
MENTA: A Quality Analysis Approach for
Self-Adapting Systems

Boris Perez and Dario Correal

University of Los Andes
Systems and Computer Engineering Department

Cra 1E No 19A-40, Bogota D.C, Colombia

Abstract. Self-adaptive behavior is a feature which architects needs to
include in their systems in order to improve its reliability. However, de-
spite several ways to get it, it is still hard to implement a self-adaptive
system focused on non-functional properties. Difficulties to express qual-
ity attributes in the system without combining business logic with the
self-adaptation logic and to include new services on runtime are some of
them. In this paper we propose a model-driven analysis approach to offer
a mechanism which allow the desired quality requirements and adapta-
tion strategies in a system to be expressed in a simple and non-intrusive
manner and, to offer a code generation mechanism which takes the mod-
els created under the first objective and generates the necessary code for
autonomously monitoring and adapting a SOA system.

Keywords: BPM, Metamodel, Self-Adaptation, Software Quality

1 Introduction

Service Oriented Architecture (SOA) is one of the most commonly architectural
styles within the context of enterprise information systems [11]. As a part of
SOA, web services can meet the same functional requirements, such as recording
a sale, but they can also have differences at a non-functional level, in terms of
different response times, availability levels or security arrangements [5]. These
non-functional properties are also known as System Qualities or software quality
attributes. Quality attribute scenarios [2] are proposed by precisely defining the
quality attributes of an application. This is an activity that should traditionally
be performed during the design stage [6]. However, when the application is run-
ning, it is not always possible to guarantee achievement of the required quality
attributes, due to external factors like faults in 3rd party services.

One way of reacting when faults occur is to stop the running process, make
the necessary corrections and restart the system. Though this is not always pos-
sible because there are critical business processes that cannot be halted [10]. The
ideal solution in this situation would be for the system itself to be capable of
reacting when a fault occurs, such as replacing the defective service with another



that meets the desired functional and quality requirements. Ideally, this would
take place without any human involvement, in other words, autonomously. Ac-
cording to [4],“a self-adaptive system evaluates its own behaviour and changes
behaviour when the evaluation indicates that it is not accomplishing what the
software is intended to do, or when better functionality or performance is possi-
ble”.

Different traditional approaches offer solutions to this. One of them uses
Event-Condition-Action (ECA) rules [1]. For ECA-Rules, alternatives like Jess
[8] allow definition to functional level. Usually, ECA rules are embedded in ap-
plication code and will run in the specific order written by the programmer. A
further mechanism for implementing self-adaptation consists of managing and
controlling exceptions [6]. Exceptions enable the functionality of the system to
be controlled if unexpected events occur during execution. According to Garlan
[6], exceptions are good for catching an error as it is detected, but are nonetheless
weak when it comes to detecting subtle system anomalies. But, these approaches
bring with them some limitations; Firstly, it is difficult to precisely express qual-
ity attributes in the adaptation conditions to be evaluated. Most of these mech-
anisms are closely coupled to the application, at code level, and contaminate the
business logic with the self-adaptation logic, which worsens maintenance. A sec-
ond limitation is the problem that exists when it comes to performing a discovery
process with respect to new services on runtime. The available alternatives are
generally defined in the code.

The main contribution of this paper is to present MENTA, a quality analysis
approach for self-adapting systems. MENTA is a method which enables the
software architect to use a model-driven strategy for expressing and analysing
the desired self-adaptation strategies, based on the quality scenario concept.
MENTA is responsible for: 1) looking for the best service in a pool of services
meeting the quality needs, 2) calculating the metrics of the invoked service and
3) allowing the inclusion of new services that provide the required functionality.
In order to accomplish with this, this proposal performs the following actions:
Firstly, it sets out to offer a mechanism that is based on models which allow
the desired quality requirements and adaptation strategies in a system to be
expressed in a simple and non-intrusive manner. And secondly, it aims to offer
a code generation mechanism which takes the models created and generates
the necessary code to autonomously monitor and adapt a SOA system. The
development and presentation of the proposal will be conducted based on the
framework proposed by Salehie [12], in which the decision process for selection of
an adaptation strategy in a self-adaptive system based on quality attributes can
be defined as the set <Request (R), Goal Repository (G), Domain (D), Utility
(U) >.

