
Expressing Transactions with Savepoints
as Non-Markovian Theories of Actions

Iluju Kiringa Alfredo Gabaldon
School of Info. Technology and Eng. Department of Computer Science

University of Ottawa University of Toronto

Abstract

Flat transactions with savepoints are a variation of the classical flat transactions that
allows the user to go undo work done so far back to a certain point within the transac-
tion. This is as opposed to pure classical flat transactions that either commit to whole
work done so far or undo it. Recently, this mechanism is being offered by some major
database products. Their semantics, however, seem not to be as well studied as the clas-
sical flat transactions. In this paper, we show how to use non-Markovian control in the
situation calculus to capture flat transactions with savepoints. We also state some of their
properties.

1 Introduction

Transaction processing is now a well established domain of research within the area of databases
[2]. A classical flat database transaction is a sequence of operations1 on the database content.
This sequence is required to exhibit the so called Atomicity-Consistency-Isolation-Durability
(ACID) properties, which are enforced by means of a set of special actions including Begin,
Commit, and Rollback. After a user enters a sequence of actions to the database manage-
ment system (DBMS), the system may either commit, i.e. make the changes done since the
beginning of the transaction permanent, or roll back, i.e. discard all the changes done so
far since the beginning of the transaction. In addition to this all-or-nothing logic for making
changes durable, the DBMS ensures that, provided that the start database state is consistent,
the new database state reached after a transaction has committed or rolled back is also consis-
tent. Moreover, the system ensures that transactions running in parallel do not interfere with
each other.

Flat transactions with savepoints are a variation of flat transactions which provides the
user with a new action Save(t) to establish savepoints in the database log [2]. The user
program can roll back to those savepoints from later database logs. A flat transaction with
savepoints is a sequence [a1, . . . , an] of database actions, where a1 must be Begin(t), and
an must be either Commit(t), or Rollback(t); ai, i = 2, · · · , n − 1, may be any of the
database actions including Save(t) and Rollback(t, n), except Begin(t), Commit(t), and
Rollback(t); an−2 may be End(t).

The action Rollback(t, n), where t is a transaction, and n is a monotonically increasing
number – the savepoint –, brings the database back to the database state corresponding to that
savepoint. With this action, we now can roll back with respect to savepoints, instead of rolling
back only to the beginning of the transaction. If a Rollback(t, n) action is executed in the

1Throughout the paper, we will frequently refer to database operations as actions.

1



database state s, its effect is that we ignore any sequence of actions executed between some
state s′ and s, where s′ is the database state corresponding to the savepoint n.

Though this mechanism has been described a decade ago in [2], it is only recently that
some major database vendors are offering it in their products, e.g. [8]. In Oracle, for example,
the user can bookmark the beginning of a named section of a transaction. Later, she has the
choice of discarding that section by rolling the transaction back to the bookmarked begin
point. Oracle has two SQL constructs to that end:

SAVEPOINT < bookmark >, for creating a bookmark and
ROLLBACK TO < bookmark >, for rolling back to a created bookmark.

This very simple pair of constructs can have intricate consequences when several savepoints
have been created. E.g., the system should prevent one from rolling back to savepoints that
are in portions of the transaction that have already been discarded by a partial rollback. To
fully understand this consequence and many others, one needs a well defined semantics of
the savepoint mechanism. The semantics of transactions with savepoints, however, seems
not to be as well studied as that of the classical flat transactions. In this paper, we present a
logical specification of flat transactions with savepoints as a non-Markovian theory of actions
in the situation calculus, and state some of their properties. Non-Markovian theories of the
situation calculus [1] are special theories of actions in which one may refer to past states other
than the previous one.2 We provide the formal semantics of flat transactions with savepoints
by specifying it as a special case of non-Markovian theories of the situation calculus called
basic relational theories (BRT) introduced in [3, 4]. A BRT is a set of sentences suitable for
non-Markovian control in the context of database transactions. With the formalization of flat
transactions with savepoints in hand, it is possible to express the ACID properties in the same
language and prove that they are logical theorems of the axiomatization.

2 Non-Markovian Action Theories in the Situation Calculus

The situation calculus [7] is a logical framework that has been successfully employed in the
formalization of a wide variety of dynamical systems [12]. In this section we give overviews
of the situation calculus basic action theories of Reiter [11] and of non-Markovian theories as
presented in [1].

