
QoS-aware Service Selection Based on Genetic

Algorithm

Hadjila Fethallah, Mohammed Amine Chikh, Dali Yahia Mohammed

Computer sciences department

UABT University – Tlemcen

Tlemcen Algeria

{f_hadjila, mea_chikh }@mail.univ-tlemcen.dz

mohammed.dali.y@gmail.com

Abstract— The web service selection is a primordial step in the

support of dynamic compositions, in fact, the presence of a set of

services that provide the same functionality (inputs/outputs), but

differ in QOS criteria, obliges us to adopt an optimization

strategy in order to select the best ones. Several approaches of

various natures (mono-objective, multi-objective...) were

proposed to solve this problem. In this paper we propose a

genetic algorithm which handles a single objective function and a

set of global constraints that must be fulfilled. The obtained
results are encouraging and merit to be continued.

Keywords- web services; combinatory optimization; genetic

algorithms;qualiy of service;service oriented architecture.

I. INTRODUCTION

The web service technology is an implementation of the
service oriented architecture (SOA), they are based on a set of
standards, SOAP, UDDI, WSDL, [9], and BPEL [15], which
enable a flexible way for applications to interact with each
other over networks. SOAP (Simple Object Access Protocol) is
a protocol allowing applications to communicate with each
other. UDDI (Universal Description Discovery Integration)
defines a registry for service providers to publish their services.
WSDL (Web Services Description Language) is used to
describe a web service’s capabilities and the interface to invoke
it. A WSDL document is self-describing so that a service
consumer can examine the functionality of the web service, at
runtime and generate corresponding code to automatically
invoke the service. The BPEL language is a workflow model
used to represent the control flow and the data flow of a given
business process.

In spite of these advantages, the infrastructure is not
sufficient to ensure the automation of several tasks such as the
service selection. In many cases, the industrials need to
compose several services (or tasks) in order to fulfill a given
requirement, each service is characterized by a set of QOS
criteria (non-functional properties), and the whole composition
is also characterized by several aggregated QOS values. In
addition to that, the users impose a set of constraints or (end-to-
end QOS requirements) like reputation, latency and cost (see
the motivating scenario of the second section). The service
composer must verify that the aggregated QOS values of the
selected services match the user requirements at the start of the
execution as well as during the run time. Nonetheless, dynamic

fluctuations, such as failure (or QOS deviation) of certain
provided services,(or changes in the user’s QOS constraints),
can cause the failure of the composition, Therefore, a quick
adaptation to these change is crucial (such as the substitution of
unavailable services). Moreover we must design a selection
system that responses within a limited lapse of time, (so as to
have a good performance).

It is worth noting that, this problem is NP Hard, in fact it is
similar to the Multi-Choice Multidimensional Knapsack
problem (MMKP) [16] which is well known in the domain of
combinatory optimization. Consequently, the chance of finding
an optimal solution in a reasonable time is very weak[13].

The goal of this paper is to build an efficient web service
selection system that optimizes the aggregated QOS of the
composition, and satisfies the end to end user’s QOS
constraints. Therefore we adopt a genetic based solution, which
performs a global optimization, in the search space. Our choice
is motivated by the aptitude of this meta-heuristic to handle
large space of possible solutions. (By using a set of heuristics
such as mutations and crossovers).

The rest of the paper is organized as follows: the section 2
presents a motivating scenario, the section3 reports a survey on
the selection problem, the fourth section presents the problem
modeling, in the fifth section we introduce the developed
approach, the section 6 shows the obtained results and finally
we present in the last section our conclusions and, we give the
directions for future work.

II. THE MOTIVATING EXAMPLE

To illustrate the selection problem we consider a scenario
[18] which involves a customer, who wants to buy a used car
having a specific model, make, and mileage. The customer
naturally aims to get the best deal.

We suppose that the customer can access several kinds of
web services that play a role in the car purchase scenario. In
this example we may access three kinds of services Car
Purchase (CP), Car Insurance (CI), and FInancing (FI). A
single Web service may provide multiple operations.

