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Abstract. In this paper we propose honmonotonic extensions of low ¢exitp
Description Logicst £ andDL-Lite,.. for reasoning about typicality and de-
feasible properties. The resulting logics are caflgd T, andDL-Lite, T .
We summarize complexity results for such extensions récstidied. Entail-
ment inDL-Lite. T'.», is in 115, whereas entailment 8L T i is EXPTIME-
hard. However, considering the known fragment of Left La€&H T, we
have that the complexity of entailment drops . Furthermore, we present
tableau calculi for€ £ T, (focusing on Left Local knowledge bases) and
DL-Lite. T.:n. The calculi perform a two-phase computation in order tackhe
whether a query is minimally entailed from the initial knedbe base. The cal-
culi are sound, complete and terminating. Furthermorey; thpresent decision
procedures for Left Locaf £ T, knowledge bases amdl -Lite. T . knowl-
edge bases, whose complexities match the above mentiosidtsre

1 Introduction

The family of description logics (DLs) is one of the most imfamt formalisms of
knowledge representation. They have a well-defined seosabtased on first-order
logic and offer a good trade-off between expressivity ansigiexity. DLs have been
successfully implemented by a range of systems and theyt #ine hase of languages
for the semantic web such as OWL. A DL knowledge base (KB) aisep two com-
ponents: the TBox, containing the definition of conceptsl(possibly roles), and a
specification of inclusion relations among them, and the ABantaining instances of
concepts and roles. Since the very objective of the TBox lmittal a taxonomy of con-
cepts, the need of representing prototypical propertidoareasoning about defeasible
inheritance of such properties naturally arises.

Nonmonotonic extensions of Description Logics (DLs) hagerbactively investi-
gated since the early 90s, [15,4,2,3,7,12,10,9, 6]. A snbplt powerful nonmono-
tonic extension of DLs is proposed in [12,10,9]: in this ajgmh “typical” or “nor-
mal” properties can be directly specified by means of a “tgliig’ operatorT en-
riching the underlying DL; the typicality operat@ is essentially characterised by
the core properties of nonmonotonic reasoning axiomatiggateferential logic[13].

In ALC + T [12], one can consistently express defeasible inclusiowisexceptions
such as: typical students do not pay taxes, but working stsd#o typically pay taxes,
but working students having children normally do n®tStudent) T —TaxPayer;
T(Student M Worker) T TaxPayer; T(Student M Worker M 3HasChild. T) C
—TazxPayer. Although the operatdf’ is nonmonotonicin itself, the logid £C + T, as



well as the Iogifﬁ*LT [10] extending £, is monotonic. As a consequence, unless
a KB contains explicit assumptions about typicality of widuals (e.g. that john is a
typical student), there is no way of inferring defeasiblegarties of them (e.g. that john
does not pay taxes). In [9], a non monotonic extensiaA6E + T based on a minimal
model semantics is proposed. The resulting logic, calléd +T,,,;,., supports typical-

ity assumptions, so that if one knows that john is a studerd,aan nonmonotonically
assume that he is alsaypical student and therefore that he does not pay taxes. As an
example, for a TBox specified by the inclusions aboved£C + T.,,;, the following
inference holds: TBo {Student(john)} = acc+t,,... —TarPayer(john).

Similarly to other nonmonotonic DLs, adding the typicabiyerator with its minimal-
model semantics to a standard DL, suchA8C, leads to a very high complexity
(namely query entailment WLC + T pnin iSin co-NexpNP [9]). This fact has moti-
vated the study of nonmonotonic extensions of low compjelits such aPL-Lite ..

[5] andE L+ of the£L family [1] which are nonetheless well-suited for encodiage
knowledge bases (KBs).

In this paper, we hence consider the extensions of the lovptxity logicsDL-Lite .
and& £+ with the typicality operator based on the minimal model setica introduced
in [9]. We summarize complexity upper bounds for the resgltogics€ £ T,,;,, and
DL-Lite T, studied in [11]. FOELL, it turns out that its extensiafiC LT, ,;,, is un-
fortunately ExPTIME-hard. This result is analogous to the onediscumscribeds £+
KBs [3]. However, the complexity decreased14 for the fragment of eft Local€ £+
KBs, corresponding to the homonymous fragment in [3]. Theesaomplexity upper
bound is obtained fobL-Lite.T,,,;,.

We also present tableau calculi fbi_-Lite.T),,;,, as well as for the Left Local
fragment ofEL T, for deciding minimal entailment id/%. Our calculi perform a
two-phase computation: in the first phase, candidate mddetsplete open branches)
falsifying the given query are generated, in the secondepttess minimality of candi-
date models is checked by means of an auxiliary tableau mtisin. The latter tries
to build a model which is “more preferred” than the candidate: if it fails (being
closed) the candidate model is minimal, otherwise it is Both tableaux constructions
comprise some non-standard rules for existential quaatific in order to constrain the
domain (and its size) of the model being constructed. Therskphase makes use in
addition of special closure conditions to prevent the geti@n of non-preferred mod-
els. The calculi are very simple and do not require any blogknhachinery in order to
achieve termination. It comes as a surprise that the motidicaf the existential rule
is sufficient to match thér} complexity.

2 The typicality operator T and the Logic €L Tin

Before describing £ T, let us briefly recall the underlying monotonic Io@xzﬁf’L T
[10], obtained by adding t6 £ the typicality operatof’. The intuitive idea is that
T(C) selects theypical instances of a concept. In &L T we can therefore dis-
tinguish between the properties that hold for all instarafesonceptC (C C D), and
those that only hold for the normal or typical instance€'qfT'(C) C D).

Formally, theSLt T language is defined as follows.



