
Shapes, grammars, constraints and policies

Manuela Ruiz-Montiel, Lawrence Mandow, José-Luis Pérez-de-la-Cruz, and J.
Gavilanes

Universidad de Málaga
{mruiz,lawrence,perez}@lcc.uma.es,jgavilanes@uma.es

Abstract. A proposal is presented to enhance the usability of shape
grammars by using explicit constraints and policies on rule selection.1

Keywords: shape, grammar, constraints, learning

1 Introduction

The problem of computational design [8], [4] has been considered from many
perspectives since the decade of 1960. Our research tackles the problem of gen-
erating shapes for a design, given a certain set of criteria. Different variants of
this problem are of interest in many fields like engineering, architecture or pack-
aging, where geometric design plays a crucial role; certainly, an assistant design
system able to automatically generate and propose design alternatives can be
quite worthy for design stakeholders.

In this paper we report our experiences with the application of shape gram-
mars ([11], [9], [10]) for the synthesis of designs using additional control mecha-
nisms. Shape grammars are a well-known formalism to describe the generation of
forms. This formalism has been used in the literature for many design tasks such
as architectural design [3], industrial design [6] or virtual reality [7]. Addition-
ally, Agarwall et al. [1] suggested the use of shape grammars as a framework for
geometric-based engineering expert systems. Along these lines, shape grammars
have been used to generate geometric designs according to functional require-
ments in a number of ways.

The use of shape grammars for geometric design implies taking into consid-
eration some guidelines or sets of requirements suitable for the specific domain
the designer is working in. For example, in the field of architectural design not
every derived shape may be a feasible floor plan for a housing unit: there are
room adjacencies and minimum area constraints that must be satisfied, among
many other conditions.

According to Knight “different approaches to connecting grammars and goals
have been suggested. One approach is direct. It involves writing rules with the
foreknowledge that the generated designs will meet, or start to meet, given goals.
In order to do this, the behaviors and outcomes of rules must be predictable in
some way” [5]. The execution of such expert rules would thus lead to acceptable

1 Supported by grant TIN2009-14179, Plan Nacional de I+D+I, Gobierno de España.

2 Shapes, grammars, constraints and policies

designs: the structure of the shape grammar itself guarantees that the produced
designs will be feasible. Nevertheless, this approach can suffer from two major
shortcomings: (1) expert shape grammars can be very difficult to create, modify
and maintain. A great deal of control information (in the form of labels or control
marks) must be included into the rules in order to restrict execution possibilities;
(2) we are at risk of sacrifying the divergence capacity of shape grammars in the
pursuit of predictability. In this way we are missing one of the reasons for using
this formalism as design framework, that is, the possibility of obtaining many
different, unexpected solutions.

In this paper we propose the use of weak shape grammars whose rules have
little or no control knowledge. In comparison to expert grammars, weak gram-
mars generate a greater number of designs. Unfortunately, many of them will
be unfeasible solutions. To overcome this problem, two additional mechanisms
are proposed: (1) constraints and goals; (2) policies on rule applications. The
presentation of these mechanisms is the aim of this paper. We will consider an
example in the domain of architectural design. In the following section we will
present the ideas concerning constraints and goals and in section 3 analogously
for rule policies and learning.

2 Constraints and goals

2.1 Shape grammars

In order to formalize the concept of shape grammar some ideas must be
defined first. A segment or line l, l = {p1, p2} is defined by any pair of two
distinct points p1 and p2, the so-called end points of the line. A shape is defined
by a finite set of distinct lines that cannot be combined to form another line,
that is, they are maximal, since they are not part of longer lines inside the shape.
The representation of a shape is thus unique.

A labelled shape consists of two parts: a shape and a set of labelled points.
A labelled point (p,A) is a point p with a symbol A. A labelled shape σ is an
ordered pair σ = 〈s, P 〉 where s is a shape and P is a finite set of labelled points.

