural construc-
tion pattern. Non-grammar based approaches usually
recognize local configurations among symbols only and
transform them to graphs. We introduce a (2D) coor-
dinate grammar which can be viewed as an extension
of the grammar described by R. Anderson in his sem-
inal work [1]. The productions have context-free form
and are assigned by spatial constraints on the right-
hand side elements. The parsing is a bottom-up process
(not the top-down one like in [1]), since it allows bet-
ter control the number of derived elements and reduce
them by pruning. Moreover, our formalism is stochas-
tic and penalty oriented – each derivation is assigned
by a real number, which determines its quality.

The grammar is designed to recognize structures
formed of terminal elements freely located in a plane.
This is something different comparing to picture lan-
guages [13] consisting of rectangular grids over finite
alphabets. We have to deal with the time complex-
ity of parsing. In general, it can grow exponentially in
the number of elementary symbols. The well known
Cocke-Younger-Kasami algorithm [4, 19] recognizes
context-free languages in time O (

n3
)
and can be gen-

eralized to a sort of 2D context-free grammars [15].
It both cases, the algorithm can rely on the sequen-
tial ordering of characters in strings or pictures. When
working with coordinate grammars, we are forced to
restrict the set of sentential forms allowed to be de-
rived during the process to some sort of continuous
areas. The task how to parse 2D structures in a plane
effectively has been studied by others, especially by P.
Viola and E. Miller [9, 7]. Some of the techniques we
employ in our method coincide with their proposals.

2.1 Elementary symbols detection

By a stroke s we mean a finite, non-empty sequence
of points in a plane, i.e. s = ((x1, y1), . . . , (xk, yk)),
where xi, yi ∈ R, k ≥ 1.

Let S = (s1, . . . , sn) be a sequence of strokes en-
tered to the system by the user. For i < j, we assume
si has been entered before sj . Moreover, we assume
the following condition is fulfilled:

– one stroke is not a part of two or more different
symbols in the input formula

The goal of the elementary symbols detection phase is
to find each subset S′ ⊆ S which, taken separately, is
recognized by an Optical Character Recognition tool
(OCRtool) as an elementary symbol from a set of
known symbols denoted VT (alphabet letters, num-
bers, mathematical operators, Greek letters, etc.).
Note that there can be even more interpretations for
one subset S′, the OCRtool can return several hypoth-
esis for it. The detection is performed without any

1
2

3

symbol variable V num. 6 frac. line minus square root

stroke(s) 1 3 2 2 1, 2

Fig. 1. Elementary symbol candidates: The input is a se-
quence of three strokes, each denoted by a number in the
circle. The table lists subgroups of strokes recognized as
a symbol.

knowledge of the formula structure. An example of
possible candidates is given in Figure 1.

In general, there are 2|S| subsets of S. It is obvious
that not all these subsets have the potential to repre-
sent a symbol. For performance reasons, we propose
several strategies that select and evaluate only some
of the subsets:

1. A reasonable restriction is to limit the number
of strokes that form one symbol: |S′| ≤ K. This
leaves O (|S|K)

subsets to be evaluated by the
OCRtool. K = 4 should fully comply with all the
symbols in VT .

2. Construct a graph G where vertices correspond to
strokes and two vertices are connected iff the two
related strokes are ,,close enough” (various metrics
can be applied: the smallest distance between two
points, the greatest distance, the average distance,
etc.). Consider only those S′ ⊆ S, where |S′| ≤ K
and all vertices in the graph that correspond to
strokes in S′ are located in the same component
of connectivity.

3. Label each edge in G by the distance between the
related strokes. Find minimum spanning tree T .
Search for subsets S′ using T instead of G.

4. If we assume the user does not make any correc-
tions in the already written symbols, we can even
consider only the subsets of consecutive strokes
S′ = {si, si+1, . . . , si+k}, where k < K.

If the OCRtool finds a match of a subset S′ to some
symbol, it provides a record consisting of the following
items:

– recognized symbol identifier l ∈ VT

– a penalty p expressing reliability of the recognition
(p ∈ R+, a lower value implies a bigger confidence)

– metricsM of the recognized symbol (a record stor-
ing base line and mean line given relative within
the bounding box, see Figure 2)

We denote tuple (S′, l, p,M) as a terminal unit.