2.1 The Situation Calculus

The situation calculus is a second order logic language with three basic components: actions,
situations, and fluents. Actions are responsible for all the changes in the world. Situations
are sequences of actions which represent possible histories of the world, or in the case of
databases, database logs. Fluents are properties of the world that change from situation to
situation as a result of the execution of actions. Formally, the language has three sorts: action,
situation and fluent. In addition to variables of these sorts, the language includes functions
such as move(x, y) and accounts insert(aid, abal) to represent actions, a constant S0 and
a function do(a, s) for situations such as do(accounts insert(aid, abal), S0), and predicates
for representing fluents such as accounts(aid, bid, do(a, s)). The initial situation, or empty
history, is denoted by the constant S0. Non-empty histories are built by means of the func-
tion do. For a complete formal description see [9, 12]. We will use the shorthand notation
do([a1, . . . , ak], σ) to denote the situation term do(ak, do(ak−1, . . . do(a1, σ) . . . )). We will

2Our specifications of transactions could be done using Markovian axioms, but at the price of a substantially
more complex theory with no computational advantage.



say that a term do([a1, . . . , ak], σ) is rooted at σ if σ is S0 or a situation variable and is the
only (if any) subterm of sort situation occurring in a1, . . . , ak .

A situation calculus axiomatization of a domain, includes the following set of axioms3 :

1. For each action function A(~x), an action precondition axiom of the form:

Poss(A(x1, . . . , xn), s) ≡ ΠA(x1, . . . , xn, s) where s is the only term of sort situation
in ΠA(x1, . . . , xn, s).

2. For each fluent F (~x, s), a successor state axiom of the form: F (x1, . . . , xn, do(a, s)) ≡
ΦF (x1, . . . , xn, a, s)

where s is the only term of sort situation in ΦF (x1, . . . , xn, a, s).

3. Unique names axioms for actions. For instance:

account insert(aid, abal) 6= address insert(aid, addr).

4. Axioms describing the initial situation, e.g. the initial database: a finite set of sentences
whose only situation term is the constant S0.

A set of these axioms, together with a set of domain independent foundational axioms
Df , is called a (Markovian) basic action theory. The foundational axioms include a definition
of the relation @. For two situations s1, s2, s1 @ s2 intuitively means that s1 is a situation
that precedes s2, i.e., in terms of sequences of actions, the sequence s1 is a prefix of s2.

2.2 Non-Markovian Action Theories

For a basic action theory without the Markov assumption, we need some definitions. These
are based on those in [1].

First, we need to introduce the following abbreviations:

(∃s : σ′ ∼ σ′′ ∼ σ)W
def
= (∃s)[σ′ ∼ σ′′ ∧ σ′′ ∼ σ ∧ W ]

(∀s : σ′ ∼ σ′′ ∼ σ)W
def
= (∀s)[(σ′ ∼ σ′′ ∧ σ′′ ∼ σ) ⊃ W ]

(1)

where ∼ stands for @, = or v, and variable s appears in σ ′′. If σ′ is S0 then we may write
(∃s : σ′′ ∼ σ)W and (∀s : σ′′ ∼ σ)W instead.

Definition 1 (Bounded Formulas) For n ≥ 0, let σ be a term do([α1, . . . , αn], λ) rooted at
λ. The formulas of Lsitcalc bounded by σ are the smallest set of formulas such that:

1. If W is an atom whose situation terms are all rooted at λ, then W is bounded by σ.

2. If W ′,W ′′ are formulas bounded by situation terms rooted at s and λ, respectively, then
(∃s : σ′ ∼ σ′′ ∼ σ)W and (∀s : σ′ ∼ σ′′ ∼ σ)W are formulas bounded by σ, where
σ′′ is rooted at s and W = (¬)(W ′ ∧ W ′′).

3. If W1,W2 are formulas bounded by situation terms rooted at λ, then ¬W1, W1 ∧ W2

and (∃v)W1, where v is of sort action or object, are formulas bounded by σ.

3We will adopt the convention that free variables in formulas are implicitly universally quantified from the
outside.



The set of formulas strictly bounded by σ is similarly defined by requiring in item (1)
above that all situation terms of W be subterms of σ, in item (2) that W ′ be strictly bounded
by a subterm of σ′′ and W ′′ by a subterm of σ; and in item (3) that W1,W2 be strictly bounded
by subterms of σ.

Non-Markovian basic action theories differ from those in the previous subsection in that
preconditions and effects of actions may depend on any past situation, not only on the current
one.