Different operations may also have dependency
relationships. For example, the paymentHistory and
financingQuote operations are both offered by the financing

mailto:%7D@mail.univ-tlemcen.dz

service. The latter operation depends on the former operation,
i.e., the payment history decides the financing quote. We also
anticipate that there will be multiple competitors to provide
each of the services mentioned above. It is important that the
users’ quality requirements be reflected in the service query as
criteria for service selection. To purchase an entire car package,
the customer would first like to know the price quote of the
selected car and the vehicle history report. He then needs to get
the insurance quote.

Finally, he also wants to know the financing quote. In
addition, the client may have special constraints on the quality
of the service operations. For example, he wants to spend less
than 20 dollars to get the vehicle history report. Moreover, we
can also express global constraints which handle the entire
composition, for instance we may want to use only a whole
composition which does not exceed 100 dollars).

The solution template of this composition involves 03
classes of services, each service is consumed by calling 02
operations.

Each operation is characterized by R QOS values, the
global composition must fulfill R end to end constraints.

Request=((op1,op2) CP, (op3,op4) CI, (op5,op6) FI)

Each class or task can be fulfilled by a service instance Insi,
which is characterized by a vector of QOS values, we can have
L instances per class, and therefore we can have L3 possible
solutions. Finally we can resume this issue as follows:

We must search a composition c=(op1, op2, op3, op4, op5,
op6) such that:

-U’(c) is maximized

-Each global constraint j is fulfilled by c (j=1..R)

U’(c): denotes the aggregated function of the different QOS
attributes applied on c.

III. STATE OF THE ART

There are several approaches proposed in the domain of
service selection. These approaches can be grouped in 02 major
categories [4]: the multi-objective optimization and the mono-
objective optimization. According to [18] we can adopt several
database techniques to tackle the multi-objective selection, for
instance we can use the divide and conquer algorithm, the
bitmap algorithm, the index based algorithm, and the nearest
neighbor algorithm.

The mono-objective class involves several approaches,
[3,5, 6, 7,8,11, 12,20,21, 22]. In [12] the authors propose an
extensible QoS computation model that supports open and fair
management of QOS data. The problem of QOS-based
composition is not addressed by this work.

The mono-objective category can use a global selection
model [5, 6,14,21, 22] or a local selection model [11, 7] or a
hybrid selection model [3]

The global selection model can determine the optimal
solution, but it has an exponential complexity, however the
local model has only a linear complexity but cannot handle the
global constraints (there are only, local constraints). The third

category is a compromise of the two approaches, it has a
reduced complexity in comparison with the global approach,
and it can also handle the global constraints.

The work of Zeng at al [21, 22] focuses on dynamic and
quality-driven selection of services. The authors adopt global
planning to find the best service components for the
composition. They use (mixed) linear programming techniques
[18] to find the optimal selection of component services.
Similar to this approach Ardagna et, [5, 6] extends the linear
programming model to include local constraints. Linear
programming methods are very effective when the size of the
problem is small. Nevertheless these methods suffer from weak
scalability due to the exponential time complexity of the
applied search algorithms [13].

In [20] the authors use heuristic algorithms that can be used
to find a near-to-optimal solution more efficiently than exact
solutions. The authors propose two models for the QoS-based
service composition problem: 1) a combinatorial model and 2)
a graph model. A heuristic algorithm is introduced for each
model. The time complexity of the heuristic algorithm for the
combinatorial model (WS HEU) is polynomial, whereas the
complexity of the heuristic algorithm for the graph model
(MCSP-K) is exponential. Despite the significant improvement
of these algorithms, both algorithms do not scale with respect
to an increasing number of web services and remain out of the
real- time requirements. Any distributed implementation of
these algorithms would raise a very high communication cost.
The WS HEU for example, is an improvement of the original
heuristic algorithm for solving general Multi-Choice Multi-
dimensional Knapsack problems named M-HEU [1].

