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Abstract— The web service selection is a primordial step in the 

support of dynamic compositions, in fact, the presence of a set of 

services that provide the same functionality (inputs/outputs), but 

differ in QOS criteria, obliges us to adopt an optimization 

strategy in order to select the best ones. Several approaches of 

various natures (mono-objective, multi-objective...) were 

proposed to solve this problem. In this paper we propose a 

genetic algorithm which handles a single objective function and a 

set of global constraints that must be fulfilled. The obtained 
results are encouraging and merit to be continued. 

Keywords- web services; combinatory optimization; genetic 

algorithms;qualiy of service;service oriented architecture. 

I.  INTRODUCTION  

The web service technology is  an implementation of  the 
service oriented architecture (SOA), they  are based on a set of 
standards, SOAP, UDDI, WSDL, [9], and BPEL [15], which 
enable a flexible way for applications to interact with each 
other over networks. SOAP (Simple Object Access Protocol) is 
a protocol allowing applications to communicate with each 
other. UDDI (Universal Description Discovery Integration) 
defines a registry for service providers to publish their services. 
WSDL (Web Services Description Language) is used to 
describe a web service’s capabilities and the interface to invoke 
it. A WSDL document is self-describing so that a service 
consumer can examine the functionality of the web service, at 
runtime and generate corresponding code to automatically 
invoke the service. The BPEL language is a workflow model 
used to represent the control flow and the data flow of a given 
business process. 

In spite of these advantages, the infrastructure is not 
sufficient to ensure the automation of several tasks such as the 
service selection. In many cases, the industrials need to 
compose several services (or tasks) in order to fulfill a given 
requirement, each service is characterized by a set of QOS 
criteria (non-functional properties), and the whole composition 
is also characterized by several aggregated QOS values. In 
addition to that, the users impose a set of constraints or (end-to-
end QOS requirements) like reputation, latency and cost (see 
the motivating scenario of the second section). The service 
composer must verify that the aggregated QOS values of the 
selected services match the user requirements at the start of the 
execution as well as during the run time. Nonetheless, dynamic 

fluctuations, such as failure (or QOS deviation) of certain 
provided services,(or changes in the user’s QOS constraints), 
can cause the failure of the composition, Therefore, a quick 
adaptation to these change is crucial (such as the substitution of 
unavailable services). Moreover we must design a selection 
system that responses within a limited lapse of time, (so as to 
have a good performance). 

It is worth noting that, this problem is NP Hard, in fact it is 
similar to the Multi-Choice Multidimensional Knapsack 
problem (MMKP) [16] which is well known in the domain of 
combinatory optimization. Consequently, the chance of finding 
an optimal solution in a reasonable time  is very weak[13]. 

The goal of this paper is to build an efficient web service 
selection system that optimizes the aggregated QOS of the 
composition, and satisfies the end to end user’s QOS 
constraints. Therefore we adopt a genetic based solution, which 
performs a global optimization, in the search space. Our choice 
is motivated by the aptitude of this meta-heuristic to handle 
large space of possible solutions. (By using a set of heuristics 
such as mutations and crossovers). 

The rest of the paper is organized as follows: the section 2 
presents a motivating scenario, the section3 reports a survey on 
the selection problem, the fourth section presents the problem 
modeling, in the fifth section we introduce the developed 
approach, the  section 6 shows the obtained results and finally 
we present in the last section our conclusions and, we give the 
directions for future work. 

II. THE MOTIVATING EXAMPLE 

To illustrate the selection problem we consider a scenario 
[18] which involves a customer, who wants to buy a used car 
having a specific model, make, and mileage. The customer 
naturally aims to get the best deal. 

We suppose that the customer can access several kinds of 
web services that play a role in the car purchase scenario. In 
this example we may access three kinds of services Car 
Purchase (CP), Car Insurance (CI), and FInancing (FI). A 
single Web service may provide multiple operations. 

Different operations may also have dependency 
relationships. For example, the paymentHistory and 
financingQuote operations are both offered by the financing 
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service. The latter operation depends on the former operation, 
i.e., the payment history decides the financing quote. We also 
anticipate that there will be multiple competitors to provide 
each of the services mentioned above. It is important that the 
users’ quality requirements be reflected in the service query as 
criteria for service selection. To purchase an entire car package, 
the customer would first like to know the price quote of the 
selected car and the vehicle history report. He then needs to get 
the insurance quote. 