Formally, the rhs, ΠA(x1, . . . , xn, s), of an action precondition axiom in a non-Markovian
basic action theory is a formula bounded by situation term s which does not mention pred-
icate Poss and may refer to past situations through abbreviations (1). Similarly, the rhs,
ΦF (x1, . . . , xn, a, s), of a successor state axiom is a formula strictly bounded by s.

A final comment on notation: the abbreviations (1) help defining the class of bounded
formulas, but frequently it is helpful to use further notation shorthands. An instance we will
use later is the following: we will write (∃s1, s2, s3 : σ0 v σ1 v σ2 v σ3 v σ)φ as a
shorthand for:

(∃s1 : σ0 v σ1 v σ)
(∃s2 : σ1 v σ2 v σ)

(∃s3 : σ2 v σ3 v σ)φ.

3 Flat Transactions Models

This section introduces a characterization of flat transactions in terms of the non-Markovian
action theories described in Section 2.

To represent database actions, we distinguish the primitive internal actions, which are
fluent-changing actions (e.g. F insert(~x, t)), from primitive external actions, which are
Begin(t), Commit(t), End(t), and Rollback(t), and whose meaning will be clear in the
sequel of the paper; these are external as they do not specifically affect the content of the
database. The argument t is a unique transaction identifier. The set of fluents of a relational
language is partitioned into two disjoint sets, namely a set of database fluents and a set of
system fluents. Intuitively, the database fluents represent the relations of the database domain,
while the system fluents are used to formalize the processing of the domain. Usually, any
functional fluent in a relational language will always be a system fluent. Finally, database
fluents have an official transaction argument that denotes the transaction that made the last
changes to the fluent.

The axiomatization of a relational database with flat transaction properties comprises the
following classes of axioms:
Foundational Axioms. These are the same as in BATs.
Integrity Constraints. These are constraints imposed on the data in the database at a given
situation s; their set is denoted by ICe for constraints that must be enforced at each update
execution, and by ICv for those that must be verified at the end of the flat transaction.

Update Precondition Axioms. There is one for each internal action A(~x, t), with syntactic
form

Poss(A(~x, t), s) ≡ (∃t′)ΠA(~x, t′, s) ∧ ICe(do(A(~x, t), s)) ∧ running(t, s). (2)

Here, ΠA(~x, t, s) is a first order formula with free variables among ~x, t, and s; it is similar
to the right hand side of action precondition axioms of Section 2. These axioms characterize
the preconditions of the update A; ICe(s) and running(t, s) are abbreviations expanded as
follows:



Abbreviation 1 ICe(s)
def
=

∧
IC∈ICe

IC(s).

Here, IC(s) is a formula whose only free variable is s and this is also its only term of sort
situation.

Abbreviation 2

running(t, s)
def
= (∃s′ : do(Begin(t), s′) v s)

(∀a)(∀s′′ : do(Begin(t), s′) @ do(a, s′′) @ s)[a 6= Rollback(t) ∧ a 6= End(t)].

Example 1 Suppose we have a Banking database with personal accounts information stored
in a relation (i.e., a fluent) accounts(aid, abal, t, s) and tuples are inserted and deleted by
executing actions a insert and a delete, respectively. The following axiom states that it is
possible to delete a tuple specifying the teller identity aid and balance abal into the accounts
relation relative to the database log s iff, as a result of performing the actions in the log, that
tuple is present in the accounts relation, the integrity constraints are satisfied by the resulting
log after executing the delete, and transaction t is running.

Poss(a delete(aid, abal, t), s) ≡(∃t′)accounts(aid, abal, t′, s)∧

ICe(do(a delete(aid, abal, t), s)) ∧ running(t, s).
(3)

Successor State Axioms. These have the syntactic form

F (~x, t, do(a, s)) ≡(∃~t1)ΦF (~x, a, ~t1, s) ∧ ¬(∃t′′)a =Rollback(t′′)∨

(∃t′′){a = Rollback(t′′) ∧ restoreBeginPoint(F, ~x, t′′, s)}.
(4)

There is one such axiom for each database relational fluent F . Formula ΦF (~x, a,~t, s) has
free variables among ~x, a,~t, s and will typically have the canonical form [12]:

γ
+

F
(~x, a,~t, s) ∨ F (~x, s) ∧ ¬γ

−

F
(~x, a,~t, s), (5)

where γ+
F

(~x, a,~t, s) (γ−
F

(~x, a,~t, s)) denotes a first order formula specifying the conditions
that make a fluent F true (false) in the situation following the execution of an update a.