The remainder of this paper is organized as follows: Section 2 expands on
the quality attributes concept and the framework proposes by Salehie. Section
3 describes the case study that was used for presenting and validating our pro-
posal. Section 4 reviews the MENTA proposal, based on the reference framework



defined in [12]. Section 5 presents partial results of the experimenting process.
Section 6 gives an overview of the related work. Finally, Section 7 contains the
conclusions that have been drawn from this proposal.

2 Background

2.1 Quality of Service Attributes and Quality Attribute Scenarios

In [7] the author proposes that quality of service attributes can be classified into
two categories: Certain attributes and uncertain attributes. Certain attributes,
such as security, can be fixed and they are unvaried. On the other hand, uncertain
attributes, such as response time, can be varied due to the dynamic heteroge-
neous environment that the service is operating. Response time, availability and
reliability are the generic QoS criteria for web service selection and guarantee the
successful use of the service. The characteristics of these three QoS attributes
are uncertain. In our proposal we will focus on the uncertain attributes, because
they are constantly changing and the customer has no direct control.

On the other hand, a quality attribute scenario, as seen in Bass [2], is a
quality-attribute-specific requirement. It consists of six parts: Source of stimu-
lus (a human or any other actuator that generated the stimulus), Stimulus (a
condition that needs to be considered), Environment (the system may be in an
overload condition or may be running when the stimulus occurs), Artifact (some
artifact is stimulated, may be the whole system or some pieces of it), Response
(the activity undertaken after the arrival of the stimulus) y Response Measure
(measuring the response).

2.2 Decision-Making Process in Self-Adaptive Software

According to the definition given in [12], the decision-making process for select-
ing an adaptation strategy in a self-adaptive system based on quality attributes
can be defined as a set <R,G,D,U >, where Request (R) is the reason for the
change being demanded (violation of a quality attribute). Goal Repository (G)
corresponds to a deposit in the system containing the required quality proper-
ties (quality scenarios). Domain (D) corresponds to a deposit with structural
information and information about the behaviour of the software that is to be
adapted. Finally, Utility (U) is a repository with information about stakeholders’
preferences for carrying out an adaptation.

3 Case Study

This case study is based on a company (InAlpes) that works in the property
purchase, sale and rental field, offering its clients houses, apartments and offices.



InAlpes would like to implement a service-based system (SOA). In view of the
company’s business objectives, a process automation strategy has been proposed,
and since it is envisaged that the processes will be used intensively, it is hoped
that the availability level will be high. This system is expected to be used on
a large scale, and it is therefore not viable to make adaptations to the system
on-line. In other words, the system should adapt itself if faults are detected, or
problems arise with services. Figure 1 shows that InAlpes has a Service Oriented
Architecture (SOA) consisting of a set of services displaying the capacities of
existing data sources and applications, to support the business process detailed
above. This technology architecture was implemented with the aim of having a
set of highly reusable and flexible services available.

Fig. 1. The InAlpes Register Property Process

The Register Property business process consists of publishing property de-
tails, in order to be rented by a customer. We will pay attention to the Landlord
Risk Scoring activity. In this example, RiskScoringService A is responsible for
checking the customer’s credit history and whether he is blacklisted or not. This
activity is critical, and if faults occur, the system should adapt itself in order to
find an alternative service, with a view of guaranteeing the uninterrupted opera-
tion of the system. In the example, RiskScoringService B, RiskScoringService C,
and RiskScoringService D all offer the necessary functionality, but with different
quality characteristics.

4 MENTA: A Quality Analysis Approach for
Self-Adapting Systems

MENTA is a method based on model-oriented engineering principles for sup-
porting the design of self-adapting SOA systems. The purpose of this proposal is



to create a pool of services that offer the same functionality, the system finds a
service that not only meets the required quality scenarios, but also has the best
quality of service from this set of services. In general terms, the process proposed
by MENTA consists of three steps. The first defines the architecture models to
be adapted and the quality scenarios to be accomplished. The second defines the
rules for adapting the system. The third creates a model relating the system to
the adaptation rules and generates the code for the self-adapting system.