Definition 1. We consider an alphabet of concept narGesf role namesk, and of
individualsO. GivenA € C andR € R, we define

C:=A|T|L|CnC Cr:=C|CrnNCg|3R.C CL:=Cr|T(C)
A KB is a pair (TBox, ABox). TBox contains a finite set of gehevacept inclusions

(or subsumptions)’;, C Cr. ABox contains assertions of the fot () and R(a, b),
wherea, b € O.

The semantics of £+~ T [10] is defined by enriching ordinary models 6.+
by apreference relation< on the domain, whose intuitive meaning is to compare the
“typicality” of individuals: = < y, means that is more typical thagy. Typical members
of a concept, thatis members df' (C), are the membetsof C that are minimal with
respect to this preference relation.

Definition 2 (Semantics ofT). A modelM is any structurgA, <, I) whereA is the
domain; < is an irreflexive and transitive relation ovet that satisfies the following
Smoothness Conditiofior all S C A, for all z € S, eitherz € Min(S) or Jy €
Min_(S) such thaty < =, whereMin-(S) = {u:u € SandPz € Ss.t.z < u}.
Furthermore,< is multilinear: if u < z andv < z, then eitheru = v oru < v or
v < u. I is the extension function that maps each conéept C7 C A, and each role
rtor! € Al x Al For concepts oE£*, C! is defined in the usual way. For tHE
operator: (T(C))! = Min(C?).

Given a modelM, I can be extended so that it assigns to each individuzfi O a
distinct element.’ of the domainA. We say thatM satisfies an inclusio®’ C D if
C! € D!, and thatM satisfiesC (a) if a! € C* andaRbif (a’,b!) € R!. Moreover,
M satisfies TBox if it satisfies all its inclusions, aind satisfies ABox if it satisfies all
its formulas.M satisfies a KB (TBox,ABox), if it satisfies both its TBox ansl ABox.

The operatorfT [12] is characterized by a set of postulates that are esdlgnai
reformulation of the KLM [13] axioms opreferential logicP. T has therefore all the
“core” properties of nonmonotonic reasoning as it is axitisea byP. The semantics
of the typicality operator can be specified by modal logice Titerpretation ofl' can
be split into two parts: for any of the domaind, = € (T(C))! justin case (i) € C,
and (i) there is ngy € C7 such thaty < . Condition (ii) can be represented by means
of an additional modality], whose semantics is given by the preference relation
interpreted as an accessibility relation. Observe thatlbySmoothness Condition]
has the properties of Gddel-Ldb modal logic of provapi@®. The interpretation of
in M is as follows:(JC)! = {z € A |foreveryy € A, if y < x theny € C'}. We
immediately get that € (T(C))! if and only if » € (C 1 O-C)!. From now on, we
considerT(C') as an abbreviation faf' 11 O-C.

As mentioned in the Introduction, the main limit&8£ " T is that it ismonotonic
Even if the typicality operatdr itself is nonmonotonic (i.€T'(C) C E does notimply
T(C 11 D) C E), what is inferred from agLt T KB can still be inferred from any
KB’ with KB C KB'. In order to perform nonmonotonic inferences, as don@®Jnwe
strengthen the semantics®f ™ T by restricting entailment to a class of minimal (or

preferred) models. We call the new logi€ " T,,;,. Intuitively, the idea is to restrict
our consideration to models thainimize the non typical instances of a concept



Given a KB, we consider a finite st of concepts: these are the concepts whose
non typical instances we want to minimize. We assume thageb@r contains at least
all conceptg” such thafl'(C') occurs in the KB or in the quer¥, where aquery F' is
either an assertio@'(a) or an inclusion relatiod = D. As we have just said; € C’
is typical if z € (O-C). Minimizing the non typical instances @t therefore means
to minimize the objects not satisfying—C for C € L+. Hence, for a given model
M = (A, <, I, we define:

MZ = {(z,-0-C) |z ¢ (O-C)!, withz € A,C € L1}
Definition 3 (Preferred and minimal models).Given a modeM = (A <, I) of a
knowledge base KB, and a model’ = (A’, </, I') of KB, we say that\1 is preferred
to M’ with respect tolr, and we writeM <. M’ if (i) A = A7, (ii) M'E; -
MEL (i) of = o' forall a € ©. M is aminimal modefor KB (with respect taCr)
if it is a model of KB and there is no other model’ of KB such thatM’ < ... M.

Definition 4 (Minimal Entailment in ££1T,,;,). A query F' is minimally entailed
in ££1T,.:» by KB with respect t if F is satisfied in all models of KB that are
minimal with respect t€r. We write KB=¢ o F.

Example 1. The KB of the Introduction can be reformulatedcdisws in eLt Ty
TaxPayer M NotTaxPayer T 1; Parent © 3HasChild.T; 3HasChild. T T Parent;
T (Student) C NotTaxPayer; T(Student M Worker) C TazPayer; T (Student 1
Worker MParent) © NotTaxPayer. LetLt = {Student, Student M Worker, Student
M Worker 1 Parent }. Then TBoxJ { Student(john)} Fepimp, . NotTaxPayer(john),
since john! € (Student 1 O-Student)! for all minimal modelsM = (A <,I)
of the KB. In contrast, by the nonmonotonic character of malientailment, TBox
U {Student(john), Worker(john)} Eepiy, . TaxPayer(john). Last, notice that
TBoxU {IHasChild.(Student 11 Worker)(jack)} Fepvr,,,, IHasChild. TaxPayer
(jack). The latter shows that minimal consequence appliemfdicit individuals as
well, without any ad-hoc mechanism.

Theorem 1 (Complexity for ££1T,,;, KBs (Theorem 3.1 in [11])).The problem of
deciding whether KB=¢ ..y = «ais EXPTIME-hard.

