Multiresolution Data Handling for Visualization
of Very Large Data Sets

Norbert Strobel', Chrisian Gosch?, Jiirgen Hesser?
and Christoph Poliwoda*

!Siemens Medical Solutions, 91052 Erlangen
2Volume Graphics, 69123 Heidelberg
3Uni Mannheim, 68131 Mannheim
*Volume Graphics, 69123 Heidelberg

Email: Norbert.Strobel@siemens.com

Abstract. We discuss some features of an experimental system for vi-
sualization of large (medical) volume data sets. Input voxel data sets are
subdivided into blocks first. Then each block is decomposed into a mul-
tiresolution data representation by applying a reversible 3D integer Haar
wavelet transform (S-transform). The resulting transform coefficients are
encoded using a Golomb-Rice algorithm. For volume visualization, we se-
lectively load and decompress blocks to a proper resolution. Then they
are rendered into a common view. From our experiments, we learned
that large volume data sets should preferably be stored using a multires-
olution data representation. Depending on the size of the volume data
set and the rendering mode, we also found that a block-based data rep-
resentation can provide some advantages, but it may not always be the
best choice.

1 Introduction

In medical and industrial applications, data sets may take up Giga bytes of
memory. For efficient data retrieval over bandlimited networks and for volume
visualization on computers with a limited amount of main memory (RAM), data
processing and file storage have to be designed properly.

In addition, some applications such as diagnostic imaging require very high-
quality data sets. This may rule out lossy compression to keep storage space
and bandwidth requirements low. However, this does not mean that there is no
room for image compression. It only implies that there must be an option to
ultimately retrieve an exact copy of the original image.

Wavelet transform techniques offer a very elegant solution to this problem.
They provide a mathematical framework for multiresolution data representation,
and the wavelet basis functions usually decorrelate image input data rather well.

Among many examples in the literature, Thm and Park, partitioned a given
3-D volume data set into so-called unit blocks to achieve both high compression
ratios and fast random access [1]. In related work, Bajaj et al. extended this ap-
proach to 3D RGB images and light fields [2]. Nguyen and Saupe again reported

107

interesting performance results with block-based wavelet compression techniques
[3]. Guthe et al. initially divided the input data set into cubic blocks as well [4].
Then they applied integer wavelet filters to each block. After separating the low
pass and the highpass coefficients, they, however, grouped eight adjacent low
pass blocks to obtain another cubic block for further processing. This approach
is performed recursively until only one (low pass) block is left.

In this work, we investigate a multiresolution volume compression approach
involving an integer version of the 3-D Haar wavelet transform (S-transform) and
Golomb-Rice coding. Our goal was to investigate the advantages and problems
encountered when rendering large volume data sets using a block-based data
representation.

The remaining part of the paper is structured as follows: In the next section,
we discuss how to compute a multiresolution data representation using the 3D
S-transform. Then we outline the multiresolution visualization method used.
Finally, we discuss our findings and offer some conclusions.

2 Multiresolution Data Representation

Similar to Thm, Bajaj, Nguyen and Guthe, we partitioned our input data sets
into blocks first. These blocks were then 3D wavelet transformed using an inte-
ger version of the Haar wavelet transform called S-transform [6]. The resulting
transform coefficients were fed into a fast Golomb-Rice coder next and finally
stored to disk.

2.1 Data Transform and Coding

The one-dimensional S-transform is extended to 3D by applying it first along
image columns, then along image rows, and finally across successive slices in a
volume data set.

The 3D S-transform takes a cube of eight adjacent voxels at pyramid level [
and computes an average coefficient at level { + 1. In addition, it produces seven
associated differences or detail coefficients at level [41. Since the 3D S-transform
just involves addition, subtraction, and shift operations, it can be implemented
very efficiently.

Depending on the initial block size, the 3D S-transform may be iterated by
successively taking the average coefficients at each level as input for the next step.
This way, a multiresolution representation of each input block can be computed.
It consists of one subband with approximation coefficients (at the lowest spatial
resolution). This low-resolution data set can be rendered directly. In addition,
there are seven subbands comprising detail (or wavelet) coefficients at each level.
The detail coefficients are needed to recursively recompute the original voxels.

A Golomb-Rice coder was used for entropy coding of the detail subbands [7].
Unlike Weinberger et al., who relied on contexts to optimize the Golomb-Rice
encoding parameter for each sample, we determined a single parameter for each

108

Table 1. Compression results for three selected medical volume data sets. Note that
the times for decoding and inverse transform are given in msec/block.

Name CR |Decoding Time|Transformation Time
CT Head | 2.05 7.33 2.77
MRI Head | 2.88 7.92 3.33
CT Thorax| 2.58 7.00 3.13

subband of each block and stored it as side information. Although suboptimal
with respect to bit rate, decoding can be accelerated this way.

To assess the compression performance of our block-based approach, we took
three medical volume data sets (16 bits per voxel) and divided them into blocks
of size 32 x 32 x 32 voxels. Next, a three-level S-transform was applied to each
block.

In Table 1, we list the compression ratios (CRs), and how long it took to
decode and inverse transform each block to its initial, i.e. original, resolution.
Since the timing results are on a per-block basis, they have to be multiplied by
the total number of blocks to get the overall time needed to decode and inverse
transform a complete data set.

Our experiments were run on a Pentium II computer with 333 MHz and
256 MB RAM. No special SIMD commands were used to speed up the run-time
performance.

