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Abstract—Enumerative model checking tools are limited by the 
size of the stat space to which they can be applied. In an attempt 
to extend the size of state spaces that can be dealt with, we 
propose in this paper a distributed algorithm that generates a 
distributed maximality-based labeled transition systems (noted 
MLTS) from place/transition Petri net while performin g 
aggregation of equivalent transitions proposed in [10]. 
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I.  INTRODUCTION  

Model checking [1] is a powerful technique for verifying 
reactive systems, able to find subtle errors in real commercial 
designs. Its major advantage is automation, and therefore the 
ease of use for engineers. 

The model checking exhaustively explores the analyzed 
models. This causes a major problem: combinatorial explosion 
due to the state spaces of large systems. Many solutions have 
been proposed in the literature for tackling this problem to push 
the limit of size, to be able to handle states spaces increasingly 
of large sizes. Some of them use equivalence relation to reduce 
the number of states and transitions in the model (bissimulation 
relations, alpha reduction relation, partial order based relations 
...) [2, 3, 4], others use symbolic representations such as BDD 
[5, 6]. 

However, even these solutions reduce significantly the size 
of maximality-based labeled transition systems (MLTS) [7, 8], 
the resource limitation make yet a problem when coming to 
complex systems. 

Nowadays, workstations clusters give more and more 
hardware resources availability, which leads to a new solution 
which is distributing the graph through the workstation 
network [9, 10]. 

This work we proposes a distributed algorithm for MLTS 
construction, combined with aggregation of transitions in order 
to reduce the graph size while generating it on the fly [11]. Our 
algorithm implements an operational semantics defined in [12]. 
So it takes a Petri net as a modeling language and produces an 
MLTS, it uses also the aggregation of transitions to reduce the 
graph on the fly, thus it takes the advantage of workstation 
hardware resources by distributing the graph and the reducing 
solutions while generating the graph. 

II. PRELIMINARIES 

A. Petri nets related definitions 

• A Petri net is a tuple (S,T,W) where S is the set of 
places, T is the set of transitions such that S∩T=∅, 
and W:((S×T ∪ (T×S)) → ℕ = {0,1,2,...} is the weight 
function.    Graphically,    transitions    of    T    are 
represented  by  rectangles,  places  of  S  by  circles 
and  weight  function  by  arrows  associated  with 
their weights. We suppose that all nets are finite, i.e.   
|S ∪ T| ∈ ℕ. 

• For x ∈ S ∪ T  the pre-set ·x  is defined by ·x = {y ∈ 

S ∪ T ∣ W(y¸ x) ≠ 0} and the post-set x· is defined by 

x·={y ∈ S ∪ T ∣ W(y¸x) ≠ 0}. 

• The marking of a Petri net (S,T,W) is defined as a 
function M: S→ℕ. A marking is generally represented 
graphically by   putting   tokens in places. 

• The  transition  rule  stipulates  that  a  transition  t  is 
enabled  by  M  iff  M(s) ≥ W(s, t)  for  all  s ∈ S.  The 
firing of a transition t will produce a new marking M′ 
defined by M′(s) = M(s) - W(s, t) + W (t, s) for all s∈ S. 
The occurrence of t is denoted by M [t〉 M′. 

• Two transitions t₁ and t₂ (not necessarily distinct) are 
concurrently enabled by a marking M iff M(s) ≥ W(s, 
t1) + W(s, t2) for all s∈ S. 

• A  marked  Petri  net  (S,T,W,M0)  is  a  Petri  net 
(S,T,W) with an initial marking M₀. 

• An alphabet  is a finite set; we suppose that τ ∉  (τ 
will indicate invisible action, or silent action). 

• The labeling of a Petri net N = (S,T,W) is a  function λ : 
T →  ∪  {τ}. If λ(t) ∈   then t is said to be 
observable or  external;  at the  opposite, t is  silent or 
internal. 

• Σ=(S,T,W,M0,λ) is a labeled system iff  (S,T,W,M0) is a 
marked Petri net and l is a labeling function of (S,T,W). 

• An action a ∈   of a system Σ = (S,T,W,M0,λ) is auto-
concurrent in a marking M iff M concurrently enables 
two observable transitions t1 and t₂ (not    necessarily   
distinct)    such    that λ (t₁) = λ (t₁) = a. 