We define a shape grammar as the 4-tuple 〈S,L,R, I〉:

– S is a finite set of shapes
– L is a finite set of symbols
– R is a finite set of rules α→ β, where α is a non-empty labelled shape and
β is a labelled shape

– I is a non-empty labelled shape, called initial shape or axiom.

A rule applies to a shape γ when there is a transformation τ such τ(α) is
a subshape of γ, that is, τ(α) ⊆ γ (a labelled shape s1 is subshape of another
labelled shape s2 if and only if every line and every labelled point of s1 is in s2).
Usually, τ is supposed to be a general geometric transformation. In this work,
the considered transformations are translations, rotations and regular scales.

Shapes, grammars, constraints and policies 3

The labelled shape produced by the application of the rule α → β to the
labelled shape γ under transformation τ is given by the expression γ−τ(α)+τ(β).
This labelled shape is obtained by substituting the appearance of τ(α) inside γ
with τ(β). More details of these definitions can be found at [9].

2.2 Constraints and goals

Ideally, all shapes generated by a shape grammar should result in feasible
designs. However, creating a grammar that implicitly incorporates all design
constraints and goals for a given domain is generally a very difficult problem. We
propose in this section the use of explicit design constraints and goals to control
the execution and avoid the production of unacceptable designs. Hopefully, this
explicit knowledge (constraints and goals) will be easier to elicit, debug and
maintain than “wired” control labels set inside the shapes in the rules.

The aim of constraints and goals is to reduce the search space introduced by
the shape grammar. In this context, a state is every potential shape produced
by the grammar, by the application of its rules starting from the axiom. The
state space is thus the set of all possible states. Using weak shape grammars,
that is, that do not use control labels in order to produce feasible designs, leads
to a vast state space in which the majority of states would not be acceptable.

A constraint (or goal) is a predicate that returns true or false when ap-
plied to a shape. The process of producing a shape taking into account a set of
constraints and goals starts by choosing a random pair (rule, transformation) to
be applied. When a single pair is applied, two processes trigger sequentially:

1. Constraint checking : in each step of the process all the problem constraints
must be satisfied. If one constraint is violated when applying a pair (rule,
transformation), then the rule is not applied and the process chooses another
pair. If no more alternatives are available, then the process backtracks, that
is, undoes the previous application and tries another alternative.

2. Goal checking : if all the problem constraints are satisfied, then the goals are
checked. If every goal is satisfied, then execution stops; but if there are still
unsatisfied goals, the execution goes on. If at a certain moment no more
pairs (rule, transformation) are available and goals have not been fulfilled,
then the process backtracks.

In figure 1 we can see a diagram of a design generation process following
this approach. Notice that the complete search space could be much wider than
the fragment which is truly explored. That is, constraints prune the search tree.
When the algorithm runs out of possible rule derivations and either goals or
constraints are not fulfilled, then no rules are applied, returning “failure”.

Backtracking search has exponential time complexity, so it is not evident
that in real cases the above described process can be performed in a reasonable
amount of time. We will show that by the choice of suitable constraints/goals
and the judicious ordering of rules the computation of a feasible design can be
sometimes done in a reasonable amount of time.

4 Shapes, grammars, constraints and policies

S1

S11 S12

S111 S112 S113 S121



C:
G:

C:
G:

C:
G:

Goals not fulfilled and run out of
alternatives  Backtracking (B1)

B1

C:

B2

Violated
constraints:
choose another
pair

C:
Violated constraints and
run out of alternatives
 Backtracking (B2)

t1

t2

t3

t4 t5

t6

C:
G:

C:
G:

SUCCESS

t7

Level 0 (axiom)

Level 1 (1 rule
applied)

Level 2 (2 rules
applied)

C: constraints fulfilled

C: constraints violated

G: goals fulfilled

G: goals violated

caption

Fig. 1. Schematic example of the generation process

Kitchen requirements
-Minimum linear space must be at least of 6 modules of 60x60 cm
-Minimum distance between modules and walls: 1,10 m
-Minimum distance between modules: 1,10 m