Finally, he also wants to know the financing quote. In 
addition, the client may have special constraints on the quality 
of the service operations. For example, he wants to spend less 
than 20 dollars to get the vehicle history report. Moreover, we 
can also express global constraints which handle the entire 
composition, for instance we may want to use only a whole 
composition which does not exceed 100 dollars). 

The solution template of this composition involves 03 
classes of services, each service is consumed by calling 02 
operations. 

Each operation is characterized by R QOS values, the 
global composition must fulfill R end to end constraints. 

Request=((op1,op2) CP, (op3,op4) CI, (op5,op6) FI) 

Each class or task can be fulfilled by a service instance Insi, 
which is characterized by a vector of QOS values, we can have 
L instances per class, and therefore we can have L3 possible 
solutions. Finally we can resume this issue as follows:  

We must search a composition c=(op1, op2, op3, op4, op5, 
op6) such that: 

-U’(c) is maximized 

-Each global constraint j is fulfilled by c ( j=1..R) 

U’(c): denotes the aggregated function of the different QOS 
attributes applied on c. 

III. STATE OF THE ART 

There are several approaches proposed in the domain of 
service selection. These approaches can be grouped in 02 major 
categories [4]: the multi-objective optimization and the mono-
objective optimization. According to [18] we can adopt several 
database techniques to tackle the multi-objective selection, for 
instance we can use the divide and conquer algorithm, the 
bitmap algorithm, the index based algorithm, and the nearest 
neighbor algorithm. 

The mono-objective class involves several approaches, 
[3,5, 6, 7,8,11, 12,20,21, 22]. In [12] the authors propose an 
extensible QoS computation model that supports open and fair 
management of QOS data. The problem of QOS-based 
composition is not addressed by this work. 

The mono-objective category can use a global selection 
model [5, 6,14,21, 22] or a local selection model [11, 7] or a 
hybrid selection model [3] 

The global selection model can determine the optimal 
solution, but it has an exponential complexity, however the 
local model has only a linear complexity but cannot handle the 
global constraints (there are only, local constraints). The third 

category is a compromise of the two approaches, it has a 
reduced complexity in comparison with the global approach, 
and it can also handle the global constraints. 

The work of Zeng at al [21, 22] focuses on dynamic and 
quality-driven selection of services. The authors adopt global 
planning to find the best service components for the 
composition. They use (mixed) linear programming techniques 
[18] to find the optimal selection of component services. 
Similar to this approach Ardagna et, [5, 6] extends the linear 
programming model to include local constraints. Linear 
programming methods are very effective when the size of the 
problem is small. Nevertheless these methods suffer from weak 
scalability due to the exponential time complexity of the 
applied search algorithms [13]. 

In [20] the authors use heuristic algorithms that can be used 
to find a near-to-optimal solution more efficiently than exact 
solutions. The authors propose two models for the QoS-based 
service composition problem: 1) a combinatorial model and 2) 
a graph model. A heuristic algorithm is introduced for each 
model. The time complexity of the heuristic algorithm for the 
combinatorial model (WS HEU) is polynomial, whereas the 
complexity of the heuristic algorithm for the graph model 
(MCSP-K) is exponential. Despite the significant improvement 
of these algorithms, both algorithms do not scale with respect 
to an increasing number of web services and remain out of the 
real- time requirements. Any distributed implementation of 
these algorithms would raise a very high communication cost. 
The WS HEU for example, is an improvement of the original 
heuristic algorithm for solving general Multi-Choice Multi- 
dimensional Knapsack problems named M-HEU [1].  

The use of the algorithm in a distributed setting, where the 
QOS values of the different service categories is managed by 
distributed service brokers would raise very high 
communication cost among these brokers to find the best 
composition. In this paper, we propose a mono-objective 
solution which is based on genetic algorithm. This later can 
solve the composition problem more efficiently and may be 
easily adapted to the multi-objective case. 

IV. THE PROBLEM MODELING 

A. The Composite Service 

We assume that we have n abstract classes of web services. 

Each service class Sj ∈ S (e.g. car purchase services) is used to 

describe a set of functionally- equivalent web services .In this 
paper we assume that information about service classes is 
managed by a set of service brokers as described in [11, 12]. 
Web services can join and leave service classes at any time by 
means of a subscription mechanism. It is worth noting to 
distinguish between an abstraction composition (also called 
solution template) noted (S1,S2,…Sn) and concrete 
composition c (which composed of real instances) noted 
(Ins1,Ins2….Insn) 

This later can be obtained by binding each abstract service 

class Si to a concrete web service Insj , such that Insj ∈ Si. We 

use c to denote a concrete composite service. 