In order to lower the complexity of minimal entailment&C*T,,;,, we consider a
syntactic restriction on the KB called Left Local KBs. Théstriction is similar to the
one introduced in [3] for circumscribe®iC KBs.

Definition 5 (Left Local knowledge base)A Left Local KB only contains subsump-
tionsCEL C Cr, whereC andCp, are as in Definition 1 and:

CEL .= C | CEENCEL | 3R.T | T(C)
There is no restriction on the ABox.

Observe that the KB in the Example 1 is Left Local, as no conoéphe form
JR.C with C' # T occurs on the left hand side of inclusions. In [11] an uppeiriab
for the complexity o £ T,,;,, Left Local KBs is provided by a small model theorem.
Intuitively, what allows us to keep the size of the small mqu®ynomial is that we
reuse the same world to verify the same existential conbeptighout the model. This
allows us to conclude that:



Theorem 2 (Complexity for ££1T,,;,, Left Local KBs (Theorem 3.12 in [11])).If
KB is Left Local, the problem of deciding whether KB ..+ = «isinII}.

3 The LogicDL-Lite.T,.;n

In this section we present the extension of the |@jicLite.,.. [5] with the T operator.
We call the resulting logi®L-Lite. T, ;,. The language obL-Lite.T,,;, is defined
as follows.

Definition 6. We consider an alphabet of concept nardesf role namesk, and of
individualsO. GivenA € C andr € R, we define

CL:=A|3R.T|T(4) R:=r|r Cr:=A|-A|3RT|-3RT

A DL-Lite.T,,;, KB is a pair (TBox, ABox). TBox contains a finite set of concept
inclusions of the forn®’;, C C'r. ABox contains assertions of the fo€a) andr(a, b),
whereC'is a concept’, or Cg, r € R, anda,b € O.

As for EL+T,in, @ modelM for DL-Lite, Ty, iS any structuréA, <, I'), defined
as in Definition 2, wherd is extended to take care of inverse roles: giveg R,
(r)f ={(a;b) | (b,a) e r'}.

In [11] it has been shown that a small model constructionlaimo the one for
Left LocalEL*T,,.; KBs can be made also f@L-Lite, T,.;. As a difference, in this
case, we exploit the fact that, for each atomic ngléhe same element of the domain
can be used to satisfy all occurrences of the existefitial. Also, the same element of
the domain can be used to satisfy all occurrences of theeetiatdr—.T.

Theorem 3 (Complexity for DL-Lite.T,,;,, KBs (Theorem 4.6 in [11])).The prob-
lem of deciding whether KB-p| _| jte ¢ . aisinIIj.

min

4 The Tableau Calculus for Left Local EL1 T in

In this section we present a tableau calctﬂ'u%ifj:T for deciding whether a query

is minimally entailed from a Left Local knowledge base in tbgic ££*T,,.;,. It per-
forms a two-phase computation: in the first phase, a tablalaulas, calledeBf;?le,
simply verifies whether KBJ {—~F'} is satisfiable in ai £ T model, building candi-
date models; in the second phase another tableau calcalies fAB}‘;%;T, checks
whether the candidate models found in the first phaserémenal models of KB, i.e.

for each open branch of the first pha@eLLBfg%;T tries to build a model of KB which

is preferred to the candidate model w.r.t. Definition 3. Thmle procedurd ABES, T
is formally defined at the end of this section (Definition 8).

As usual, TABES ™ tries to build an open branch representing a minimal model
satisfying KBU {—F'}. The negation of a queryF is defined as follows: iF' = C(a),
then—F = (=C)(a); if F = C C D, then—F = (C N —D)(x), wherexz does not
occur in KB. Notice that we introduce the connectiven a very “localized” way. This

is very different from introducing the negation all over #trewledge base, and indeed

it does not imply that we jump out of the language&f@ T ;...



TABEE T makes use of labels, which are denoted with, z, . . .. Labels represent

min
either a variable or an individual of the ABox, that is to sayetement ofD U V. These
labels occur irconstraints(or labelled formulas), that can have the form % y or
x : C, wherez, y are labelsR is a role and” is either a concept or the negation of a
concept of£ LT, Or has the fornil—D or -~[J-D, whereD is a concept.

Let us now analyze the two componentsTdBEE. T starting withT.ABES,, .

min

4.1 First Phase: the tableaux calculug'ABf,‘j;T

A tableau ofTAprf;lT is a tree whose nodes are tuplgs| U | W). S is a set of
constraints, whered$ contains formulas of the for@' = D*, representing subsump-
tion relationsC' C D of the TBox. L is a list of labels, used in order to ensure the
termination of the tableau calculud! is a set of labels:~ used in order to build a
“small” model, matching the construction of Theorem 3.111ifh]. A branch is a se-
quence of node&Sy | Uy | Wh), (Se | Us | Wa), ..., (Sy | U, | Wy,) ..., where each
node(S; | U; | W;) is obtained from its immediate predeces&®yr 1 | U;—1 | W;i—1)
by applying a rule ofTABfﬁ;lT, having(S;_1 | U;—1 | W;_1) as the premise and
(Si | U; | W;) as one of its conclusions. A branch is closed if one of its sdden
instance of a (Clash) axiom, otherwise it is open. A tablsatldsed if all its branches
are closed.