Bath requirements
-At least two modules of 90x180 cm must exist

Non-specialized spaces requirements
-The area of each non-specialized space must be bigger than 9 m2

-A 2,8 m-diameter circle should fit inside each non-specialized space

Complementary spaces requiremens
-A support space that allows the circulation between spaces must exist

Table 1. Requirement set for a single-family basic housing unit (adapted from [2])

Shapes, grammars, constraints and policies 5

2.3 An example

We have developed a generic interpreter for rules, constraints and goals that
performs the implementation of these kind of shape grammars2.

By means of this tool we have implemented the housing program proposed
by the studio Montaner & Mux́ı [2] for the regional government of Andalusia
(Spain). This program details the criteria that a basic housing unit must fulfill
depending on the number of people that are going to live in it. Table 1 summa-
rizes the imposed constraints.

The final outcome of our program should be a set of acceptable floor distri-
bution schemes in 2D (in the following, schemes) for basic, two-people one-story
housing units. Our system also considers two additional constraints: (1) the en-
trance to the house must be near both the kitchen and the distribution hall; and
(2) distance between parallel walls must be greater than 1.5 meters.

The process is sequentially structured in seven main phases:

– Phase 1: labelling the distribution hall.
– Phase 2: placing the first kitchen module.
– Phase 3: placing the rest of the kitchen modules.
– Phase 4: placing the first bath module.
– Phase 5: placing the rest of the bath modules.
– Phase 6: pabelling non-specialized spaces.
– Phase 7: labelling the entrance.

There is one grammar for each phase, and there is just one rule for each
grammar (see figure 2). Each rule is applied while possible until a final state
(for that phase) is reached. To define a final state, constraints and goals for that
phase are taken into account. It is also possible to set a maximum number of
derivations for each phase.

The axiom for the first phase is a given contour. Each phase applies its
grammar using as axiom the shape generated by the prior phase.

Let us start the process from a rectangle of 6 m × 10 m (figure 4 (a)). The
program generates many acceptable schemes, each one in about 10 s. Two of
them are displayed in figure 3. For the final presentation of the dwellings, two
additional operations are performed: a) erasing of the labels and b) addition of
significant text in order to distinguish each space. In figure 3 we can see the
schemes before and after applying these additional operations.

3 Policies and learning

Let us start now the process in section 2.3 from the contour in figure 4 (b).
Unfortunately, in this case the sole use of constraints and goals cannot avoid
the combinatorial explosion, and the program can backtrack for days before a
solution is found.

2 ShaDe 2.0 for SketchUp, http://www.lcc.uma.es/~perez/ntidapa/

6 Shapes, grammars, constraints and policies

To avoid this, we consider a different approach that assigns preferences to
the application of rules. Since hard-coded preferences are difficult to elicit, we
evaluate the compliance of constraints and goals in complete designs, and apply
machine learning techniques to learn rule preferences.

3.1 Reinforcement learning

Reinforcement learning [12] is a technique for learning a policy for a given
problem (ideally, an optimal policy). A policy defines which action to take for
every possible situation with the goal to maximize a given, long term, reward.
Initially, each pair (state, action) is assigned a random value, and the policy is
determined by the following rule: “in state s choose that action a that yields a
pair (s, a) of maximum value”. Optimal values are learned automatically through
an iterative process known as reinforcement learning. Usually it is neccesary to
generalize, i. e., rather than enumerating values for all possible states, these are
assigned values as a function of a limited number of their features.

In our case a state is a shape generated by the application of a rule to a prior
shape. An action is a pair (rule, transformation) such that rule is applicable to
the shape after applying transformation. We have used the learning algorithm
Q(λ) [13] with linear approximators and binary features, as in [12] (p. 213).