B. QOS Criteria 

Our work considers only quantitative non-functional 
properties of web services, [21, 12]. These properties can 
include generic QOS attributes such as response time, 
availability, price, reputation etc, as well as domain-specific 
QOS attributes like bandwidth for multimedia web services as 
long as these attributes can be quantified and represented by 
real numbers. 

We use the vector Q = {Q1(s), . . . , QR(s)} to represent the 
QOS attributes of a service s, where the function Qi(s) 
determines the value of the i-th quality attribute of s. The QOS 
values can be either collected from service providers directly 
(e.g. price), recorded from previous execution monitoring (e.g. 
response time) or from use feedbacks (e.g. reputation) [15]. 
The set of QOS attributes can be divided into two subsets: 
positive and negative QOS attributes. The values of positive 
attributes need to be maximized (e.g. reliability, availability…), 
however the value of negative attributes need to be minimized 
(e.g. price, response time). To homogenize these criteria, we 
convert the negative attributes into positive attributes by 
multiplying their values by -1. 

C. The Aggregation Method 

The QOS value of a composite service depends on the QOS 
values of its components as well as the composition model 
used (e.g. sequential, parallel, conditional and/or loops). In this 
paper, we consider only the sequential model. The Other 
models can be treated by using other Techniques [8]. 

The QOS vector for a composite service c is defined as 
QOS’(c) = {Q’1(c), . . . , Q’R(c)}. Q’i(c) represents the 
estimated value of the i-th QOS attribute of c and can be 
aggregated from the expected QOS values of its component 
services.  

Our model uses three types of QOS aggregation functions 
(inspired from [18]): 1) summation (for the price, the 
reputation and the response time, 2) multiplication for the 
reliability and availability and 3) minimum/maximum relation 
for  the values’  normalization.  

In this case study we set R to 5.  

TABLE I.  THE QOS AGGREGATION FUNCTIONS 

QOS Criterion Agregation function 

Response Time Q1’ (C) =∑
n
j=1 Q1(sj)  

Reputation Q2’ (C) = 1/n * ∑
n
j=1 Q2(sj) 

Price Q3’ (C) =  ∑
n
j=1 Q3(sj) 

Reliability Q4’ (C) = 
n
j=1 Q4(sj) 

Availability Q5’ (C) = 
n
j=1 Q5(sj) 

 

 

D. The Global Constraints 

The Global QOS constraints may be expressed in terms of 
upper and/or lower bounds for the aggregated values of the 
different QOS criteria. As mentioned earlier, we only consider 
positive QOS criteria. Therefore we have only lower bound 
constraints. 

Let AC be an abstract composition and CONS= {cons1, 

..consm…, consR }, 0 ≤ m ≤ R, be a vector of global constraints 

on AC (a vector of real values). Let c a concrete composition, 
in which a concrete web service is associated for each service 
class. 

We say that c is feasible iff QOS’ (c) ≥ CONS , This means 
that all the global constraints are satisfied. 

E. The Objective Function 

In order to evaluation of a multi-dimensional quality of a 
service, we use a utility function that associates a real value to 
the QOS vector. In this work we adopt a mono-objective 
approach (ie a single objective function), this later is conceived 
as a Weighted sum of the different QOS values [19]. The utility 
computation involves a scaling process of the QOS attributes’ 
values, to allow a uniform measurement of the multi-
dimensional service qualities.  

The scaling step is then followed by a weighting process 
which models the user priorities. 

 The scaling process of the QOS values gives a score 
comprised between 0 and 1. 

Formally, the minimum and maximum aggregated values 
of the k-th QoS attribute of c are computed as follows: 

Qmin’(k) = ∑n
j=1 Qmin(j, k)……… (1) 

Qmax’(k) = ∑n
j=1 Qmax(j, k) 

Qmin(j, k) = min ∀sji∈Sj Qk(sji) .…....(2) 

Qmax(j, k) = max ∀sji∈Sj Qk(sji) 

Where Qmin(j, k) is the minimum value (e.g. minimum 
price) and Qmax(j, k) is the maximum value (e.g. maximum 
price) contained in the service class Sj.  

The utility of a component web service s ∈ Sj is computed 

as follows: 

U(s) = ∑R
k=1   wk *(Qk(s) - Qmin(j, k))/(Qmax(j, k) − 

Qmin(j, k)) ….(3) 

And the overall utility of a composite service c is computed 
as follows 

U’(c) = ∑R
k=1  wk *( (Q’k(c) - Qmin’(k))/(Qmax’(k) – 

Qmin’(k))… (4) 

with wk ∈  R+ and ∑R
k=1(wk) = 1 are the weights 

(importance) of Q’k . 