The use of the algorithm in a distributed setting, where the
QOS values of the different service categories is managed by
distributed service brokers would raise very high
communication cost among these brokers to find the best
composition. In this paper, we propose a mono-objective
solution which is based on genetic algorithm. This later can
solve the composition problem more efficiently and may be
easily adapted to the multi-objective case.

IV. THE PROBLEM MODELING

A. The Composite Service

We assume that we have n abstract classes of web services.

Each service class Sj ∈ S (e.g. car purchase services) is used to

describe a set of functionally- equivalent web services .In this
paper we assume that information about service classes is
managed by a set of service brokers as described in [11, 12].
Web services can join and leave service classes at any time by
means of a subscription mechanism. It is worth noting to
distinguish between an abstraction composition (also called
solution template) noted (S1,S2,…Sn) and concrete
composition c (which composed of real instances) noted
(Ins1,Ins2….Insn)

This later can be obtained by binding each abstract service

class Si to a concrete web service Insj , such that Insj ∈ Si. We

use c to denote a concrete composite service.

B. QOS Criteria

Our work considers only quantitative non-functional
properties of web services, [21, 12]. These properties can
include generic QOS attributes such as response time,
availability, price, reputation etc, as well as domain-specific
QOS attributes like bandwidth for multimedia web services as
long as these attributes can be quantified and represented by
real numbers.

We use the vector Q = {Q1(s), . . . , QR(s)} to represent the
QOS attributes of a service s, where the function Qi(s)
determines the value of the i-th quality attribute of s. The QOS
values can be either collected from service providers directly
(e.g. price), recorded from previous execution monitoring (e.g.
response time) or from use feedbacks (e.g. reputation) [15].
The set of QOS attributes can be divided into two subsets:
positive and negative QOS attributes. The values of positive
attributes need to be maximized (e.g. reliability, availability…),
however the value of negative attributes need to be minimized
(e.g. price, response time). To homogenize these criteria, we
convert the negative attributes into positive attributes by
multiplying their values by -1.

C. The Aggregation Method

The QOS value of a composite service depends on the QOS
values of its components as well as the composition model
used (e.g. sequential, parallel, conditional and/or loops). In this
paper, we consider only the sequential model. The Other
models can be treated by using other Techniques [8].

The QOS vector for a composite service c is defined as
QOS’(c) = {Q’1(c), . . . , Q’R(c)}. Q’i(c) represents the
estimated value of the i-th QOS attribute of c and can be
aggregated from the expected QOS values of its component
services.

Our model uses three types of QOS aggregation functions
(inspired from [18]): 1) summation (for the price, the
reputation and the response time, 2) multiplication for the
reliability and availability and 3) minimum/maximum relation
for the values’ normalization.

In this case study we set R to 5.

TABLE I. THE QOS AGGREGATION FUNCTIONS

QOS Criterion Agregation function

Response Time Q1’ (C) =∑
n
j=1 Q1(sj)

Reputation Q2’ (C) = 1/n * ∑
n
j=1 Q2(sj)

Price Q3’ (C) = ∑
n
j=1 Q3(sj)

Reliability Q4’ (C) = 
n
j=1 Q4(sj)

Availability Q5’ (C) = 
n
j=1 Q5(sj)

D. The Global Constraints

The Global QOS constraints may be expressed in terms of
upper and/or lower bounds for the aggregated values of the
different QOS criteria. As mentioned earlier, we only consider
positive QOS criteria. Therefore we have only lower bound
constraints.

Let AC be an abstract composition and CONS= {cons1,

..consm…, consR }, 0 ≤ m ≤ R, be a vector of global constraints

on AC (a vector of real values). Let c a concrete composition,
in which a concrete web service is associated for each service
class.

We say that c is feasible iff QOS’ (c) ≥ CONS , This means
that all the global constraints are satisfied.

E. The Objective Function

In order to evaluation of a multi-dimensional quality of a
service, we use a utility function that associates a real value to
the QOS vector. In this work we adopt a mono-objective
approach (ie a single objective function), this later is conceived
as a Weighted sum of the different QOS values [19]. The utility
computation involves a scaling process of the QOS attributes’
values, to allow a uniform measurement of the multi-
dimensional service qualities.