3.2 Our example

We have used the same phases and grammars as in section 2.3. Some of the
phases use a policy in order to decide which rule application is better. These
policies are generated by means of reinforcement learning processes. The consid-
ered features and rewards for each phase are described next. The learned policies
are linear functions defined over these features.

As an example, we have chosen phase 3 in order to explain the used features
and rewards in detail. Phase 3 is in charge of placing the kitchen modules. Its cor-
responding grammar is depicted in figure 2. As we can see, the rule simply states
that an additional module can be put contiguous to an existing kitchen module.
Six binary features were selected in this phase, following the recommendations
of the guideline in [2]:

– f1(s) = 1 iff every module is inside the axiom contour.
– f2(s) = 1 iff every module is accessible.
– f3(s) = 1 iff the distance between modules and walls is bigger than 1,1m.
– f4(s) = 1 iff the distance between non-contiguous modules is larger than

1,1m.
– f5(s) = 1 iff the modules are at a proper distance from the distribution hall

(more than 1,2m and less than 6).
– f6(s) = 1 iff there are at least six modules.

The reward of every state s inside this phase is assigned the following ex-
pression: reward(s) = 3 ∗ f1(s) + f2(s) + f3(s) + f4(s) + f5(s) + f6(s). The more

Shapes, grammars, constraints and policies 7

features the state complies with, the more reward it gets. The first feature has
more importance than the others, thus it is multiplied by 3 instead of 1.

The rest of features and rewards are gathered in table 2. Learning times for
each phase ranged from 60 s to 500 s.

Phase 2
f1(s) = 1 iff the module is at a proper distance from the distribution hall (more than
2m and less than 4).
f2(s) = 1 iff the distance between the module and the walls is larger than 1,1m.
reward(s) = f1(s) + f2(s)

Phases 4-5
Analogously to 2-3

Phase 6
f1(s) = 1 iff in each label a 3 meter-diameter circle can be centered, without overlap-
ping with walls or modules.
f2(s) = 1 iff there is a label separated from the bath less than 4,5m.
f3(s) = 1 iff there is a label separated from the kitchen less than 4,5m.
f4(s) = 1 iff there are 2 non-specialized labels and they are separated at least by 3m.
f5(s) = 1 iff the distance from each non-specialized label to the distribution hall label
is larger than 2m and shorter than 10.
reward(s) = 3 ∗ f1(s) + f2(s) + f3(s) + f4(s) + f5(s)

Phase 7
f1(s) = 1 iff the entrance is separated at least 1 m from every kitchen module.
f2(s) = 1 iff the distance from the entrance to some kitchen module is shorter than
2m.
f3(s) = 1 iff the entrance is separated at least 4 m from every bath module.
f4(s) = 1 iff the distance from the entrance to the distribution hall label is shorter
than 4m.
reward(s) = f1(s) + f2(s) + f3(s) + f4(s)
Table 2. Set of features and rewards for phases 2, 4, 5, 6 and 7. Phase 3 is described
in section 3.2

Once all the necessary policies were learned, solutions were generated by
executing the generation processes, guided by the policies when necessary. Ten
results where generated, being five of them acceptable and the other five unac-
ceptable. Some of them are displayed in figures 5(a) and 5(b). Once the policies
were learned, each solution was generated in less than 60 s.

4 Conclusions and future work

We have reported some experiments using weak shape grammars for synthe-
sizing designs in the field of architectural design.

In the traditional approach design goals and constraints are implicitly coded
inside grammar rules. This paper explores two different alternatives using weak
rules and explicit goals and constraints.

8 Shapes, grammars, constraints and policies

The first alternative uses a simple backtracking algorithm in which compli-
ance with goals and constraints is always enforced. This scheme seems to work
fine in underconstrained problems.

The second one uses reinforcement learning to automatically learn to apply
rules that implicitly lead to acceptable shapes. The learning process is governed
by rewarding those generated schemes that comply with explicit constraints and
goals.