Since the two-byte voxel data sets were compressed without any loss, com-
pression ratios between two and three could be expected. Table 1 also shows that
decompressing blocks comprising 32 x 32 x 32 voxels took up to 11.25 msec on a
333 MHz Pentium IT computer. This is equivalent to a decompression speed of
about 5.5 MB/sec (MB: Mega byte). For a higher clock speed of 2 GHz, we may
expect a decompression speed of around 33 MB/sec. If an even better computer
was used, e.g., running at 4 GHz, the decompression speed should again double
to 66 MB/sec. Then it will take about slightly less than eleven seconds to com-
pletely rebuild the 512 x 512 x 1440 Visible Man fresh CT data set taking up
720 Mbytes uncompressed.

2.2 File Format and Data Structure

Starting with a block-based multiresolution data representation, two file formats
for data storage become apparent. They are either

1. resolution-oriented, or

2. block-based.

In the first case, the data stored is sorted by resolution. That is, the low-
resolution approximation (low pass) coefficients are followed by encoded detail
(or wavelet) coefficients. This storage order facilitates volume rendering at in-
creasingly higher spatial resolutions.

109

In the second case, the data is simply stored block by block. Such a stor-
age format supports efficient rendering of volume regions comprised of a small
number of blocks at the highest resolution.

We performed an experiment where we either linearly or randomly fetched
data from the hard drive. Our results indicated that the storage order should
match the render mode to avoid significant disk access delays mainly due to seek
times.

As a consequence, the resolution-oriented storage format should be chosen
when data sets are to be rendered at multiple resolutions. On the other hand, the
block-based storage format appears superior when small regions of the original
volume are to be rendered primarily at the highest resolution.

3 Multiresolution Visualization

A system for volume navigation was developed. Only the data currently con-
tained in the visible volume is loaded block by block, decompressed and rendered
onto a common image plane. The block data remains in main memory until a
user-defined, previously set memory limit is exceeded.

Due to the multiresolution data representation, we can straightforwardly
provide a volume preview simply by loading and rendering blocks at their lowest
resolution.

For interactive volume visualization, we applied a view-based multiresolution
data manager to achieve optimal RAM utilization. For a particular view, this
data manager

— loads associated (compressed) voxel blocks from file,
— decompresses them to a particular resolution, and
— puts them into a block store for future use.

A hash-table is used for book-keeping and removal of blocks which went out
of scope.

The resolution for each block is chosen either to be the maximum resolution
that the user has chosen or a lower resolution, depending on the distance of the
diverging rays traversing the block. This way, aliasing effects can be avoided by
adapting the bandwidth of each block’s data to the local ray density. Another
approach to avoiding aliasing is to adapt the local ray density like Jung did with
two-phase perspective ray casting [5].

4 Discussion and Conclusions

We designed and implemented a system for volume visualization. It transforms
(cubic blocks of) voxel raw data into a multiresolution data representation first,
and it uses a Golomb-Rice coding mechanism. The encoded transform coeffi-
cients are stored using a file format designed for fast random access. During
visualization, the system selectively fetches compressed blocks from disk and

110

decompresses them into proper resolutions for rendering. A voxel block data
management system tries to keep disk access to a minimum.

From our experiments, we conclude that a multiresolution volume data rep-
resentation offers various interesting features for volume rendering. For example,
we can selectively load only the low pass part of the multiresolution volume data
set. This saves valuable bandwidth, and the data received is already sufficient
to render views at a low spatial resolution. In addition, the low pass part of
the volume data may require significantly less main memory than the full data
set. In other words, a multiresolution data representation provides an interest-
ing trade-off mechanism between rendering quality and system resources such as
memory and bandwidth. Note however, that there is a computational overhead
associated with a multiresolution storage format due to the need for decoding
and reconstruction. The amount of overhead is determined by the resolution
the data needs to be reconstructed to. This computational overhead can be kept
small by using fast transforms and coding algorithms such as the 3D S-Transform
and Golomb coding, respectively.

Depending on the size of the volume data set, we also found that block-based
data storage and processing may provide some advantages, but it may not al-
ways be the best choice. The block-based data organization is clearly superior
when only parts of the volume are to be loaded, e.g., when only a part of the
overall volume is to be rendered. However, when dealing with volume data sets
that fit into main memory, a block-based data structure seems to provide lit-
tle advantages - in particular when taking into account the block management
overhead.

References

1. Thm I, Park S: Wavelet-Based 3D Compression Scheme for Interactive Visualization
of Very Large Volume Data. Computer Graphics Forum 18:3-15, 1999.

2. Bajaj C, IThm I, Park S: 3D RGB Compression for Interactive Applications. ACM
Transactions on Graphics 20(1):10-38, 2001.

3. Nguyen K.G., Saupe D.: Rapid High Quality Compression of Volume Data for
Visualization. Computer Graphics Forum 20 (3), 2001.

4. Guthe S, Wand M, Gonser J., et al.: Interactive Rendering of Large Volume Data
Sets. IEEE Visualization, 2001.

5. Jung M: Two-phase perspective ray casting for interactive volume navigation.
IEEE Visualization "97:183-189, 1997.

6. Wendler T and Meyer-Ebrecht D: Proposed standard for variable format picture
processing and a codec approach to match diverse imaging devices. SPIE Proceed-
ings, vol. 318:298-305, 1982.

7. Weinberger M, Seroussi G, Sapiro G: LOCO-I: A Low Complexity, Context-Based,
Lossless Image Compression Algorithm. IEEE Data Compression Conference: 140
149, 1996.