The scaling step is then followed by a weighting process
which models the user priorities.

 The scaling process of the QOS values gives a score
comprised between 0 and 1.

Formally, the minimum and maximum aggregated values
of the k-th QoS attribute of c are computed as follows:

Qmin’(k) = ∑n
j=1 Qmin(j, k)……… (1)

Qmax’(k) = ∑n
j=1 Qmax(j, k)

Qmin(j, k) = min ∀sji∈Sj Qk(sji) .…....(2)

Qmax(j, k) = max ∀sji∈Sj Qk(sji)

Where Qmin(j, k) is the minimum value (e.g. minimum
price) and Qmax(j, k) is the maximum value (e.g. maximum
price) contained in the service class Sj.

The utility of a component web service s ∈ Sj is computed

as follows:

U(s) = ∑R
k=1 wk *(Qk(s) - Qmin(j, k))/(Qmax(j, k) −

Qmin(j, k)) ….(3)

And the overall utility of a composite service c is computed
as follows

U’(c) = ∑R
k=1 wk *((Q’k(c) - Qmin’(k))/(Qmax’(k) –

Qmin’(k))… (4)

with wk ∈ R+ and ∑R
k=1(wk) = 1 are the weights

(importance) of Q’k .

A concrete composition c is optimal if it is feasible and if it
has the maximum value of the function U’.

 We notice that the selection of the optimal concrete
composition is NP hard (we must enumerate an exponential
number of cases). The selection problem addressed here is
formalized as follows:

Let CA = {S1, . . . , Sn} be a client request (or an abstract
composition) And Cons a vector of m global QOS constraints
{cons1,.. , consR}. We must find a concrete composition

c={s1, . . . , sn} by binding each Sj to a concrete service sj’ ∈ Sj

such that:

1. U’(c) is maximized, and

2. Q’ k(c) ≥ Cons(k), ∀ Cons(k)∈ CONS

V. THE PROPOSED APPROACH

The adopted genetic algorithm possesses the following
attributes:

The population size=40 chromosomes, (the population is
initialized randomly)

The maximum number of iterations=100

The crossover rate varies from 10% to 99%

The mutation rate varies from 1% to 20%

The objective function of the genetic algorithm ‘f(x)’,
combines the function U’(x) and a penalty function p(x). p(x)
decreases the utility score ‘f(x)’of the solution that violates the
global constraints.

Several penalty functions are proposed in the literature
[17,2], (we have static, dynamic, adaptive.. functions), for the
sake of simplicity we have chosen the following version [10] (a
dynamic function):

P(c)= -t*∑R
k=1 (Dk)

2(c) Where

Dk(c)= 0 if Q’k(c) ≥ Cons(k)

 |Q’k(c)- Cons(k) | otherwise

And t represents the current iteration number of the genetic
algorithm.

 This formula means that a rigorous penalty is applied when
we get closer to the end of the optimization process. Finally the
objective function is defined as follows:

f(x)=U’(x)+p(x)

VI. THE EXPERIMENTATION

In order to validate the approach, we consider a data set
inspired from [18], we have 03 classes of services, and each
class contains 100 instances, the total number of candidate
solutions= 1003.

 The number of QOS attributes is fixed to 5. The QOS
value of each attribute is generated by a uniform random
process which respects the bounds specified in the following
table.

All the criteria have the same priority (ie wk=0.2)

TABLE II. THE SELECTION DATA SET

QOS Car Purchase Car Insurance Financing

Response

Time
0-300(s) 0-300(s) 0-300(s)

Reputation 0-5 0-5 0-5

Price 0-30($) 0-30($) 0-30($)

Reliability 0.5-1.0 0.5-1.0 0.5-1.0

Availability 0.7-1.0 0.7-1.0 0.7-1.0

Figure 1. The score evolution of the best configuration

Figure 2. The score evolution according to the crossover (mutation=5%)

Figure 3. The score evolution according to the mutation (crossover=60%)

Our approach is more efficient than the mixed integer linear
programming algorithm [14], because the adopted meta-
heuristic is able to reduce the space search by applying a set of
heuristics, such as mutations, crossover, penalty functions...etc.