•  A sequence σ = M₀t₁M₁t₂... is an occurrence sequence 
iff Mi-l [ti 〉Mi for l ≤ i. A sequence t₁t₂ ... is a transition 
sequence starting with M iff there is an occurrence 
sequence M₀t₁M₁t₂... If a finite sequence t₁t₂... tn leads 

from M to M′ we write M[t₁t₂ ... tn〉M′. The set of 
reachable markings of a marked Petri net 

(S,T,W,M₀) is defined as [M₀〉 = {M | t₁t₂ ... tn : M0 [ t₁t₂ 
... tn 〉M}. 

B. Maximality based Labeled Transition System 

Let  be a countable set of events names, maximality 
based labeled transition system of support  is a quintuplet:  
(Ω, λ, µ, ξ, ψ) with: 

Ω = (S, T, α, β) is a transition system such that: 

S is the countable set of states in which the system can be 
found. 

T is the countable set of transitions indicating the change of 
system states. 

α and β are two applications of T in S such that for all transition 
t we have: α(t) is the origin of the transition and β(t) its goal. 

(Ω, λ) is a transition system labeled by an alphabet A. 

ψ : S → 2   which associates to each state the finite set of 
maximal event names present in this state. 

µ : T → 2   is a function which associates to each transition the 
finite set of event names corresponding to actions that have 
already begun their execution and of which the end of 
execution enables this transition. 

ξ: T → M : is a function which associates to its transition an 
event name identifying its occurrence. Such that for any 
transition t, µ(t) ⊆ ψ(α(t)), ξ(t) ∉ ψ(α(t)) − µ(t) and ψ(β(t)) = 
(ψ(α(t)) − µ(t)) ∪ {ξ (t)}. 

C. Operational maximality semantics for Petri nets 

In this section, we introduce a notations and functions for 
the definition of marking graph associated to a labeled system 
in a maximality-based approach. 

Definition 1 Let N = (S, T, W) be a Petri net, the marking of N is 
a function M: S → ℕ× . Among others, the marking 
M(s) of a place s ∈ S is a pair ( , ) such that ∈ ℕ and 
∈ denote respectively the number of free tokens 

and the set (possibly empty) of bound tokens in the place s. In 
what follows, a Petri net with a marking will be called 
configuration. |M(s)| denote the total number of tokens in a 
place s. If M(s) = ( , ) such that = {n₁t₁x₁,..,nmtmxm} then 

|M(s)| = + | | with | | =  is the cardinal of the 
bound tokens set in s. 

Definition 2 Let (S, T, W) be a Petri net with a marking M: 

• The  set  of  maximal  event  names   in  M   is  the  set  
of  all  event  names   identifying  bound   tokens in   
the   marking   M.  Formally, the   function ψ will be 
used to calculate   this   set, it can  be defined as ψ(M) 

=   such that M(s) =  ( , ) with = {(ns1 , 
ts1 , xs1 ), . . . ,(nsms , tsms , xsms )}. 

• Let N ⊂   be a non-empty finite set of event names, 
makefree (N, M) is defined recursively by: 

makefree ({x1,x2,… xn}, M)=makefree ({x2,…, xn } , makefree 
({x1},M))                                                                     
makefree ({x, M) = M′ such that for all s∈ S, if M(s) = 
( , ) then 

∗ If there is (n, t, x) ∈ then M′(s) = ( +n, - 
{(n, t, x)}) (Conversion of n bound tokens identified 
by the event name x to free tokens). 
∗ Otherwise, M′(s) = M(s). 

• Let t be a transition of T; t is said to be enabled by the 
marking M iff |M(s)| ≥ W(s, t) for all s ∈ S. The set of 
all transitions enabled by the marking M will be noted 
enabled (M). 

• The marking M is said to be minimal for the firing of 
the transition t iff |M(s)| = W (s, t) for all s ∈ S. 

• Let M1 and M2 be two markings of the Petri net (S,T, 
W). M1 M2 iff  ∀s ∈ S, if M1(s) = ( 1, 1) and M2 
(s) =  ( 2, 2) then 1 ≤  2 and 1 2 
such that the relation  is extended to bound tokens 
sets as follows: 

– 1 2 iff ∀ (n1, t, x) ∈ 1, ∃ (n2, t, x) 
∈ 2 such that n1 ≤ n2. 