4.1 First Step - Modelamiento Arquitectural y Comportamental

Modeling the Domain (D) Repository. This repository contains infor-
mation about the system to be adapted. In our case, this repository contains
the models which represent the services architecture of the solution. The service
architecture representation is based on Archivol [3], a meta-model for defin-
ing solution architectures. By using Archivol, relationships can be established
between the elements of an architectural style and the associated functional re-
quirements. In this model the relationships between the consumer Landlord Risk
Scoring and the provider RiskScoringService A are defined. The service provider
is modeled as a component that exposes an interface. This interface has a set of
operations, which serve to identify the features you want to offer to the service
consumers. This interface has two major goals in this approach: Define the op-
erations exposing the service and serve as an identifier for the set of alternative
services.

Modeling the Goal Repository (G). This repository contains the informa-
tion of the quality properties (quality scenarios) required in the system. Each
scenario has a specific requirement for a quality attribute and its validation
will depend on the quality properties of the services or components that make
part of the application. Quality scenarios will be described in Archivol [3]. A
quality attribute scenario model comprises a performanceScenario quality re-
quirement. This quality requirement depends on the quality attribute Response
Time. In this quality attribute scenario two interactions are specified, Stimulus
and Response. Stimulus interaction is of type input, i.e., the event triggering the
scenario evaluation. The metrics for this interaction are called Request, and it is
a measure of the invocation. Moreover, the Response interaction is output type,
i.e., what is expected to assess the response of this interaction. In this case, the
answer given is expected to be between 0 and 50 milliseconds. Just as this was
defined, other quality requirements may be defined as well.

4.2 Second Step - Definition of Restrictions

Once the architecture of the system has been modelled (Domain Repository
and Goal Repository), the architect needs to turn his attention to the desirable



behaviour of the self-adapting system. He has to think of the quality scenarios
he wants to control for each consumer-provider relationship. This relationship
can be expressed by rules. When a rule has been broken, the action that is
taken involves locating a new service which offers the same functionality and
also accomplish the quality scenarios that have been modelled. In the context
of the model defined by [12], adaptation rules will use the information stored in
the Goal Repository (G).

To establish the adaptation rules, we defined a Domain-Specific Language
(DSL) called MENTADSL, which allows an association to be specified between
a consumer service, a service provider interface, and the envisaged quality charac-
teristics when the service is being executed. The motivation for the DSL design
is based on ECA rules, with a specialisation for considering quality scenarios
when conditions are being evaluated. The set of rules described for defining the
self-adaptable behaviour of the system are transformed into a model.

Listing 1.1. Fragmento de Self-Adaptability Definition Language

1 rule { ru le1ForLandlordRiskScor ing }
2 for serviceConsumer { LandlordRiskScor ing }
3 consuming interface { iCustomer }
4 f u l f i l l i n g qualityScenarios { per formanceScenar io ,
5 a v a i l a b i l i t y S c e n a r i o } ;

The Listing 1.1 gives a DSL example. On line 1, a rule is created and a name
assigned. Line 2 specifies who will be the service consumer to be controlled.
Following the case study, the consumer will be the business activity Landlord
Risk Scoring. Line 3 associates the interface to be used to identify the relationship
between a service consumer and any alternative services that best behave. Lines
4 and 5 specifies the quality attribute scenarios you want to validate for all
alternative services that offer the interface in line 3. In this fragment, the services
are required to meet availabilityScenario and performanceScenario scenarios.

Modeling the Utility (U) Repository. The Utility Repository (U) contains
information relating to adaptation-objective preferences. According to the DSL,
when a failure on the quality attribute scenarios is detected, Alternative Services
are evaluated in order to replace the service where the fault has occurred. This
selection is made with a set of services implementing the same functional contract
of the original service. Our approach gives priority, when an alternative service
is being selected, to the greatest number of quality scenarios that the particular
alternative service complies with. If faced with two alternative services that
comply with the same number of quality scenarios, selection will be based on
the order in which the service was defined, prioritizing the older ones.

The failure to accomplish the quality scenarios of a service is calculated
by comparing the quality service metrics against defined quality constraints on
quality scenarios. When the value of the response time for an operation is greater



than defined in the quality scenario, for example, when the service response time
is greater than 50 milliseconds.