2.2 Coordinate grammars

Before we can describe how mathematical relation-
ships are modeled by a coordinate grammar, we need

Formulas recognition 49

base line

mean line

ascent

descent

Fig. 2. Character metrics.

to define a structure to represent partial derivations
(an analogy to the sentential form). We denote this
structure a labeled group of strokes (over an input se-
quence of strokes S, a set of elementary symbols – ter-
minals VT and a set of non-terminals VN). It is a tuple
(S1, l1, p1, T) such that S1 ⊆ S, S1 6= ∅, l1 ∈ VN ∪ VT ,
p1 ∈ R+ and T = (S2, l2, p2,M) is a terminal unit,
where S2 ⊆ S1 and l2 ∈ VT . The interpretation is as
follows:

– there is a sequence of derivations which result in
assigning l1 to S1

– penalty p expresses a confidence in the derivations
– T determines so called leading symbol in S1; it is

a terminal recognized by the OCRtool as l2, con-
sidered as the main (root) symbol among other
symbols in S1; the leading symbol is determined
by applied grammar productions

A coordinate grammar G is a tuple (VT , VN , I, P),
where I ∈ VN is the initial non-terminal and P is
a set of productions of the form

N → A1 ¯A2 ¯ . . .¯Ak, (1)

where N ∈ VN and each Ai ∈ {VT ∪ VN}. Moreover,
each production is assigned by three functions: spatial
constraint σ, penalty π and leading symbol selector µ.
To explain their meaning and define their parameters
and functional values, let us consider k labeled groups
of strokes S1, . . . ,Sk such that

Si = (Si, li, pi, Ti).

Production (1) can be applied to derive

S =

(
k⋃

i=1

Si, N, p, T

)

iff the following conditions are fulfilled:

– Si’s are pairwise disjunct
– ∀i ∈ {1, . . . , k} : li = Ai

– σ(S1, . . . ,Sk) = true

– p = π(S1, . . . ,Sk) +
∑k

i=1 pi
– T = µ(T1, . . . , Tk)

Boolean function σ determines whether the produc-
tion can be applied at all, π penalizes the application
of the production and µ selects the resulting leading
symbols. In the implementation, σ is strongly based on

Fig. 3. A spatial constraint evaluation example: Two con-
straining rectangles C1 and C2 are computed having the
size and position given relative to symbol + which is the
leading symbol in group S2. The circled point in S1, resp.
S3 (so called a reference point) is required to be located
in the C1, resp. C2. The constraint is fulfilled. Symbol +
becomes the leading symbol of the newly derived group of
strokes.

the mutual positions of leading symbols and bound-
ing boxes of labeled groups of strokes corresponding
to Si’s. Figure 3 shows a constraint function evalua-
tion example for the production that models a binary
operation of the form:

BinOperation → Expression¯ BinOperator¯ Term.

The parsing algorithm starts with terminal units
produced by the terminals detection phase (they are
transformed to labeled groups of strokes first). Larger
groups of strokes are incrementally derived then. The
input is recognized iff (S, I, p, T) is among the deriva-
tions. When there are more such groups, the resulting
one is the group with the lowest penalty. More details
on the parsing process can be found in [12].

2.3 Notes on method implementation

One of the weaknesses in the former Java implemen-
tation was the quality of OCR results. We used own
implementation based on the elastic matching tech-
nique [18, 3]. The OCRtool in the current version is
a combination of two methods. We benefit partially
from the OCR provided by Microsoft .NET API which
is quite robust. However, it does not support recog-
nition of all mathematical symbols, thus we are still
forced to maintain and use our OCR to detect certain
symbols. Nevertheless, we have made additional im-
provements to it and the overall OCRtool accuracy is
better now.

The form of σ and π is designed based on a sta-
tistical model. Mutual placements of labeled groups of
strokes are expressed by a normal distribution which
of parameters are extracted from the training data for
each production. This is another progress comparing
to Java version where we set up constraints manually.