The predicate restoreBeginPoint(F, ~x, t, s) is defined as follows:

Abbreviation 3

restoreBeginPoint(F, ~x, t, s)
def
=

{(∃a1, a2, t
′)(∃s′, s1, s2 : do(Begin(t), s′) @ do(a2, s2) @ do(a1, s1) v s).

writes(a1, F, ~x, t) ∧ writes(a2, F, ~x, t′)∧

[(∀a′′)(∀s′′ : do(a2, s2)@do(a′′, s′′)@do(a1, s1))¬writes(a′′, F, ~x, t)] ∧

[(∀a′′)(∀s′′ : do(a1, s1)@do(a′′, s′′)v s)¬(∃t′′)writes(a′′, F, ~x, t′′)]∧(∃t′′)F (~x, t′′, s1)} ∨

{[(∀a∗)(∀s∗, s′ : do(Begin(t), s′) @ do(a∗, s∗) v s)¬writes(a∗, F, ~x, t)] ∧ (∃t′)F (~x, t′, s)}.

Here, writes(a, F, ~x, t) stands for a = F insert(~x, t) ∨ F delete(~x, t).
Notice that system fluents have successor state axioms that have to be specified on a case

by case basis and do not necessarily have the form (4). Intuitively, restoreBeginPoint(F, ~x, t, s)
means that the system restores the value of the database fluent F with arguments ~x in a par-
ticular way:



• The first disjunct in Abbreviation 3 captures the scenario where the transactions t and
t′ running in parallel, and writing into and reading from F are such that t overwrites
whatever t′ writes before t rolls back. Suppose that t and t′ are such that t begins, and
eventually writes into F before rolling back; t′ begins after t has begun, writes into F
before the last write action of t, and commits before t rolls back.

• The second disjunct in Abbreviation 3 captures the case where the value F had at the
beginning of the transaction that rolls back is kept.

Given the actual situation s, the successor state axiom characterizes the truth values of the flu-
ent F in the next situation do(a, s) in terms of all the past situations. Notice that Abbreviation
3 captures the intuition that Rollback(t) affects all tuples within a table.

Example 2 Consider again the banking example. The following successor state axiom (6)
states that the tuple (aid, abal) will be in the accounts relation relative to the log do(a, s)
iff the last database operation a in the log inserted it there, or it was already in the accounts
relation relative to the log s, and a didn’t delete it; all this, provided that the operation a is
not rolling the database back. In the case the operation a is rolling the database back, the
accounts relation will get a value according to the logic of Abbreviation (3).

accounts(aid, abal, t, do(a, s)) ≡

((∃t1)a = a insert(aid, abal, t1) ∨ (∃t2)accounts(aid, abal, t2, s)∧

¬(∃t3)a = a delete(aid, abal, t3)) ∧ ¬(∃t′)a = Rollback(t′)∨

(∃t′).a = Rollback(t′) ∧ restoreBeginPoint(accounts, (aid, abal), t′, s).

(6)

In this successor state axiom, the formula

(∃t1)a = a insert(aid, abal, t1)∨(∃t2)accounts(aid, abal, t2, s)∧¬(∃t3)a = a delete(aid, abal, t3)

corresponds to the canonical form (5).

Precondition Axioms for External Actions. This is a set of action precondition axioms
for the transaction specific actions Begin(t), End(t), Commit(t), and Rollback(t). The
external actions of flat transactions have the following precondition axioms:

Poss(Begin(t), s) ≡ ¬(∃s′ : do(Begin(t), s′) v s)True, (7)
Poss(End(t), s) ≡ running(t, s), (8)

Poss(Commit(t), s) ≡ (∃s′ : do(End(t), s′) = s)
∧

IC∈ICv

IC(s) ∧ (∀t′)[sc dep(t, t′, s) ⊃ (∃s′′ : do(Commit(t′), s′′) v s)True], (9)

Poss(Rollback(t), s) ≡ (∃s′ : do(End(t), s′) = s)

¬
∧

IC∈ICv

IC(s)] ∨ (∃t′)(∃s′′ : do(Rollback(t′), s′′) v s)r dep(t, t′, s) (10)

Notice that our axioms (7)–(10) assume that the user will only use internal actions Begin(t)
and End(t) and the system will execute either Commit(t) or Rollback(t). The predicates
r dep(t, t′, s), sc dep(t, t′, s) are called dependency predicates: r dep(t, t′, s) intuitively says
that transaction t is rollback dependent on transaction t′ in the situation s, and sc dep(t, t′, s)



says that transaction t is strong commit dependent on transaction t′ in the situation s.4