• Let M1 and M2 be two markings of the Petri net (S,T,W) 
such that M1 M2. The difference M2 -M1 is a marking 
M3 (M2 - M1 = M3) such that for all s ∈ S, if M1(s) = 
( 1 , 1) and M2 (s) = ( 2 , 2) then M3(s) = 
( 3, 3 ) with 

– 3 = 2 - 1 
– ∀ (n1, t, x) ∈  1, (n2, t, x) ∈  2 if  n1 ≠  n2 

then  (n2 - n1, t, x) ∈  3. 

• Min (M, t) = {M′ | M′  M} and M′ is minimal for the 
firing of t. 

• Let  be a set. The function get: 2 -{ ∅}→  is a 
function which satisfies get(E)∈ E for any E ∈ 2 -
{ ∅}. 

• Given a marking M, a transition t and an event name 
x∉ ψ (M), occur (t, x, M) = M′ such that ∀ s ∈ S, if M(s) 
= ( , ) then M′(s) = ( , ′) with ′= ∪ 
{W(t, s), t, x)} if W(t, s) ≠ 0 and ′=  otherwise. 
Hence, M′ is the resultant marking from the addition 
of tokens bound to t to the marking M. 

III.  OPERATIONAL MAXIMALITY SEMANTICS FOR PETRI 

NETS WITH AGGREGATION OF TRANSITIONS 

Usually, marking graph is generated by the operational  

maximality for Petri nets, thus we keep the same basic 
definitions, but to achieve our goal we must change the 
semantics of the function Min. In this case, a minimal marking 



for the firing of a transition t is considered as an element of the 
set Min (M, t) only if for each place of this marking, bound 
tokens are only taken in the case when the free part does not 
satisfy the pre-condition of this transition. Therefore, we can 
ensure that a transition t will be executed sequentially after a 
transition t′ if it cannot be executed independently with this 
same transition t′. 

Formally, Min (M, t) is the set of markings M′  M such that 
for any state s where M(s) = ( , ), M′(s) is defined as 
follows: 

 

With ′ and | ′| = w(s, t) -   

IV.  SEQUENTIAL GENERATION OF MARKING GRAPH 

In Algorithm 1 we have three sets (L, V, and T), where L 
contains the set of configurations not yet explored, V contains 
the set of configurations that have been already developed and 
T contains the MLTS.  

Algorithm 1 
Begin 
L :={C0}  
V := ∅;    
T := ∅;  
While L != ∅ Do   

config := pop(L) ; 
push(config, V) ; 
 For all enabled Transition Do   /*Petri net transitions*/ 

// Exhaustive Development 
For eash new configuration s′ Do 

check if there exist s′ in L or in V 
If   not exist  s′ Then 

push(s′, L}; 
create new transition(s,edge,s′) 
T := T  ∪ {(s,edge,s′)}; 

Else 

create new transition(s,edge,si); 

T := T  ∪ {(s,edge, si)}; 
endif 

endfor 
endfor 

endwhile 
End 

 

In order to generate the MLTS we initialize the set L by the 
initial configuration and by applying the maximality 
operational semantics for Petri net we get a new configuration 
to be developed. Thus we add a transition (s, edge, s′) that does 
not already exist, to T for each new configuration [7]. 

V. DISTRIBUTED GENERATION OF MLTS WITH 

AGGREGATION OF TRANSITIONS 

 

Algorithm 2  
Data : initial configuration C0; 
Variables : 
NT_configi : the list of configurations not yet explored 
T_configi : the list of configurations explored 
Si : the list of state the MLTS 
Ti : the list of transition the MLTS 
Begin 
(a) If  hash(C0) = i Then 

NT_configi.push(C0) 
Endif 
While (shutdown signal not received) Do 

(b)While NT_configi is not empty Do 
         conf := pop(NT_configi) ; 

push(conf, T_configi) ; 
For eash  t in Transition Do  /*t is a Petri net transition*/ 

If  enabled(t) Then 
MinAggreg(conf,t) /*using aggregation of transition t*/ 
Exhaustive development /* SOS of Maximality */ 
For each new configuration new_conf Do 
(c)If  hash(new_conf) = i then 
  check if there exist new_conf in NT_configi or  

in T_configi 
If  new_conf not exist Then 

push(new_conf,NT_configi}; 
create new transition (conf,edge, new_conf) 
Si = Si ∪ {new_conf}; 
Ti := Ti  + (conf,edge,new_conf); 