Grammar productions support constructs as sub-
scripts, superscripts, brackets, common unary and bi-
nary operators, fractions, integrals, sums, exponentia-
tion, square roots, functions and binomial coefficients.

50 Jan Stria, Daniel Pr̊uša

The related syntax is expressed by 200 productions
stored in a text file. A sample from the file follows.

BinOperation->BinOp|Expression@L|Term@R

BinOp->[+]

BinOp->[-]

Fraction->[line]|Expression@T|Expression@B

Power->Factor|Expression@TR

Root->[root]|Expression@TL|Expression@I

Each line represents one production. On the left-
hand side of the production, there is a source nonter-
minal symbol. On the right-hand side, there is a mix-
ture of nonterminal and terminal target symbols sep-
arated by vertical lines. To distinguish the nonter-
minal and terminal symbols, we enclose the termi-
nals in brackets. The first of the target symbols is
a mandatory leading symbol. Potential following sym-
bols are always denoted by special characters deter-
mining their spatial relation to the leading target sym-
bol (e.g. @L stays for left which means that the appro-
priate symbol is located on the left with respect to the
leading target symbol).

The parameters defining σ, π and µ more precisely
are saved in a separate data file.

3 Web application

We have developed two web applications, both utiliz-
ing the well known client-server architecture. The first
application serves for sample mathematical formulas
collection. It allows to insert a mathematical formula
together with a name of the writer and store it at
the server. Formulas collected by this application are
then used to train and test our recognizer. The second
application provides a functionality of the recognizer
itself. It continuously recognizes the formula during
its insertion and provides the recognition result to the
user.

Both these applications comprise an user inter-
face running in a web browser at the client side that
communicates with web services at the server side.
The web interface was developed in HTML5 [22] and
Javascript. The web services were written in C# pro-
gramming language using WCF (Windows Communi-
cation Foundation) technology and they run on Mi-
crosoft Windows Server 2008 R2. The client and the
server communicate via Ajax. The main reasons for
choosing such an architecture were accessibility and
easy maintenance.

Both applications are accessible from an every
modern web browser supporting HTML5. They were
successfully tested in the latest versions of Internet
Explorer, Mozilla Firefox, Google Chrome, Apple Sa-
fari and Opera. They also work in the default mobile

web browsers found in Android and iOS operating sys-
tems. However despite of some optimizations editing
of formulas in these mobile web browsers in not al-
ways as smooth as in desktop browsers. It is caused by
a poorer performance of mobile devices which is not
sufficient for a frequent rendering of formulas. But as
the performance of these mobile devices grows rapidly
there is a well-founded reason to believe this will go
better soon.

Our application for formulas recognition can be
started using immediately. This is especially impor-
tant in that case when the potential user has only
several formulas to recognize and installing a new soft-
ware would cost more time than writing the formula
in TeX of MathML format by a hand. We have also
tried to make the user interface simple and friendly so
usage of our application should be intuitive enough.

The recognition engine itself runs at the server so it
can be easily updated. It is especially important in the
development phase when we can continuously provide
enhanced versions of the recognizer. We can also eas-
ily collect all formulas supplied by users for a further
analysis which helps us to improve the recognition.

The disadvantage of choosing an implementation
as a web application is a permanent need of an Inter-
net connection to work with it. In addition this con-
nection should have a low latency to ensure a true
real-time recognition during a formula insertion. On
the other hand, high throughput of the connection is
not demanded as not much data is transferred between
the client and the server.

3.1 jQueryInk widget

For both the data collection application and the recog-
nition application the core part of the web user in-
terface is a canvas that allows to insert mathemati-
cal formulas in the form of strokes. It supports writ-
ing new strokes, selecting and editing previously writ-
ten groups of strokes, erasing strokes or clearing the
whole canvas. The component representing the canvas
was developed in HTML5 and Javascript as a jQuery
UI [24] widget. It is called jQueryInk [23] and it is pub-
licly available for download as an open-source project.