Dependency axioms. These are transaction model-dependent axioms of the form

dep(t, t′, s) ≡ C(t, t′, s), (11)

where C(t, t′, s) is a condition involving a relationship between transactions t and t′, and
dep(t, t′, s) is one of the dependency predicates c dep(t, t′, s), sc dep(t, t′, s), etc. In the
classical case, we have the following axioms:

r dep(t, t′, s)≡ transConflict(t, t′, s), (12)

sc dep(t, t′, s)≡readsFrom(t, t′, s). (13)

The first axiom says that a transaction conflicting with another transaction generates a rollback
dependency of t on t′. The second says that a transaction reading from another transaction
generates a strong commit dependency of t on t′. The predicates transConflict(t, t′, s) and
readsFrom(t, t′, s) are transaction model dependent. We omit details of their definition.
Unique Names Axioms. These state that the primitive updates and the objects of the domain
are pairwise unequal.
Initial Database. This is a set of first order sentences specifying the initial database state.
They are completion axioms of the form

(∀~x, t).F (~x, t, S0) ≡ ~x= ~C(1)∨. . .∨~x= ~C(r), (14)

one for each (database or system) fluent F . Here, the ~Ci are tuples of constants. Also,
DS0

includes unique name axioms for constants of the database. Axioms of the form (14)
say that our theories accommodate a complete initial database state, which is commonly the
case in relational databases as unveiled in [10]. This requirement is made to keep the theory
simple and to reflect the standard practice in databases. It has the theoretical advantage of
simplifying the establishment of logical entailments in the initial database; moreover, it has
the practical advantage of facilitating rapid prototyping of transaction models using Prolog
which embodies negation by failure, a notion close to the completion axioms used here.

One striking feature of our axioms is the use of the predicate @ on the right hand side of
action precondition axioms and successor state axioms. That is, they are capturing the notion
of a situation being located in the past relative to the current situation which we express with
the predicate @ in the situation calculus. Thus they are capturing non-Markovian control. We
call these axioms a basic relational theory, and introduce the following:

Definition 2 (Basic Relational Theory) A situation calculus theory D is a non-Markovian
basic relational theory iff it is of the form

D = Df ∪ DIC ∪ Dap ∪ Dss ∪ DFT ∪ Ddep ∪ Duna ∪ DS0

where

1. D mentions, in addition to the internal actions, the external actions Begin(t), End(t),
Commit(t), and Rollback(t).

2. Df is the set of foundational axioms.

4A transaction t is rollback dependent on transaction t
′ iff whenever t

′ rolls back in a log, then t must also roll
back in that log; t is strong commit dependent on t

′ iff, whenever t
′ commits in s, then t must also commit in s



3. DIC is a set of integrity constraints IC(s). More specifically, we have built-in ICs
(DICe

) and generic ICs (DICv ). Built-in ICs are: not null attributes, primary keys, and
uniqueness ICs.

4. Dap is a set of non-Markovian action precondition axioms of the form (2), one for each
primitive internal action.

5. Dss is a set of non-Markovian successor state axioms of the form (4), one for each
database fluent. Also, Dss includes successor state axioms for all the system fluents of
the flat transaction model.

6. DFT is a set of action precondition axioms for the primitive external actions.

7. Ddep is a set of dependency axioms.

8. Duna consists of unique names axioms for objects and for actions.

9. DS0
is an initial relational theory, i.e. a set of completion axioms of the form

(∀~x).F (~x, S0) ≡ ~x = ~C(1) ∨ . . . ∨ ~x = ~C(r),

one for each fluent F whose interpretation contains r n-tuples, together with completion
axioms of the form (∀~x)¬F (~x, S0), one for each fluent F whose interpretation is empty.
Also, DS0

includes unique name axioms for constants of the database.

3.1 Legal Flat Transactions

A fundamental property of Rollback(t) and Commit(t) actions is that, the database system
must execute them in any database state in which they are possible. In this sense, they are
coercive actions, and we call them system actions:

Abbreviation 4

systemAct(a, t)
def
= a=Commit(t) ∨ a=Rollback(t).

We constrain legal logs to include these mandatory system actions, as well as the require-
ment that all actions in the log be possible:

Abbreviation 5

legal(s)
def
= (∀a, s∗ : do(a, s∗) v s)Poss(a, s∗) ∧

(∀a′, a′′, t)[systemAct(a′, t) ∧ responsible(t, a′) ∧ responsible(t, a′′) ∧
(∀s′ : do(a′′, s′) @ s)[Poss(a′, s′) ⊃ a′ = a′′].