Else 
create new transition (conf,edge,confi); 
Ti := Ti + (conf,edge,confi); 

Endif 
Else 

create new transition(conf,edge,new_conf); 
Ti := Ti + (conf,edge,new_conf); 
SEND(new_conf,hash(new_conf)) ; 

Endfor 
Endif 

Endfor 
Endwhile 
(d) If  RECEIVE(conf_d) Then 

   check if there exist conf_d in NT_configi or in T_configi 
If  config_d not exist Then 

push(conf_d, NT_configi}; 
Endif 

Endif 
(e)If  RECEIVE( terminate) Then 

If  NT_configi = ∅   Then 
Procedure_Terminisation(); 

(f) If  isInitiator and NT_configi = ∅  Then 
Init_Terminisation(); 

Endwhile 
End. 



 

 
Figure 1:Marked Petri net 

 
We take an example to better explain the algorithm. We 
suppose the Petri net in “Fig. 1” from which we generate the 
distributed MLTS. 

 
We distribute the generated MLTS through three nodes of 

workstations network N=3. Referring to maximality operation 
semantics [10] the configuration for this Petri net is C0= (<1, 
∅><1, ∅><0, ∅>)  

For each node i we initiate NT_configi = ∅, T_configi = ∅. Si = 
∅, Ti = ∅. In the first step (a) in the algorithm we apply the hash 
function defined as: 

hash (new_conf.toString())=31*MD5(new_conf.toString()) mod 3 to 
the initial configuration ,thus we get the initiator node that 
inserts C0 into NT_configi then we start the process of distribute 
generation. The results in our case are: 

C0.toString () = “1, {} 1, {} 0, {}”, 

 md5(“1,{}1,{}0,{}”) = 4ef58d8d06188dbd58bf39f5877c7285, 
hash(C0.toString()) = 0; so the node 0 will be the initiator and  
NT_config0 ={ (<1, ∅><1, ∅><0, ∅>)}, T_config0= ∅. 

In the step (b) in algorithm 2 from the initial configuration 
we get two new configurations “Fig. 2” because t0 and t1 are 
both enabled, we apply the hash function we get: 

C1= (<0, ∅><1,1t0x><0, ∅>). 

hash (“0, {} 1,1t0x 0, {} “) =1 

C2= (<1, ∅><0, ∅ ><0, 1t1x >) 

hash (“1,{}0,{}0,1t1x“ ) =2 

Hence we send each new configuration to its corresponding 
node (step c), then: 

NT_config1= {(<0, ∅><1,1t0x><0, ∅>)} 

T_config1= ∅. 

NT_config2= {(<1, ∅><0, ∅ ><0, 1t1x>)} 

T_config2= ∅. 

 
• The node number one receives the new configuration 

(<0, ∅><1, 1t0x><0, ∅>) step (d) and start 
computation. In the first iteration (b) the transition t1 
is enabled so  two new configurations can be 
generated each one from either the bound token or the 
free token but by applying the reduction by  
aggregation of  transition t1 one configuration must be  

 
Figure 2: New markings by firing two transitions 

 

 
Figure 3: Free tokens and bound tokens in a marking 

 

kept “Fig. 3”,in this case the algorithm keeps  
(<0,∅><0,1t0x><0,1t1x>) then calculates its 
corresponding hash : hash(“0,{}0,1t0x0,1t1y”)=1. The 
value corresponds to the node itself so the 
configuration won’t be sent. The node must update its 
variables: 

NT_config1= {(<0, ∅><0,1t0x ><0, 1t1y>)} 

T_config1= {(<0, ∅><1,1t0x><0, ∅>)}. 

• The node number two also start computation in 
parallel with the node number one and in the first 
iteration (b) we can generate from the configuration 
received the new configuration  (<0, ∅><0,1t0y><0, 
1t1x>) where: hash(0,{}0,1t0y0,1t1x)=0 and thus will 
be send to node 0. 