The jQueryInk widget internally uses a <canvas>

element introduced by HTML5. It has a specified
width and height and provides a Javascript interface to
access and modify its surface dynamically. The inter-
face comprises functions for drawing and transforma-
tion of 2D shapes and bitmaps. These functions are
used by our widget to render strokes and additional
annotations (as selection polygon). The jQueryInk
widget can be easily created over a specified <div>

element by creating a jQuery object representing the
element and calling ink() method on it.

Formulas recognition 51

<div id="myInk"></div>

$("#myInk").ink(/* settings */);

Calling the ink() method creates a new <canvas>

element inside the <div> element and initializes a new
jQueryInk object with the settings specified by the
method parameters. These settings can be changed
later by calling the ink() method again. The most
important setting is a mode in which the widget is
operating. Depending on this mode strokes are writ-
ten, erased or selected while the mouse interacts with
the <canvas> element. The operating mode can be set
independently for left and right mouse buttons. The
settings parameters also specify handler functions for
events generated by the widget which are fired when
something important happens as writing a new stroke,
erasing a stroke etc. Depending on the usage of the in-
troduced jQueryInk widget, these handler functions
can react on the events properly.

The jQueryInk widget also defines supporting data
structures representing strokes, their collections etc.
These data can be accessed either directly through
the widgets interface or as a parameters of the pre-
viously described events. The handler functions can
utilize the data, e.g. send it to the recognizer located
on the server.

As it has been stated, our jQueryInk widget can
operate in three modes:

Writing: When it is in the writing mode and the user
is writing a stroke, our widget has to repeatedly render
the stroke. However, because rendering of all strokes
would be time consuming, only added points are ren-
dered. After finishing writing the stroke the whole can-
vas is rendered once again to avoid artifacts.

Erasing: In the erasing mode there are two meth-
ods how to determine which strokes should be erased
when the user moves a mouse. The first method serves
for testing short strokes comprising only a few points
and having a small bounding rectangle. These strokes
are tested for proximity to a mouse path. The second
method tests longer strokes by checking their intersec-
tion with a mouse path. We have to incorporate both
these methods because its quite difficult for the user
to intersect short strokes such as dots.

Selection: When in the selection mode the closed path
of a mouse is continuously approximated by a poly-
gon which determines the selection region. Also the
strokes themselves are approximated by polylines to
reduce the count of their vertices. Each time the selec-
tion polygon changes, its bounding rectangle its com-
puted. This rectangle is then tested for intersection
with bounding rectangles of all strokes to determine
potentially selected strokes. It is determined, how

many vertices of a polyline approximating the stroke
lie inside the selection polygon. To speed up these
tests, results from the previous selection polygon tests
are reused. Finally, when at least 2/3 of stroke approx-
imating vertices lie in the selection polygon, the stroke
is selected. The described algorithm allows the user to
draw a shape of a selection region freely. This is im-
portant because using a simple rectangular selection
region would not be sufficient due to a spatial com-
plexity of the formula. The described optimizations
ensure then a smooth selection.

3.2 Data collection

The data collection application employs the described
jQueryInk widget on the client side to enable insertion
of a mathematical formula. The user is also asked to fill
his name to help us identify who wrote which formula.
Then the formula can be sent and stored at the server.
This is archieved by serializing objects representing
strokes to a JSON format and sending them via an
Ajax request. The receiver of this request is a WCF
service which stores the strokes together with the filled
username and IP address of the sender.

We have already collected approximately 200 for-
mulas. To use these data to train and test our rec-
ognizer we have to assign some semantics to them at
first. Unfortunately as far as we know there is no stan-
dard file format for storing handwritten mathematical
formulas with annotations denoting their meaning. So
we have developed our own XML file format based
on the Presentation MathML [28] which is commonly
used for representing math in web pages and other
documents. The first part of our annotated MathML
file comprises coordinates and timestamps of points
forming individual handwritten strokes. Each of these
strokes is also assigned an unique numeric identifier
that can be referenced in the second part of the doc-
ument that comprises MathML description of the for-
mula. To allow referencing strokes we have extended
MathML by tags denoting single symbols and having
identifiers of appropriate strokes as their attributes.