(15)

Here, responsible(t, a) means that transaction t is responsible for the action a, i.e., a
occurred as part of this transaction. For each action function A(~x, t), we include an axiom
responsible(t, A(~x, t)) ≡ True to define this relation.

In proving the different properties of transaction models, the following three lemmas ex-
hibiting simple properties of legal logs are useful.5

5Notice that we will only state these lemmas and the subsequent properties for which they are useful without
proofs.



Lemma 1 Let D be a basic relational theory. Then

D |= (∀s, a){legal(S0)∧

[legal(do(a, s)) ≡ legal(s) ∧ Poss(a, s)∧

(∀a′, t).systemAct(a′, t) ∧ responsible(t, a′) ∧ Poss(a′, s) ⊃ a = a′]}.

Lemma 2 Suppose D is a basic relational theory. Then

D |= legal(s) ⊃ (∀s′)[s′ v s ⊃ legal(s′)].

Lemma 3 Suppose [a1, · · · , an] is a sequence of ground action terms and D is a relational
theory. Then

D |= legal(do([a1, · · · , an], s)) ≡
n∧

i=1

{Poss(ai, do([a1, · · · , ai−1], s))∧

(∀a, t)[systemAct(a, t) ∧ responsible(t, a))∧

Poss(a, do([a1, · · · , ai−1], s)) ⊃ ai = a]}.

Simple properties such as well-formedness of atomic transactions [6] can be formulated
in the situation calculus and proven as logical consequences of basic relational theories [4].
We leave this issue out of the scope of this paper, except that we can establish the following:

Theorem 1 (Atomicity) Suppose D is a relational theory. Then for every database fluent F

D |= legal(s) ⊃

(∀t,a, s1, s2){[do(Begin(t), s1) @ do(a, s2) @ s]∧

(∃a∗, s∗, ~x)[do(Begin(t), s1) @ do(a∗, s∗)@ do(a, s2) ∧ writes(a∗, F, ~x, t)] ⊃

[(a = Rollback(t) ⊃ ((∃t1)F (~x, t1, do(a, s2)) ≡ (∃t2)F (~x, t2, s1)))∧

(a = Commit(t) ⊃ ((∃t1)F (~x, t1, do(a, s2)) ≡ (∃t2)F (~x, t2, s2)))]}.

This says that rolling back restores any database fluent to the value it had just before the last
Begin(t) action, and committing endorses the value it had in the situation just before the
Commit(t) action.

4 Flat Transactions with Savepoints

Recall that the external action Rollback(t, n) brings the database back to the database state
corresponding to the savepoint n. With this action, we now can roll back with respect to
savepoints; thus the precondition axiom for Rollback(t, n), which now has a savepoint as ar-
gument, must be specified accordingly. If a Rollback(t, n) action is executed in situation s, its
effect is that we ignore any situation between some s′ and s, where s′ is the database log corre-
sponding to the savepoint n. One way of doing this is to maintain a predicate Ignore(t, s ′, s)
in order to know which parts of the log to skip over. The following action precondition ax-
ioms and definition reflect these changes to the corresponding axioms for flat transactions of
Section 3:



Poss(Save(t), s) ≡ running(t, s), (16)

Poss(Rollback(t), s) ≡ (∃s′ : do(End(t), s′) = s)True ∧ ¬
∧

IC∈ICv

IC(s)] ∨

(∃t′)(∃s′′ : do(Rollback(t′), s′′) v s)r dep(t, t′, s) ∨

(∃t′, n)(∃s′, s∗, s∗∗ : s′ v s∗ @ do(Rollback(t′, n), s∗∗) v s)

[r dep(t, t′, s∗) ∧ sitAtSavePoint(t′, n, s′)]

(17)

Poss(Rollback(t, n), s) ≡ running(t, s)∧

(∃s′ : s′ @ s).sitAtSavePoint(t, n, s′)∧

numOfSavePoints(t, s) ≥ n∧

¬(∃s∗, s∗∗ : s∗ v s′ v s∗∗ v s)Ignore(t, s∗, s∗∗),

(18)

numOfSavePoints(t, do(a, s)) = n ≡ a = Begin(t) ∧ n = 1∨

a = Save(t) ∧ n = numOfSavePoints(t, s) + 1∨

numOfSavePoints(t, s) = n ∧ a 6= Begin(t) ∧ a 6= Save(t),

(19)

Ignore(t, s′, do(a, s))
def
= s′ v do(a, s)∧

(∃n).sitAtSavePoint(t, n, s′) ∧ a = Rollback(t, n),
(20)

sitAtSavePoint(t, n, s)
def
= numOfSavePoints(t, s) = n∧

(∃a)(∃s′ : do(a, s′) = s)(a = Begin(t) ∨ a = Save(t)).
(21)

In flat transactions with save points, successor state axioms for relations have the follow-
ing form that reflects changes introduced by the external Rollback(t, n) action.