4.3 Third Step - Implementing The Self-Adaptive System

The self-adapting system introduces one element that is fundamental to facili-
tating system self-adaptation, namely Virtual Service (VS). Each VS element is
implemented in the form of dual components, called Membrane and Validator.
The Membrane is generated as a web service that has two objectives. The first
is to deal with service user requests, while the second is to ask the Validator
component for the reference of a specific service to use in order to answer to a
request. When the Validator component returns the service reference, the Mem-
brane is responsible for routing the request to this service through HTTP. Thus,
becoming transparent to the consumer on the service he is using. The Validator
component is responsible for selecting the service which best adheres to the qual-
ity scenarios at a given moment and besides, it best meets those requirements
from the set of alternative services. To execute the service selection, the Valida-
tor saves information about the status of each available service that implements
a particular business interface. The Validator performs a periodic scan of each
service in order to determine their respective statuses - for example, if the service
is alive and responds within the time limits established. The Validator allows
the inclusion of a new service that implements a business interface. This busi-
ness interface will define the operations required to support a feature. Thus, all
alternative services must offer at least the operations described in the interface.
This verification is done through signing the methods. During execution, it may
add new services on condition that they provide at least the operations in the
interface.

Figure 2 gives an example of how our Virtual Service works. In this case,
the LandLord Risk Scoring activity invokes a VirtualService. The VS selects the
most appropriate service in that moment (RiskScoringService C), and connects
the activity request with this service. Suppose that the RiskScoringService C,
doesn’t respond with the latency constraint defined in some quality scenario, in
this case, the VS selects another service when a new request arrives. The selection
is made following the criteria defined in the Utility Repository. It is important
to note that the VS does not suspend the current requests. If a violation of a
quality scenario is detected while carrying out the processing of a request, it is
left to finish, and will be followed by requests using the new service has been
selected by the Validator component.

5 Experimentation

For the development of our proposal we used the case study presented in the
Section 3, in which attention is focused on the Landlord Risk Scoring business



Fig. 2. Menta Operation

activity. The first step in our experiment was to model the business process
using Archivol, along with the specification of a quality scenario. For our val-
idation only the activity Landlord Risk Scoring was identified as self-adaptive.
The second step, modelling the adaptation rules, was developed using the DSL
described in Subsection 4.2. After the first two steps, we proceeded to build the
self-adaptive system model and its subsequent transformation into code.

This experiment was intended to demonstrate that VS is able to maintain
a quality requirement, embodied in the form of a quality scenario. The quality
attribute scenario is associated with the attribute response time and requires
the attribute value to not exceed 50 milliseconds. This can be seen in Listing
1.1. The outcome of this experimentation must show two things: first, keep the
response time less than 50 milliseconds, and secondly, to do so, different alterna-
tive services shall be used. The latter is related to the fact that the VS located
not only the service that meets the quality scenarios described in the rules, but
also looks the best among those that satisfy the scenario. The evaluation con-
sisted of a process executed in Bonita BPM process engine. Where we created
two instances, and for each instance 50 requests are launched. The 50 requests
are 50 runs of the process, resulting in 100 invocations over the VS which is
responsible for administoring the alternative services for Landlord Risk Scoring
business activity. The result can be seen in Figure 3.

Fig. 3. Response times vs requests



However, an external mechanism to handle self-adaptation introduces some
latency. To verify this, we performed a test that consisted of measuring the
time from the client perspective. Invocations passing through the VS and the
invocation of a service directly. The test consisted of four groups of 10 each
invocation. At the end, we found that in general the latency introduced by our
proposal is 44.47 milliseconds.

6 Related Work

In [13] a method based on quality attribute scenarios to find and analyse poten-
tial points of self-adaptation in software architecture during the design stage is
proposed. Extend an ADL called ABC / ADL, to store the architecture informa-
tion. Information is used directly by a reflective-based middleware architecture,
called PKUAS, for making self-adjustments in implementation. Some limitations
in this proposal are using EJB components. While the use of these components
is not really a limitation at the functionality level, it certainly is at a interop-
erability and scalability one. In a word, this proposal is tied to implementation
of technology. This proposal is not clear about the possibilities of including new
components. The system design is separate from the implementation, so the im-
plementation may be different from the solutions proposed in the architecture. In
practice this should not happen, but it is a risk taken to manage this separation.