The calculusABES, | T is different in two respects from the calculdsC + T,
presented in [9]. First, the rulg™) is split in the following two rules:

(S,u:3R.C|U|W) "
1
(S.u—owo,ee O LU |WU{zed) (Syu -5 gy : C LU [W) - (S,u =5 gy C | U | W)

if e ¢ W and yy, ..., yn are all the labels occurring in S

(S,u:3RC|U | W) -

(Sou "z |UIW) (S,u =5y, CLU W) (S0 - g : C | U | W)
if xc € W and yy,...,yn are all the labels occurring in S

When the rule(3"), is applied to a formula, : 3R.C, it introduces a new label
x¢o only when the setV does not already contair.. Otherwise, since:¢ has been

already introduced in that branch, E, zc is added to the conclusion of the rule
rather than introducing a new label. As a consequence, inemdiranch(3%); only
introduces a new label- for each concepf occurring in the initial KB in soméR.C,
and no blocking machinery is needed to ensure terminatierit Will become clear in
the proof of Theorem 4, this is possible since we are conisigéeft Local KBs, which
have small models; in these models all existentidsC' occurring in KB are made true
by reusing a single witness- (Theorem 3.12 in [11]). Notice also that the ru(és ),
and(31), introduce a branching on the choice of the label used tozetiie existential
restrictionu : 3R.C" just the leftmost conclusion @8 ); introduces a new label (as

mentioned, the: such thate : C' andu £, x¢ are added to the branch); in all the
other branches, each one of the other lapgtsccurring inS may be chosen.

Second, in order to build multilinear models of DefinitiontBe calculus adopts
a strengthened version of the ryle~) used in7AB2-C+T [9]. We write S as an

min



abbreviation forS,u : =0-C1,...,u : =0~C,. Moreover, we defin&}’, = {y :

M-k
=D,y : O0-D | v :0O-D € S} and, fork = 1,2,...,n, we defineSuD_,y ={y:
-0-C; UCj | u:=0-C; € SAj+# k}. The strengthened rul&~) is as follows:

(S,u: =0-C1,u: =0-Cy,...,u:=0-C, | U | W)
s @)
(S Cpow: O-Cy, SM 52 (U | W)
(St Crogn s OCou SIS0 1 U [ W) - (St Gy - DO S, S0, U | W)
forallk =1,2,...,n, wherey,...,y, are all the labels occurring i andz is new.

Rule (07) contains:n branches, one for eagh: —-[J-C}, in S; in each branch a
newtypical Cj individual « is introduced (i.ex : Cj andz : (0-C} are added), and
for all otherw : -00-C}, eitherz : C; holds or the formula: : —-00-C} is recorded,
- othern x m branches, where: is the number of labels occurring #, one for each
labely; and for each: : —-[0-C} in S; in these branches, a given is chosen as a
typical instance o€y, that is to sayy; : Cy andy; : (0-C}, are added, and for all other
u : ~0-Cj, eithery; : C; holds or the formulay; : -O0-Cj is recorded. This rule
is sound with respect to multilinear models. The advantddkis rule over thg0 ™)
rule in the calculug ABA“C*T is that all the negated box formulas labelled:bgre
treated in one step, introducing only a new lab& (some of) the conclusions. Notice
that in order to keef$ readable, we have used This is the reason why our calculi
contain the rule fotJ, even if this constructor does not belongt6-T, ...

In order to check the satisfiability of a KB, we build iterresponding constraint
system(S | U | 0), and we check its satisfiability. Givé{B=(TBox,ABox), its corre-
sponding constraint systefi$ | U | () is defined as followsS = {a : C' | C(a) €

ABoz} U {a L | R(a,b) € ABox}; U = {C C D" |CC D¢ TBox}.

Definition 7 (Model satisfying a constraint system)Let M = (A, I, <) be a model
as in Definition 2. We define a functiarwhich assigns to each variable Bfan element
of A, and assigns every individuale O to a! € A. M satisfies a constraint under
a, written M [=, F, as follows: ()M =, x : C iff a(z) € CF; (i) M |4 By
iff (a(z),a(y)) € R'. A constraint systertS | U | W) is satisfiable if there is a model
M and a functiomy such thatM satisfies every constraint ifi undera and that, for
all C C D* e U andforallz € A, we have thatif: € C! thenz € D',

Given a KB=(TBox,ABox), it is satisfiable if and only if its c@sponding constraint
system(S | U | 0) is satisfiable. In order to verify the satisfiability of KB {—F'},

we useTAlS’}%fle to check the satisfiability of the constraint systésh| U | () ob-
tained by adding the constraint corresponding-t to S’, where(S" | U | 0) is
the corresponding constraint system of KB. To this purpteerules of the calculus
TAB}%%T are applied until either a contradiction is generated (@las a model sat-
isfying (S | U | 0) can be obtained from the resulting constraint system.

Given anod€S | U | W), for each subsumptioi = D € U and for each label
x that appears in the tableau, we addstthe constraint: : —=C' U D: we refer to this
mechanism aanfolding As mentioned above, each formulaC D is equipped with
a list L of labels in which it has been unfolded in the current brafitfis is needed to



(S,x:C,x:=C|U| W) (Clash) (S,z: =T |U| W) (Clash)_ (S,x: L |U|W)(Clash)

(S,x:CND|U|W) * (S,z:=(CMD)|U|W) ™) (S,z:CUD|U|W) )

(S,w:Cox:D|U|W) (S,z:=C|U|W) (S,x:-D|U|W)  (S,2:C|U|W) (S,z:D|U|W)

(S,z: T(C) | U | W) (Th (8,2 : ~T(C) | U | W) (T) (S|U,CCD" W) (Unfold)
(S,z:Cyx:0-C|U | W) (S, :=C|U|W) (S,z:=0-C|U|W) (S,z:-CUD|UCLCD-|W)
if # occurs in S and « ¢ L

(S,u:3R.C|U|W)

(Sou -5 ae,z0: C LU | WU{e}) (Sou-o gy :CLU W) (St -5 sy : C | U | W)
if ¢ ¢ W and y1,...,yn are all the labels occurring in S

(3N

(S,u:3R.C|U| W)