Before the MathML description of the formula can
be annotated by identifiers of strokes, the MathML
notation itself has to be created. To accomplish that
we have developed a fairly simple desktop application.
It loads the strokes as they were stored at the server
and passes them to the Math Input Control [25] which
is a COM control in Microsoft Windows 7. This con-
trol is a panel on which surface the formula can be
written by hand. The control continuously tries to rec-
ognize the formula and shows the recognition result.
Simply said, the control does almost the same thing
as our recognition application. The recognition result
can be accessed as a string containing Presentation

52 Jan Stria, Daniel Pr̊uša

MathML notation. Unfortunately, the strokes to be
recognized cannot be passed programmatically to the
control. Thus we developed an algorithm that utilizes
coordinates of the loaded strokes to move a mouse cur-
sor over the control simulating a real user interaction.

Besides obtaining a meaning of the handwritten
formula in a MathML, the presented mechanism can
also be used for a comparison of our recognizer with
the Math Input Control. Although their recognizer
performs quite well its not definitely perfect. But when
used by a real user it allows to erase and rewrite arbi-
trary strokes or assign a meaning to a group of strokes
by a hand. So when the recognition of automatically
written strokes fails we input it to the panel by hand
using the mentioned editing possibilities to always ob-
tain their correct description in MathML notation.

Once we have the MathML notation of the formula,
we process it by adding special tags for each symbol
and we can start annotating it. It has to be done by
a hand as the Math Input Control gives us only one
MathML string describing the whole formula. Using
our application, each symbol included in the formula
has to be selected and bound with the appropriate
symbol tag.

The data collection application is available at [21].

3.3 Data recognition

The web interface of the formulas is shown in the
figure 4. It also utilizes presented jQueryInk widget
for strokes insertion. Besides that it also comprises
a field showing the recognition result which is a for-
mula represented in the Presentation MathML for-
mat. Although MathML is intended for incorporat-
ing mathematics in web pages, its support in the cur-
rent browsers is quite poor. Among the most used web
browsers only Mozilla Firefox and Opera support it.
Moreover, even these two browsers do not render ev-
erything correctly. Remaining browsers (Internet
Explorer, Google Chrome and Apple Safari) still do
not support it at all. However, the MathML support
is planned in future versions of all mentioned browsers.

To ensure a correct rendering of the recognized
formulas in all current browsers, we incorporated the
MathJax library [26]. It is written in Javascript and
it serves for a correct displaying of mathematics in all
major web browsers. It can display mathematics in
both the MathML and TeX format. While displaying
mathematics in the MathML format, it automatically
detects whether the browser supports the MathML na-
tively. If so, it lets the browser to render the MathML.
If the browser lacks a MathML support, it converts
the MathML to an image and lets the browser display
this image instead. While displaying mathematics in

Fig. 4. User interface of the recognizer: Shows the selec-
tion (number 1) and the editing of a meaning (variable q).
Result of the recognition is at the top.

the TeX format, the MathJax always converts it to an
image that is then shown by the browser.

Our goal was to develop a truly interactive appli-
cation for formulas recognition. We wanted the user
to see partial results of a recognition as he inserts the
formula. We also wanted to provide a possibility of se-
lecting a group of strokes and determining its meaning.
This can help the recognizer a lot when a part of the
formula is not recognized correctly, e.g. one of the sym-
bols is recognized wrong. Then strokes forming this
symbol can be selected and the recognizer proposes all
alternative meanings of that group of strokes. Assum-
ing that the correct meaning is present among these
alternatives, the user can choose it. Then the correct
meaning is assigned to that group and the recognizer
has to respect it in a following recognition process.

To achieve the described interactivity, the
Javascript client and the WCF service running at the
server have to communicate a lot. Figure 5 gives us
a closer look at that communication and it also shows
how the user affects it. Each time the user enters the
web interface, a new asynchronous Ajax request is sent
to the service. The service generates a unique session
id and initializes a new instance of the recognizer for
this id. The session id is then sent back to the client
for a further communication.