In [9] they focus on non-functional reconfigurations in a SOA system. These
reconfigurations refer to the action of replacing some of the services with oth-
ers with better quality characteristics. From a restriction of Quality of Service
(QoS), this approach seeks to replace individual services according to the their
critical factors. If a replacement for an individual service is not able to find any,
then it replaces multiple services until they find a satisfactory solution. Some
limitations in this proposal are Algorithm resolutions. The current proposal fo-
cuses on their algorithms, however, they fail to specify the entire implementation
process. The proposal does not give details about the mechanisms or tools used
for the architecture modelling process. Neither does it talk about the implemen-
tation process. Retaining the proposal at the architectural level, but leaving out
elements of the implementation could lead to differences such as a lack of mecha-
nisms for adding new services. If the proposal is not clear about the possibilities
of including new services. A self-adaptive system should have the ability to add
or remove services running. No mechanisms are defined to express the quality
constraints.

7 Conclusions and Future Work

In this article we have introduced a way of modelling a self-adaptable system
in a service-based architecture. The contribution our approach makes is to work
with models, which not only allows for independence from the platform but also



for quality attributes to be taken into account in order to carry out dynamic
adaptations and generate the source code therefor. To achieve this, the architect
has to model his current architecture, then describe the self-adaptation rules
that will govern the new system, based on quality scenarios. The architect uses
a DSL for this that is provided by the proposal, meaning that he does not need to
know how to model the self-adaptability, rather just how to describe it. Finally,
with the information provided by the architect, the system proceeds to generate
the new system with self-adaptive characteristics. In the future, we will consider
including the Certain Attributes [7] in order to get a complete self-adaptation
system that considers all the qualities of service attributes.

References

1. An approach to grid resource selection and fault management based on eca rules.
Future Generation Computer Systems 24(4), 296 – 316 (2008)

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, Second
Edition. Addison Wesley (2003)

3. Correal, D.: Model oriented software architectures (2011), http://moosas.

uniandes.edu.co
4. DARPA: Self adaptive software. DARPA, BAA 98-12, Proposer Information Pam-

phlet (December, 1997)
5. Diamadopoulou, V., Makris, C., Panagis, Y., Sakkopoulos, E.: Techniques to sup-

port Web Service selection and consumption with QoS characteristics. JOURNAL
OF NETWORK AND COMPUTER APPLICATIONS 31(2), 108–130 (APR 2008)

6. Garlan, D., Schmerl, B.: Model-based adaptation for self-healing systems. In: Pro-
ceedings of the first workshop on Self-healing systems. pp. 27–32. WOSS ’02, ACM,
New York, NY, USA (2002)

7. Kulnarattana, L., Rongviriyapanish, S.: A client perceived qos model for web ser-
vices selection. In: Electrical Engineering/Electronics, Computer, Telecommunica-
tions and Information Technology, 2009. ECTI-CON 2009. 6th International Con-
ference on. vol. 02, pp. 731 –734 (may 2009)

8. Laboratories, S.N.: Jess, the rule engine for the javaTMplatform, http://http:

//www.jessrules.com/
9. Li, Y., Zhang, X., Yin, Y., Wu, J.: Qos-driven dynamic reconfiguration of the soa

based software. Service Sciences, International Conference on 0, 99–104 (2010)
10. Lin, K.J., Zhang, J., Zhai, Y., Xu, B.: The design and implementation of ser-

vice process reconfiguration with end-to-end qos constraints in soa. Service Ori-
ented Computing and Applications 4, 157–168 (2010), http://dx.doi.org/10.

1007/s11761-010-0063-6, 10.1007/s11761-010-0063-6
11. Oriol Hilari, M., Marco Gomez, J., Franch Gutirrez, J., Ameller, D.: Monitoring

adaptable soa-systems using salmon. pp. 19–28. GESSI - Software Engineering for
Information Systems Group, Madrid, Espaa (2008)

12. Salehie, M., Tahvildari, L.: A quality-driven approach to enable decision-making in
self-adaptive software. In: Companion to the proceedings of the 29th International
Conference on Software Engineering. pp. 103–104. ICSE COMPANION ’07 (2007)

13. Zhu, Y., Huang, G., Mei, H.: Quality attribute scenario based architectural model-
ing for self-adaptation supported by architecture-based reflective middleware. In:
Software Engineering Conference, 2004. 11th Asia-Pacific. pp. 2 – 9 (2004)