F (~x, t, do(a, s)) ≡

(∃~t1).ΦF (~x, a, ~t1, s) ∧ ¬(∃t′′)a = Rollback(t′′) ∧ ¬(∃t′′, n)a = Rollback(t′′, n)∨

(∃t′′)a = Rollback(t′′) ∧ restoreBeginPoint(F, ~x, t′′, s)∨

(∃n, t′′).a = Rollback(t′′, n) ∧ restoreSavePoint(F, ~x, n, t′′, s),
(22)

one for each relation F , where ΦF (~x, a, ~t1, s) is a formula with free variables among a, s, ~x, ~t1;
Abbreviation (3) defines restoreBeginPoint(F, ~x, t′′, s), and restoreSavePoint(F, ~x, n, t′′, s)
is defined as follows:

Abbreviation 6

restoreSavePoint(F, ~x, n, t, s)
def
=

(∃s′ : s′ @ s)sitAtSavePoint(t, n, s′) ∧ (∃t′)F (~x, t′, s′),
(23)

where sitAtSavePoint(t, n, s′) is a formula that provides the log relative to the transaction
t at the savepoint n as defined by (21); restoreSavePoint(F, ~x, n, t, s) means that the value
of the fluent F with arguments ~x is set back to the value it had at the sublog of s corresponding
to the savepoint n established by the transaction t.



The dependency axioms (11) have to be adapted to this new setting where dependencies
that held previously may no longer hold as a consequence of the partial rollback mechanism;
these axioms are now of the form

dep(t, t′, do(a, s)) ≡ C(t, t′, s) ∧ a 6= Rollback(t) ∧ a 6= Rollback(t′)∧

¬(∃n)(∃s′ : s′ v s)[(a = Rollback(t, n) ∨ a = Rollback(t′, n))∧

sitAtSavePoint(t′, n, s′) ∧ (∀s′′ : s′ v s′′ v s)¬dep(t, t′, s′′)],

(24)

where C(t, t′) and dep(t, t′, s) are defined as in (11). We have one such axiom for each
dependency predicate.

A basic relational theory for flat transactions with savepoints is as in Definition 2, but
where the relational language includes Save(t) and Rollback(t, n) as further actions, the
axioms (16) – (19) are added to DFT , the set Dss is a set of successor state axioms of the
form (22), and the set Ddep is a set of dependency axioms of the form (24). All the other
axioms of Definition 2 remain unchanged.

4.1 Properties

Now we turn to some of the ACID properties of flat transactions with savepoints. The intro-
duction of the Rollback(t, n) action modifies the previous atomicity theorem as follows.

Lemma 4 Suppose D is a relational theory. Then for every relational fluent F

D |= legal(s) ⊃

{[do(Begin(t),s1) @ do(a, s2) @ s]∧

(∃a∗, s∗, ~x)[do(Begin(t), s1) @ do(a∗, s∗) @ do(a, s2) ∧ writes(a∗, F, ~x, t)] ⊃

[(∃n)(a = Rollback(t, n) ∧ sitAtSavePoint(t, n) = s′) ⊃

(((∃t1)F (~x, t1, do(a, s2)) ≡ (∃t2)F (~x, t2, s
′)))]}.

This tells us that Rollback(t, n) does not fall under the all-or-nothing logic that characterizes
flat transactions since the situation at a given savepoint of a transaction is not necessarily the
same as the situation at the beginning of that transaction.