A concrete composition c is optimal if it is feasible and if it 
has the maximum value of the function U’. 



 We notice that the selection of the optimal concrete 
composition is NP hard (we must enumerate an exponential 
number of cases). The selection problem addressed here is 
formalized as follows: 

Let CA = {S1, . . . , Sn} be a client request (or an abstract 
composition) And Cons a vector of m global QOS constraints 
{cons1,.. , consR}. We must find a concrete composition 

c={s1, . . . , sn} by binding each Sj to a concrete service sj’ ∈ Sj 

such that: 

1. U’(c) is maximized, and 

2. Q’ k(c) ≥ Cons( k), ∀ Cons(k )∈ CONS 

V. THE PROPOSED APPROACH 

The adopted genetic algorithm possesses the following 
attributes:  

The population size=40 chromosomes, (the population is 
initialized randomly) 

The maximum number of iterations=100 

The crossover rate varies from 10% to 99% 

The mutation rate varies from 1% to 20% 

The objective function of the genetic algorithm ‘f(x)’, 
combines the function U’(x) and a penalty function p(x). p(x) 
decreases the utility score ‘f(x)’of the solution that violates the 
global constraints.  

Several penalty functions are proposed in the literature 
[17,2], (we have static, dynamic, adaptive.. functions), for the 
sake of simplicity we have chosen the following version [10] (a 
dynamic function): 

P(c)= -t*∑R
k=1    (Dk )

2(c) Where 

Dk(c)=     0 if Q’k(c) ≥ Cons(k) 

                |Q’k(c)- Cons(k) | otherwise  

And t represents the current iteration number of the genetic 
algorithm. 

 This formula means that a rigorous penalty is applied when 
we get closer to the end of the optimization process. Finally the 
objective function is defined as follows: 

f(x)=U’(x)+p(x) 

VI. THE EXPERIMENTATION 

In order to validate the approach, we consider a data set 
inspired from [18], we have 03 classes of services, and each 
class contains 100 instances, the total number of candidate 
solutions= 1003. 

 The number of QOS attributes is fixed to 5. The QOS 
value of each attribute is generated by a uniform random 
process which respects the bounds specified in the following 
table.  

All the criteria have the same priority (ie wk=0.2)  

TABLE II.  THE SELECTION DATA SET 

QOS Car Purchase Car Insurance Financing 

Response 

Time 
0-300(s) 0-300(s) 0-300(s) 

Reputation 0-5 0-5 0-5 

Price 0-30($) 0-30($) 0-30($) 

Reliability 0.5-1.0 0.5-1.0 0.5-1.0 

Availability 0.7-1.0 0.7-1.0 0.7-1.0 

 

 

Figure 1.  The score evolution of the best configuration 

 

Figure 2.  The score evolution according to the crossover (mutation=5%) 

 

Figure 3.  The score evolution according to the mutation (crossover=60%) 

 

Our approach is more efficient than the mixed integer linear 
programming algorithm [14], because the adopted meta-
heuristic is able to reduce the space search by applying a set of 
heuristics, such as mutations, crossover, penalty functions...etc. 

The adopted penalty function has several advantages in 
comparison with other propositions, first of all, it increases the 
penalty as generation grows, (to ensure a feasible solution), it is 
also characterized by a reduced number of parameters in 
comparison with others approaches. As shown in the figure 1 
the configuration that gives the best score of the utility function 



f is (mutation=5%, crossover=80%), (we have done several 
simulations to get this result). 

 We notice that a stagnation situation is reached (see the 
figure 2) when the crossover exceeds 80%. A great value will 
only extend the space search, without having a significant 
improvement (the optimum, is usually located in a small 
region).  

According to the third figure, we notice a performance 
deterioration if the mutation rate exceeds the interval [8 15], 
these high mutation’s rates are caused by the weak value of the 
crossover factor. 

VII. CONCLUSION 

In this paper we have presented a genetic based approach 
for the selection of the best (near optimal) composition of 
services. The optimization process allows the specification of 
global constraints on the QOS attributes. The presented 
solution handles the global constraints by using a penalty 
function.  

Future work will consider the use of the other meta-
heuristics, such as swarm-particle optimization, Ants colony 
optimization..., Furthermore we may adopt a multi-objective 
optimization (the processing of several goals in the same time). 
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