NT_config2={} 

T_config2={(<1, ∅><0, ∅ ><0, 1t1y>)} 

NT_config0={(<0, ∅><0,1t0y><0, 1t1x>) } 

T_config0={(<1, ∅><1, ∅ ><0, ∅>)} 

Since NT_config1 and NT_config0 are non-empty, the node 
zero and node one continues working and node 2 wait for 
receiving new configurations. From the configuration (<0, 
∅><0, 1t0y><0, 1t1x>) located in node 0 and the configuration 
(<0, ∅><0, 1t0x ><0, 1t1y>) located in node 1 we obtain the 
configuration (<0, ∅><0, ∅><0, 1t1x 1t0y>). The two nodes zero 
and one get the same hash value : hash(0,{}0,{}0,1t1x1t0y)=2 . 



The node 2 receives this configuration which is no more 
enabled and thus no new configuration can be generated. Each 
node must update its variables: 

NT_config0={} 

T_config0={(<1, ∅><1, ∅ ><0, ∅ ),(<0, ∅><0,1t0y><0, 1t1x>))} 

NT_config1={ } 

T_config1={(<0, ∅><1,1t0x><0, ∅>),(<0, ∅><0,1t0x ><0,1t1y>) }. 

NT_config2= {} 

T_config2={(<1, ∅><0,∅><0,1t1y>),(<0, ∅><0, ∅><0,1t1x 1t0y>)} 

All lists not yet explored are empty; the termination is thus 
detected by the initiator node which is the node 0 in this case. 
The obtained MLTS is represented in “Fig. 4”. 

VI.  DISTRIBUTED TERMINATION DETECTION 

The principle of the termination detection algorithm used in 
Algorithm 2 is done in [12] by a two-wave algorithm. All 
machines have processed all their configuration and no more 
messages are in transit in the queues. Here, we have used a 
simple technique when all lists are empty, the termination is 
detected. 

For more information about distributed termination 
detection we refer the reader to [13]. 

VII.  IMPLEMENTATION AND EXPERIMENTATION 

To assess the feasibility of our approach, we have 
developed an environment (D-STEM-PNet) that generates 
either a centralized or a distributed reduced MLTS by the 
aggregation of transitions presented in the algorithms 1 and 2. 
This environment has a graphical editor to draw and edit Petri 
nets “ Fig. 5” and a result viewer “Fig. 6, 7” that produces a dot 
file type [14]. 

We have used java as programming language to implement 
all the pieces of the environment. For the distributed algorithm 
we executed the implementation on a network of 7 pcs 2.4 Ghz 
Pentium with 256 MBytes of RAM connected with 100 Mbps 
Ethernet. For the communication we have used jade 
environment [15] so each node is presented by an agent.  

Case study : 

In order to illustrate the interest of the proposed approach, 
we study in this section an example of processes 
synchronization, namely ticket reservation system illustrated in 
“Fig. 5”. 

The algorithm generates 20076 states without aggregation 
of transitions dispersed over 7 nodes as shown in “Fig.7” and 
10999 with aggregation “Fig. 8” hence the ratio of reduction in 
percent by each node is shown in “Table. I”. The ratio 
reduction of the entire graph is about 45%. Thus the 
aggregation of transitions gives important results. In addition, 
the graph is distributed over nodes and by this we limit the 
combinatorial explosion problem. 

 

 
Figure 4: A distributed MLTS over 3 nodes 

 

 
Figure 5: graphical tool for editing Petri nets 



 
Figure 6: graph viwer tool 

 

 
Figure 7. Distribution of states over 7 nodes without aggregation 

 

 
 

Figure 8. Distribution of states over 7 nodes with aggregation 

TABLE I.  TABLE I. RATE RESULTS 

Nodes Before reduction After reduction 
Reduction 

rate % 
1 2511 1630 35 
2 3985 1559 61 
3 2400 1615 33 
4 2814 1036 63 
5 5418 3399 37 
6 340 167 51 
7 2608 1593 39 

Total   20076       10999 45 

VIII.  CONCLUSION 

In this work we proposed a distributed algorithm for 
generating a distributed MLTS in order to push the limit of size 
to be able to handle spaces states increasingly of large sizes. 
We have also applied the aggregation of transitions to reduce 
the size in each node as well. This work gives significant 
results in reducing the graph and distributing it over nodes in 
order to fight against the combinatorial problem, however 
using a hash function for distributing the states may lead to 
huge communication between the nodes and less connectivity 
between states, which pushes us to try another methods for 
reducing the graph such as using a distributed maximality 
bissimulation and try to take another direction as well to 
increase the connectivity between states. 
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