In our experiments goals and constraints have been organized in a hierarchical
fashion reflected in seven sequential phases, each one implemented with a one-
rule grammar. Albeit this separation manages to reduce the ramification factor
of the search space, it also introduces important shortcomings: in the case of
shape grammars enhanced with policies, the learning process is not global, and
thus the policies cannot reflect global issues. For example, the ideal policy would
tell us something about how to place the kitchen regarding the future placing of
non-specialized spaces.

In future works we hope to address both the problem of combining reinforce-
ment learning with backtracking and that of learning globally optimal prefer-
ences.

References

1. Agarwal, M., Cagan, J.: On the use of shape grammars as expert systems for
geometry-based engineering design. AI EDAM 14(05), 431–439 (2000)

2. Montaner Mux́ı arquitectes.: Propuesta de nueva normativa de viviendas. Tech.
rep., Dirección general de ordenación del territorio, Junta de Andalućıa (2008)

3. Duarte, J.P.: A discursive grammar for customizing mass housing: the case of Siza’s
houses at Malagueira. Automation in Construction 14, 265–275 (2005)

4. Eastman, C.M.: Cognitive processes and ill-defined problems: a case study from
design. In: IJCAI’69. pp. 669–690 (1969)

5. Knight, T.W.: Applications in architectural design, and education and practice.
Tech. rep., NSF/MIT Workshop on Shape Computation (1999)

6. Lee, H.C., Tang, M.X.: Evolving product form design using parametric shape gram-
mars integrated with genetic programming. Artificial Intelligence in Engineering
Design, Analysis and Manufacturing 23, 131–158 (2009)

7. Muller, P., Wonka, P., Haegler, S., Ulmer, A., Gool, L.V.: Procedural modeling of
buildings. ACM Transactions on Graphics 25(3), 614–623 (2006)

8. Simon, H.A.: The sciences of the artificial. MIT Press, Cambridge, MA. (1968)
9. Stiny, G.: Introduction to shape and shape grammars. Environment and Planning

B 7, 343–351 (1980)
10. Stiny, G.: Shape. Talking about seeing and doing. MIT Press, Cambridge, Ma.

(2006)
11. Stiny, G., Gips, J.: Shape grammars and the generative specification of painting

and sculpture. In: Information Processing 71, pp. 1460–1465. North-Holland (1972)
12. Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction. MIT Press,

Cambridge, Ma. (1998)
13. Watkins, C.J.: Learning from delayed rewards. Ph.D. thesis, University of Cam-

bridge (1989)

Shapes, grammars, constraints and policies 9

Fig. 2. Grammars

Kitchen

Kitchen

Bathroom

Bathroom

Distributor

Non

specialized

space

Non

specialized

space

Distributor

Non

specialized

space

Non

specialized

space

(a1)

(b2)

(a2)

(b1)

Fig. 3. Two schemes generated with constraints and goals

Fig. 4. Starting contours

10 Shapes, grammars, constraints and policies

Kitchen Kitchen Bathroom

Bathroom

Non

specialized

space

Non

specialized

space

Non

specialized

space

Distributor

Distributor
Non

specialized

space

(a) (b)

(c) (d)

Bathroom

Kitchen

Distributor

Non

specialized

space

Non

specialized

space Non

specialized

space

Kitchen

Bathroom

Non

specialized

space
Distributor

(a) Some good schemes

Kitchen Bathroom

Non

specialized

space

Non

specialized

space

Distributor

Kitchen

Bathroom

Non

specialized

space

Distributor

Non

specialized

space

Non

specialized

space

Non

specialized

space

Kitchen

Kitchen

Bathroom

Bathroom

Distributor

Non

specialized

space

Distributor

Non

specialized

space

(a) (b)

(c) (d)

(b) Some bad schemes

Fig. 5. Some good and bad schemes generated with learned policies