Meanwhile the user could start inserting the for-
mula, so it has to be checked whether he performed
some actions that need to be sent to the server. These
actions comprehend insertion of a new stroke, erasing
an existing stroke, clearing the whole canvas, selection
of a group of strokes or determining a meaning of the
previously selected group of strokes. Every time one of
these actions is performed by the user, it is added to
a queue of actions waiting to be sent to the server. We
use this queue to ensure that there is always only one
request from the client to the server being processed.

Formulas recognition 53

Fig. 5. Client-server architecture of the recognizer: Shows
how user actions are handled by the client script and how
the client script communicates with the service running on
a server.

When the session is initialized and the queue of actions
is non-empty or every time a new action is performed
and there is no request being processed, the queue of
actions is emptied and a new request containing all
actions from the queue is sent to the server.

The request with the recent actions is sent as an
asynchronous Ajax request so the user can keep editing
the formula meanwhile. The request always contains
a forementioned session id so the service could pass
the actions to the appropriate recognizer. The recog-
nizer updates its set of strokes and provides the best
estimation of what these strokes mean. When there
is an action denoting selection of a group of strokes,
the recognizer also offers all possible meanings of these
strokes to allow the user to determine their meaning.
And finally, when there is an action denoting a mean-
ing determination of some group of strokes, the recog-
nizer uses it.

After that, a response containing a recognition re-
sult is sent back to the client. The response can also
contain possible meanings of a selected group of
strokes if the request comprised a strokes selection ac-
tion. The client script receives the response and shows
the recognition result. It can also show possible mean-
ings of a previously selected group of strokes to let the
user to select the correct meaning. Then the queue of
actions is checked and if it is non-empty a new request
is generated. This goes over and over.

Besides the request for a session initialization and
the request containing a queue of performed actions,
there is also the third one. It is sent synchronously
when the user leaves our web interface and it notifies
the service that the sessions ends and the recognizer
can be released.

Unfortunately, sending an Ajax request when
a web page is being left or a web browser is being
closed is not fully reliable. We have adopted an an-
other mechanism for releasing unused resources. The
service periodically checks all the sessions and if it
finds a session without any requests for some time, it
releases the recognizer allocated for it. This can lead to
releasing a recognizer for a session that has not been
accessed for a long time but has not truly ended at
the client side. When a request is received from such
a session, a new recognizer for a specified session id is
created and the client is asked to send all its strokes
to restore an original state of the recognizer.

4 Conclusions

We have described a grammar based approach
to mathematical formulas recognition. Our previous
results [11, 12] show that the proposed method is prac-
tical and can be implemented effectively. The imple-
mentation is responsive and gives acceptable results.
It is true that some OCR errors usually occur during
the recognition and even the structural analysis does
not help to prevent them all. We have addressed this
problem in the new user interface which allows to cor-
rect OCR results interactively.

We have redesigned the architecture of the whole
system and realized it as a web application. This gives
new possibilities for further improvements. Our prior-
ity now is to assemble a sufficiently large set of formu-
las, which will include samples from all common areas
of mathematics, written by different users. We want
to analyze such data and use it for tuning parameters
of the grammar productions. We also plan to publish
a database of annotated formulas to be used by others
for testing purposes. We have not found any set of on-
line formulas publicly available. There are only off-line
formulas [16] or samples of single on-line characters,
so this kind of contribution could be valuable for the
community.

References

1. R. Anderson: Syntax-directed recognition of hand-
printed two-dimensional mathematics. In Interac-
tive Systems for Experimental Applied Mathematics,
pp. 436–459, London, 1968. Academic Press.

2. K.F. Chan and D.Y. Yeung: Mathematical expression
recognition: a survey. In IJDAR, vol. 3, pp. 3–15, 2000.

3. S. Hellkvist: On-line character recognition on small
hand-held terminals using elastic matching. Master’s
Thesis, Royal Institute of Technology, Department of
Numerical Analysis and Computing Science, 1999.