Note that Theorem 1 continues to hold for flat transactions with savepoints. Hence, from
Theorem 1 and Lemma 4, we have the following

Corollary 1 (Atomicity of Transactions with Savepoints) Suppose D is a relational theory.
Then for every database fluent F

D |= legal(s) ⊃

{[do(Begin(t), s1) @ do(a, s2) @ s]∧

(∃a∗, s∗, ~x)[do(Begin(t), s1) @ do(a∗, s∗) @ do(a, s2) ∧ writes(a∗, F, ~x, t)] ⊃

[[a = Rollback(t) ⊃ ((∃t1)F (~x, t1, do(a, s2)) ≡ (∃t2)F (~x, t2, s1))]∧

[(∃n)(a = Rollback(t, n) ∧ sitAtSavePoint(t, n) = s′) ⊃

(((∃t1)F (~x, t1, do(a, s2)) ≡ (∃t2)F (~x, t2, s
′)))]

[a = Commit(t) ⊃ ((∃t1)F (~x, t1, do(a, s2)) ≡ (∃t2)F (~x, t2, s2))]]}.

The following theorem establishes a fundamental property of transactions with save-
points: if a transaction rolls back to a given savepoint, say, n, all the updates on the way
back to the situation corresponding to n are aborted, and no future rollback to the situations
generated by these updates are possible.



Theorem 2 Suppose D is a relational theory. Then

D |= legal(s) ⊃

{do(Rollback(t, n), s′) @ s ⊃

[¬(∃n∗, s∗).do(Rollback(t, n), s′) @ do(Rollback(t, n∗), s∗) @ s∧

sitAtSavePoint(t, n) v sitAtSavePoint(t, n∗) @ do(Rollback(t, n), s′)]}.

5 Conclusion

We have presented a logical specification of flat transactions with savepoints using non-
Markovian theory of actions. We have also captured some of their properties as non-Markovian
sentences. The formal semantics of flat transactions with savepoints has been given as a spe-
cial case of basic relational theories, which are non-Markovian theories of the situation cal-
culus. Finally the sentences capturing the properties of flat transactions with savepoints were
shown to be logical consequences of the basic relational theories.

For basic action theories with the Markov assumption, Pirri & Reiter [9] define a provenly
correct regression mechanism that takes a situation calculus sentence and, under certain re-
strictions on the form of this sentence, transforms it into an equivalent sentence whose only
situation term is S0. This allows proving sentences without appealing to the foundational
axioms Df . This regression operator was generalized for non-Markovian theories in [1]. A
future avenue that we would like to follow is to provide an interpreter for simulating trans-
action programs that uses non-Markovian theories as background axioms in the sense of [5].
Such an interpreter needs the kind of regression defined in [1] for efficient theorem proving.

References
[1] A. Gabaldon. Non-markovian control in the situation calculus. In Procs. of the 18th National

Conference on Artificial Intelligence (AAAI’02), pages 519–524, Edmonton, Canada, 2002.

[2] J. Gray and Reuter A. Transaction Processing: Concepts and Techniques. Morgan Kaufmann
Publishers, San Mateo, CA, 1995.

[3] I Kiringa. Simulation of advanced transaction models using golog. In DBPL’01, 2001.

[4] I. Kiringa. Towards a theory of advanced transaction models in the situation calculus (extended
abstract). In KRDB’01, 2001.

[5] H. Levesque, R. Reiter, Y. Lespérance, Fangzhen Lin, and R.B. Scherl. Golog: A logic program-
ming language for dynamic domains. J. of Logic Programming, 31(1-3):59–83, 1997.

[6] N. Lynch, M.M. Merritt, W. Weihl, and A. Fekete. A theory of atomic transactions. In ICDT’88,
1988.

[7] J. McCarthy. Situations, actions and causal laws. Technical report, Stanford University, 1963.
Reprinted in Semantic Information Processing (M. Minsky ed.), MIT Press, 1968, pp. 410–417.

[8] J. Morrison and M. Morrison. Guide to Oracle 9i. Thomson, Boston, MA, 2003.
[9] F. Pirri and R. Reiter. Some contributions to the metatheory of the situation calculus. Journal of

the ACM, 46(3):325–364, 1999.
[10] R. Reiter. Towards a logical reconstruction of relational database theory. In M. Brodie, J. My-

lopoulos, and J. Schmidt, editors, On Conceptual Modelling, pages 163–189, 1984.

[11] R. Reiter. The frame problem in the situation calculus: A simple solution (sometimes) and a
completeness result for goal regression. In V. Lifschitz, editor, Artificial Intelligence and Mathe-
matical Theory of Computation: Papers in Honor of John McCarthy, pages 359–380, San Diego,
Academic Press, 1991.

[12] R. Reiter. Knowledge in Action: Logical Foundations for Describing and Implementing Dynam-
ical Systems. MIT Press, Cambridge, 2001.