3,
(Sou =S ac [UIW) (S~ gy CLU W) (S,u = gy : C | U | W)
if zc € W and yi, ..., yn are all the labels occurring in S
(S,x:-~3IRC,x L5y |U | W) @) (S|U | W) ()
cut
(S,x:=3RC,x Loy y:=C|U | W) (S,z:=0-C|U|W) (S,x:0-C|U|W)
ify:-C¢S ifz:-0-C¢gSandz:0-C¢S
x occurs in S CeLlr
(S,u: ~0-Cr,u: ~0=Cs,...,u:=0-C, | U | W)
ok @)
(S,2: O,z : 0-Cy, S)L,, 8, |U|W)
; Ok = O ,
(8,1 + Crogn : 0-C, S2, 5,2, [T [ W) =+ (S,ym + Cost - B-C S, 8, | U W)
Z new
if y1,...,ym are all the labels occurring in S,y1 # u,...,ym # u
k=1,2,..., n

Fig. 1. The calculusTABS.,T .

avoid multiple unfolding of the same subsumption by usirgggame label, generating
infinite branches.

Before introducing the rules OTAB%;T we need some more definitions. First,
we define an ordering relatior to keep track of the temporal ordering of insertion of
labels in the tableau, that is to sayyifis introduced in the tableau, then< y for all
labelsx that are already in the tableau. Furthermore; i§ the label occurring in the
query F', thenz < y for all y occurring in the constraint system corresponding to the
initial KB. The rules ofTAB}iﬁﬁT are presented in Figure 1. Rulgs) and (O7)
are calleddynamicsince they can introduce a new variable in their conclusidhg
other rules are callestatic. We do not need any extra rule for the positive occurrences
of the (] operator, since these are taken into account by the conirpmta‘tsi‘ﬂy of
(O7). The (cut) rule ensures that, given any concépte L, an open branch built

by TABff;lT contains either : O-C or z : =0-C for each labek: this is needed

in order to allowZAB%,,T to check the minimality of the model corresponding to the
open branch.

The rules of’TAB}‘;%LlT are applied with the followingtandard strategyl. apply
a rule to a labek only if no rule is applicable to a label such thaty < z; 2. apply



dynamic rules only if no static rule is applicable. In [8] iasbeen shown that the
calculus is sound and complete with respect to the semaintibefinition 7 and it
ensures termination:

Theorem 4 (Soundness and completeness ﬁfABfﬁ;T [8]). IfKB i, . F,
then the tableau for the constraint system correspondingBoJ {—F'} contains an
open saturated branch, which is satisfiable (via an injecgsignment from labels to
domain elements) in a minimal model of KB. Given a constsjatem(S | U | W), if

it is unsatisfiable, then it has a closed tableadidB55,;, ™.

Theorem 5 (Termination of TAB%5,,™ [8]). Any tableau generated 4855, for
(S| U | 0)is finite.

Let us conclude this section by estimating the complexitYﬂBiﬁﬁT. Letn be the
size of the initial KB, i.e. the length of the string represieg KB, and let(S | U |
() be its corresponding constraint system. We assume thatizbeo6F' and Lt is
O(n). The calculus builds a tableau fof | U | ) whose branches’s size 3(n).
This immediately follows from the fact that dynamic rulegs"), and(CJ~) generate
at mostO(n) labels in a branch. Indeed, the ryl&¢"); introduces a new labelc for
each concept' occurring in KB, then at mosd(n) labels. Concerning—~), consider
a branch generated by its application to a constraint system : —0-C4 ..., u :
-0-C,, | U | W). In the worst case, a new labe| is introduced. Suppose also
that the branch under consideration is the one containing C; andz; : O-Cj.
The (O7) rule can then be applied to formulas —-O0-C}, introducing also a further
new labelxzs. However, by the presence of : (0-C4, the rule(d~) can no longer
consistently introduce, : ~[0-C, sincex, : 0-Cy € S¥_ . Therefore(O™) is
applied to-O-C ... =0O-C,, in u. This application generates (at most) one new world
x1 that labels (at most) — 1 negated boxed formulas. A further application(of )

to -[0-C; ... -0-C,_1 in 21 generates (at most) one new world that labels (at
most)n — 2 negated boxed formulas, and so on. Overall, at rigst) new labels are
introduced by(CJ™) in each branch. For each of these labels, static rules apphpst
O(n) times: (Unfold) is applied at mos(n) times for eactC C D € U, one for each
label introduced in the branch. The rite:t) is also applied at mog(») times for each
label, sinceCt contains at mosD(n) formulas. As the number of different concepts in
KB is at mostO(n), in all steps involving the application of boolean rulegrthare at
mostO(n) applications of these rules. Therefore, the length of thietai branch built
by the strategy i$)(n?). Finally, we observe that all the nodes of the tableau contai
a number of formulas which is polynomial in therefore to test whether a node is an
instance of a (Clash) axiom has at most complexity polynbimia.

Theorem 6 (Complexity ofTAB‘fgﬁ;T). Given a KB and a query’, the problem of
checking whether KBJ {~F} in TABS%,, T is satisfiable is ifNP.