54 Jan Stria, Daniel Pr̊uša

4. T. Kasami: An efficient recognition and syntax analy-
sis algorithm for context-free languages. Scientific Re-
port AFCLR-65-758, Air Force Cambridge Research
Laboratory, Bedford, Mass., USA, 1965.

5. V.M. Kiyko: Recognition of objects in images of paper
based line drawings. In Third International Conference
on Document Analysis and Recognition, pp. 970–973,
Montreal, Canada, 1995.

6. S. Lavirotte and L. Pottier: Mathematical formula
recognition using graph grammar. In Proceedings of
the SPIE 1998, vol.3305, p p.44–52, San Jose, CA,
1998.

7. P. Liang, M. Narasimhan, M. Shilman, and P. Vi-
ola : Efficient geometric algorithms for parsing in two
dimensions. International Conference on Document
Analysis and Recognition, pp. 1172–1177, 2005.

8. N. Matsakis: Recognition of handwritten mathematical
expressions. Master’s Thesis, Massachusetts Institute
of Technology, Cambridge, MA, May 1999.

9. E.G. Miller and P.A. Viola: Ambiguity and constraint
in mathematical expression recognition. In AAAI
’98/IAAI ’98, pp. 784–791. American Association for
Artificial Intelligence, 1998.

10. D. Pr̊uša and V. Hlaváč: 2D context-free grammars:
Mathematical formulae recognition. In J. Holub and
J. Zdarek, (eds), Proceedings of the Prague Stringol-
ogy Conference, pp. 77–89, Czech Technical University
in Prague, Czech Republic, 2006.

11. D. Pr̊uša and V. Hlaváč: Mathematical formulae recog-
nition using 2d grammars. In Proceedings of the
9th International Conference on Document Analysis
and Recognition, vol. II, pp. 849–853, Curitiba, Brazil,
2007.

12. D. Pr̊uša and V. Hlaváč: Structural construction for
on-line mathematical formulae recognition. In Pro-
ceedings of the Iberoamerican Conference on Pattern
Recognition, pp. 317–324. Springer Verlag, September
2008.

13. A. Rosenfeld: Picture languages - formal models of
picture recognition. Academic Press, New York, 1979.

14. B. Savchynsky, M.I. Schlesinger, and M.O. Anochina:
Parsing and recognition of printed notes. In Proceed-
ings of the Conference Control Systems and Com-
puters, pp. 30–38, Kiev, Ukraine, 2003. in Russian,
preprint in English available.

15. M.I. Schlesinger and V. Hlaváč: Ten lectures on sta-
tistical and structural pattern recognition. Vol. 24 of
Computational Imaging and Vision. Kluwer Academic
Publishers, Dordrecht, The Netherlands, 2002.

16. M. Suzuki: Infty project.
http://www.inftyproject.org/en/index.html.

17. M. Suzuki, F. Tamari, R. Fukuda, S. Uchida, and
T. Kanahori: Infty: an integrated ocr system for math-
ematical documents. In DocEng ’03: Proceedings of
the 2003 ACM Symposium on Document Engineering,
pp. 95–104, New York, NY, USA, 2003. ACM.

18. C.C. Tappert: Cursive script recognition by elastic
matching. IBM J. Res. Dev., 26, November 1982, 765–
771.

19. D.H. Younger: Recognition of context-free languages in
time n3. Information and Control, 10, 1967, 189–208.

20. R. Zanibbi, D. Blostein, and J.R. Cordy: Recogniz-
ing mathematical expressions using tree transforma-
tion. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 24(11), 2002, 1455–1467.

21. Data collection apllication.
http://mfr.aspone.cz/DataCollector.html.

22. HTML5 working draft.
http://www.w3.org/TR/html5.

23. jQueryInk widget.
http://plugins.jquery.com/project/Ink.

24. jQuery UI library. http://jqueryui.com.
25. Math Input Control reference.

http://msdn.microsoft.com/en-us/library/

dd317324.aspx.
26. MathJax library. http://www.mathjax.org.
27. MathJournal 2.1.

http://www.xthink.com/MathJournal.html.
28. MathML2 recommendation.

http://www.w3.org/TR/MathML2.