4.2 The tableaux calculusTABES;.T A
Let us now introduce the calcul@®AB%5,,T which, for each open brandh built by

TAB%;T, verifies whether it represents a minimal model of the KB.e@ian open



(S,z:C,z:=~C | U | K) (Clash) (S,z: =T |U| K) (Clash)_t (S,z: L |U|K) (Clash)

(S|U,CcC DV K)
(S| U | 0)(Clash)y (S,z: -0-C | U | K) (Clash)g- (Unfold)
ifo:-0-C ¢ K (S,2:~CUD|UCE D" | K)

zeDB)andz ¢ L

<S7m‘:CH‘D\U|K) ) - (S,z:=(CND)|U|K) ) (Siac:T-(C)\U\K) ™)
(S,z:C,z:D|U|K) (S,z:=C|U|K) (S,z:-D|U|K) (S,z:C,x:0-C|U|K)
(S,z: ~T(C) | U | K) ~ (S|U|K)
(T7) (cut)
(S,x:=C|U|K) (S,z:-0-C|U|K) (S,z:0-C|U|K) (S,z:-0-C|U | K)

ifz:-0-C¢gSandz:0-C¢S
reDB) Cecly
(S,u:3R.C|U | K)

7 - 7 _ (3
(Ssu—=y1,y1: ClU[K) -+ (S,u—>Ymym : C|U | K)
it DB) = {y1,---, Ym }

(S,u:-0-Cy,...,u:=0-C, |U | K,u:-0-C,...,u: -0-Cy)

——% — =%
(S,y1: Cryyr : O=Cr, S S, [UK) - (S, ym : Chy Y« O=Cr, SI S, |U|K)

u—y1 1 P u—y; U—Ym P Uu—ym

if D(B) = {y1,..., Ymtand y1 Uy ..., Ym F U

@)

Fig. 2. The calculusTABES;, . To save space, we omit the rule™).

branchB of a tableau built fromTAlS’fgﬁﬁT, let D(B) be the set of labels occurring on
B. Moreover, leBY " be the set of formulas : -[0-C occurring inB, that is to say
BY = {x:-0-C |z : -0-C occurs inB}.

A tableau of’TABf;%ZT is a tree whose nodes are tuples of the fgim U | K),
where S andU are defined as in a constraint system, whe&asontains formulas

of the formz : —O~C, with C € L. The basic idea of ABSS,,T is as follows.

Given an open brancB built by TAB%;T and corresponding to a modgh® of

KB U {~F}, TABS,,T checks whetheMB is a minimal model of KB by trying to
build a model of KB which is preferred t812. To this purpose, it keeps track (ii)

of the negated box used B (B”") in order to check whether it is possible to build
a model of KB containing less negated box formulas. The tablmuilt byTAB}ij{;T
closes if it is not possible to build a model smaller thedf, it remains open otherwise.
Since by Definition 3 two models can be compared only if theyetthe same domain,
TAB%{ZT tries to build an open branch containing all the labels appg@nB, i.e.
those inD(B). To this aim, the dynamic rules use label§I(B) instead of introducing

. . . L . .
new ones in their conclusions. The rulesTodB%5,,T are shown in Fig. 2.

More in detail, the rulé=3™) is applied to a constraint system containing a formula
2 : AR.C; it introducese A, y andy : C wherey € D(B), instead ofy being a new
label. The choice of the labglintroduces a branching in the tableau construction. The
rule (Unfold) is applied tall the labels of D(B) (and not only to those appearing in
the branch). The rulé1™) is applied to a nodéS, u : -0O0-Cy, ..., u: =0-C, | U |
K), when{u : -0O-C4,...,u: -O0-C,} C K, i.e. when the negated box formulas



u : —[J=C; also belong to the open brangh Even in this case, the rule introduces
a branch on the choice of the individugl € D(B) to be used in the conclusion. In
case a tableau node has the fof$hx : -0O0-C | U | K), andz : -0-C ¢ K, then

TAB}‘;[;QT detects a clash, called (Clagh): this corresponds to the situation where
x : 7J-C does not belong t8, while the model corresponding to the branch being
built containse : =[J-C, and hence isot preferred to the model representediy

The calculusTAB}%%ZT also contains the clash condition (Clagtince each ap-
plication of (O~) removes the negated box formulas -C0-C; from the setk’, when
K is empty all the negated boxed formulas occurrindgialso belong to the current
branch. In this case, the model built B';AB‘;%;T satisfies the same setof -(0-C;
(for all individuals) asB and, thus, it is not preferred to the one represente.by

Theorem 7 (Soundness and completeness GTABS,,T [8]). Given aKB and a
query F, let (S’ | U | ) be the corresponding constraint systemki8, and (S |
U | 0) the corresponding constraint systemKB U {—F'}. An open branciB built by

TAB%;T for (S | U | ) is satisfiable by an injective mapping in a minimal model of
KB iff the tableau inZ.AB85%,,T for (S | U | BY ™) is closed.

TAB}‘;%;T always terminates. Termination is ensured by the fact tiatuhic rules
make use of labels belonging 18(B), which is finite, rather than introducing “new”
labels in the tableau.

Theorem 8 (Termination of TAB%5,,T). Let (S | U | BY™) be a constraint system

starting from an open brancB built by TAB%;T, then any tableau generated by

TABEE,T is finite.
Itis possible to show that the problem of verifying that anotaB represents a minimal

model for KB in7.AB%5," is in NP in the size oB.

The overall procedur ABASC+T is defined as follows:
Definition 8. Let KB be a knowledge base whose corresponding constrastersyis
(S 1U | 0). LetF be aquery and les’ be the set of constraints obtained by adding to

S the constraint corresponding teF’. The calculuABEL. T checks whether a query

F'is minimally entailed from &B by means of the follg\ﬁing procedurg@hase 1}he
calculusTABES,, is applied to(S” | U | 0); if, for each branctB built by 7.AB5,, T,
either (i) B is closed or (ii)(phase 2}he tableau built by the calculVEABES,,T for
(S|U | BY ) is open, theikB =-T F, otherwiseKB (5T F.

min min

Theorem 9 (Soundness and completenessﬁﬂBgﬁT [8]). TABEE T is a sound

mi min

and complete decision procedure for verifying if K& F.

The complexity ofTABiﬁ-;T matches the results of Theorem 2. Consider the com-
plementary problem: KB4~ F. This problem can be solved according to the proce-
dure in Definition 8: by nondeterministically generatingapen branch of polynomial

length in the size of KB inTABSE,,T (a modelMB of KB U {~F}), and then by



calling an NP oracle which verifies tha#® is a minimal model of KB. In fact, the
verification thatM® is not a minimal model of the KB can be done by an NP algo-
rithm which nondeterministically generates a brancﬂ’jzﬁJBf;%;T of polynomial size

in the size ofMB (and of KB), representing a modah 3’ of KB preferred toMB.
Hence, the problem of verifying that ngf;gn Fisin NPNP, i.e.in Y%, and the
problem of deciding whether KB--T ' Fis in co-NPNP i e in %,

Theorem 10 (Complexity of7.4B%, T). The problem of deciding whethkB =27

F by means of ABES T is in I17.

min

5 A Tableau Calculus forDL-Lite, T in

In this section we present a tableau calcm’uwlgf}SCT for deciding query entailment

in the logic DL-Lite. T,,:,,. The calculus is similar to the one f&i£*T,,;, in the
previous section, however it contains a few significantedéhces. Let us analyze in
detail the two components GMB,I;L'}SCT.
5.1 First Phase: the tableaux calculug'ABllg'IgefT
The calculusTABII;'}IefT is significantly different in three respects from the calsul
for EL1T,.:n. We try to explain such differences in detail. First of alyen a set of
constraintsS and a role € R, we definer(S) = {z —— y |z —— y € S}.

1. The rule(37) is split in the following two rules:

(S,z:3Ir.T|U) @ty (S,z: 3. T |U) EDY
r " r 1 r 2
Sz ==y |U) (S.o ==y |U)(S;z —ym | U) (Ssz ==y | U) - (S;z == ym | U)
if 7‘(Sy) n:e‘g if r(S) #0
T Yon are all the labels occurring in S if y1,. .., ym are all the labels occurring in .S

As in the calculuSTABfgﬁﬁT, the split of the(31) in the two rules above reflects the
main idea of the construction of a small model at the base ebiiém 4.5 in [11]. Such
small model theorem essentially shows tbatLite.T,,,;, KBs can have small models
in which all existentialsSiR. T occurring in KB are made true in the model by reusing a
single witnesg,. In the calculus we use the same idea: when the (e’ is applied
to a formulaz : 3r.T, it introduces a new labej and the constraint —— 3 only
when there is no other previous constraint— v in S, i.e.r(S) = (). Otherwise, rule
(31)5 is applied and it introduces —— 3. As a consequencélt); does notintroduce
any new label in the branch whereg@s"); only introduces a new labglfor each role
r occurring in the initial KB in someélr. T or 3r~.T, and no blocking machinery is
needed to ensure termination.

2. In order to keep into account inverse roles, two furthéegdor existential for-
mulas are introduced:

(S,z:3Ir=.T|U) - (S,z:3Ir~.T|U) -
; ' _ W . L El
Sy — x| U) (S — x| U) -+ (S,ym — 2| U) S,y — @ |U) -+ (S,ym — x| U)
if r(S) =0 if r(S) #0
Y new ifyr, .o, Ym are all the labels occurring i
if y1,...,ym are all the labels occurring in S e Ym are & ¢ labels occurring in 5




These rules work similarly t¢3)7 and (37)5 in order to build a branch repre-
senting a small model: when the rulgé*)} is applied to a formula: : 3r~.T, it
introduces a new label and the constrainf — z only when there is no other con-
straintu — v in S. Otherwise, since a constraipt—— « has been already introduced
in that branchy — x is added to the conclusion of the rule.

3. Negated existential formulas can occur in a branch, biyt baving the form
(i) z : =3.T or (i) z : -3Ir~.T. (i) means that: has no relationships with other
individuals via the role, i.e. we need to detect a contradiction if both (i) and, fanso
y, © — 1y belong to the same branch, in order to mark the branch asccld$e
clash condition (Clash)is added to the C&ICUlLIEAB]LgI;E,efT in order to detect such a
situation. Analogously, (i) means that there isynsuch thaty is related tar by means
of r, then (Clash)- is introduced in order to close a branch containing bothafiijl,
for somey, a constrainyy — z. These clash conditions are as follows:

(S, — y,x: =3I T | U) (Clash), (S,y — @,z : =3Ir~.T | U) (Clash),-

The rules of’Z’ABILD'IEefT are presented in Figure 3. The calcuﬂl&Blls'}%T is sound,
complete and terminating.

(S,z: Cyx:=~C | U) (Clash) (S, —= y,x: 3. T | U) (Clash), (S,y — z,x: =3Fr~.T | U) (Clash),—

(S,z:3Ir. T |U)

(S,z:3Ir. T |U) 3 (S,z:T(C)|U) (")
N - 2
(S.z#y\U) (S.z%yl|U>-~<S,1Lym\U> (S, =y |UY-- (S, — ypm | U) (S,z:C,z:0-C|U)
i£1(8) =0 i () £ 0

: Cynew if gy, ..., ym are all the labels occurring in S
if yr,..., ym are all the labels occurring in S

(3+ r

(S,z: =T(C) | U) ™) (s1v) (cut) (S|U,Cc DY
(S,z:=C|U)(S,z: -0-C | U) (S,z:0-C|U) (S,z:-0-C|U) (8,2 :-CUD|U,CLC D"
ifx:=-0-C¢Sanda:0-C¢S if z occurs in S and z ¢ L
CeLly
2 occurs in S

(S,z:3r".T |U) any (S,z:3Ir~.T|U) (FN (S,z:CUD|U)

S,y =2 | U) (S,y1 =2 |U) - (Ssym == |U) (S,yy >z |U)e- (Ssym —— 2 |U)  (S.x:C|U) (S,x:D|U)
ifr(S) =0 if 7(S) # 0

if y1,...,ym are all the labels occurring in .S

(Unfold)

(C)

(S,z: =0-Cy,...,-0-C, | U) (@)
<O M OF - v oM 0%
Sury |U) (S,y1: Cryyn 1 O=C, S S | U) - A8, ym : Chyym : O-Cy, S31, S, 2, 1 U)

z—y11 P e—y
Y new

if y1,..., ym are all the labels occurring in S,y1 # 2, ..., Ym # T
Vik=1,2,..., n

(S,y: Cr,y : O=Cy, S

—y

Fig.3.The caIcquSTABII;i,EefT.

Theorem 11 (Soundness and completeness ﬁﬂBIIBE?CT). If KB Ap| -Lite. T,

F, then the tableau for the constraint system correspondin¢gU {—F'} contains an
open saturated branch, which is satisfiable (via an injectigsignment from labels to
domain elements) in a minimal model of KB. Given a constjstem(sS | U), if it is
unsatisfiable, then it has a closed tablealTLABII;',ge;T.

Theorem 12 (Termination of ZABL!-T) Any tableau generated ABLE-T for
(S| U) is finite. .

Reasoning as we have done T645%5;,T, we can show that:



(S,2:C,a: ~C | U| K) (Clash) (S,z s y,x:=3InT|U|K) (Clash),  (Ssy——a,2:-3".T|U|K) (Clash),-

(SIU|K)

. S C h)m_ ut

(S| U | 9) (Clash)g (S, : =0 mglail(]cﬁl?lgi G2 OCIUIK) (B2 -OCIUIE) (cut)

ifz:-0-C¢Sandz:0-C¢S

z € D(B) Celr

(S,z:T(C) | U | K) ™ (S.z: ~T(C) | U | K) (1)
(S,z:Coa:0-C|U| K) (S,z:=C|U|K) (S,z:-0-C|U|K)

(S,z: =0-Cy,...,x: =0-C, | U | K,z : -0-Cy,...,z: -0-C,) @)

; Z0O°* ; < OF
(Soyr: Croyr 1 O-Cr, SM S,y (U K) - (S, : Chyym 1 O-Cy, S S,— | U | K)
ifDB) ={y1,...,ym} and y1 # @, ..., ym # T
Vk=12,..., n

(S|U,C C D*| K)

(Unfold) (S,z:CUD|U|K)

K L uh)
(Syw:~CUD|UCL D" |K) (S.2:C|U|K) (S,z:D|U|K)
zeDB)and z ¢ L
x I T K S,z 3~ ;
1 (S.z:3nT|U| > @ty (S.x:3 . T|U|K) e
(Syx 5y |U|K)...(S,2 =5y | U | K) Syt == 2 |[UK).. (S, ym > 2| U| K)
if D(B) = {1, ..., Ym} it DB) =A{wy1,..., Ym}

Fig.4.The caIcquSTABII;i,Ee;T-

Theorem 13 (Complexity ofTABILDi}t,ef_T). Given a KB and a query’, the problem of
checking whether KBJ {~F} in TABLE-T is satisfiable is ifNP.

5.2 The tableaux calculuSTAB'I;iIE%T

Let us now introduce the calcuIUEAlS’ILD'IEe;T. Exactly as forTAlS’ffj{ZT, for each

open saturated brandh built by TABllzgefT, it verifies whether it represents a min-

imal model of the KB. The rules OTABIISiLe;T are shown in Figure 4. The rul¢s™)”

and(3%)" introducer —— y andy —— x, respectively, wherg € D(B), instead of
y being a new label.

Theorem 14 (Soundness and completenessﬁﬁlBII;i,E%T). Given aKB and a query

F,let(S" | U) be the corresponding constraint systemkd®, and (S | U) the cor-
responding constraint system &B U {—F'}. An open saturated brandB built by

TABII;LE%CT for (S | U) is satisfiable by an injective mapping in a minimal model of
KB iff the tableau in7ABLE-T for (5" | U | BY ) is closed.

Theorem 15 (Termination of TABII;E%T). Let (S’ | U | BY") be a constraint sys-

tem starting from an open saturated branBhouilt by TABII;EIelCT, then any tableau

generated b ABLET is finite.

Lt

By reasoning exactly as done foi 455, ;,, -, we prove that:

Theorem 16 (Complexity of ABLI€-T) The problem of deciding whethiB |=£T

min min

F by means of ABLET s in 172

min



6 Conclusions

We have proposed a nonmonotonic extension of low compIE\)mEyELL andDL-Lite.
for reasoning about typicality and defeasible properti#s. have summarized com-
plexity results recently studied for such extensions [hanely that entailment is>e
PTIME-hard for€L*T,,;n, whereas it drops té75 when considering the Left Local
Fragment oL Tonin. The samdl} complexity has been found f@L-Lite. T, .
These results match the complexity upper bounds of the seagenénts in circum-
scribed KBs [3]. We have also provided tableau calculi faating minimal entailment
in the Left Local fragment oL T, as well as inDL-Lite. T,,;. The proposed
calculi match the complexity results above. Of course, naptimizations are possible
and we intend to study them in future work.

As mentioned in the Introduction, several nonmonotonieesions of DLs have
been proposed in the literature [15,4,2,3,7,12, 10,9, 8)vea refer to [12] for a sur-
vey. Concerning nonmonotonic extensions of low complek®ibys, the complexity of
circumscribedfragments of the€£* and DL-lite families have been studied in [3].
Recently, a fragment o £+ for which the complexity of circumscribed KBs is poly-
nomial has been identified in [14]. In future work, we shalléstigate complexity of
minimal entailment and proof methods for such a fragmerareded withT and possi-
bly the definition of a calculus for it.
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