The adopted penalty function has several advantages in
comparison with other propositions, first of all, it increases the
penalty as generation grows, (to ensure a feasible solution), it is
also characterized by a reduced number of parameters in
comparison with others approaches. As shown in the figure 1
the configuration that gives the best score of the utility function

f is (mutation=5%, crossover=80%), (we have done several
simulations to get this result).

 We notice that a stagnation situation is reached (see the
figure 2) when the crossover exceeds 80%. A great value will
only extend the space search, without having a significant
improvement (the optimum, is usually located in a small
region).

According to the third figure, we notice a performance
deterioration if the mutation rate exceeds the interval [8 15],
these high mutation’s rates are caused by the weak value of the
crossover factor.

VII. CONCLUSION

In this paper we have presented a genetic based approach
for the selection of the best (near optimal) composition of
services. The optimization process allows the specification of
global constraints on the QOS attributes. The presented
solution handles the global constraints by using a penalty
function.

Future work will consider the use of the other meta-
heuristics, such as swarm-particle optimization, Ants colony
optimization..., Furthermore we may adopt a multi-objective
optimization (the processing of several goals in the same time).

REFERENCES

[1] M. M. Akbar, E. G. Manning, G. C. Shoja, and S. Khan. Heuristic
solutions for the multiple-choice multi-dimension knapsack problem. In

Proceedings of the International Conference on Computational Science-
Part II, pages 659–668, London, UK, 2001. Springer-Verlag.

[2] J. Adeli, H. and Cheng, N.T. Augmented lagrangian genetic algorithm

for structural optimization, Journal of Aerospace Engineering, 7, 104-
118, 1994.

[3] E.Alrifai , T. Risse Combining Global Optimization with Local election

for Efficient QoS-aware Service Composition In WWW09, April 20–24,
2009, Madrid, Spain.

[4] E.Alrifai, T. Risse Selecting Skyline Services for QoS-based Web
Service Composition In Proceedings of the WWW 2010, April 26–30,

2010, Raleigh, North Carolina, USA.

[5] D. Ardagna and B. Pernici. Global and local qos constraints guarantee in
web service selection. In Proceedings of the IEEE International

Conference on Web Services, pages 805–806, Washington, DC, USA,
2005. IEEE Computer Society.

[6] D. Ardagna and B. Pernici. Adaptive service composition in flexible

processes. IEEE Transactions on Software Engineering, 33(6):369–384,
2007.

[7] B. Benatallah, Q. Z. Sheng, A. H. H. Ngu, and M. Dumas. Declarative
composition and peer-to-peer provisioning of dynamic web services. In

Proceedings of the International Conference on Data Engineering, pages
297–308, Washington, DC, USA, 2002. IEEE Computer Society.

[8] [8] J. Cardoso, J. Miller, A. Sheth, and J. Arnold. Quality of service for

workflows and web service processes. Journal of Web Semantics,
1:281–308, 2004.

[9] F.Curbera, F.Duftler, R. Khalaf, W.Nagy, N. Mukhi, and

S.Weerawarana .Unraveling . the Web Services Web: An Introduction to
SOAP, WSDL, and UDDI. IEEE Internet Computing, 6(2). (2002).

[10] J. Joines, and C. Houck, On the use of non-stationary enalty functions to

solve non-linear constrained optimization problems with GAs,
Proceedings of the First IEEE International Conference on Evolutionary

Computation, IEEE Press, 579- 584, 1994.

[11] F. Li, F. Yang, K. Shuang, and S. Su. Q-peer: A decentralized qos
registry architecture for web services. In Proceedings of the International

Conference on Services Computing, pages 145–156, 2007

[12] Y. Liu, A. H. H. Ngu, and L. Zeng. Qos computation and policing in
dynamic web service selection. In Proceedings of the International

World Wide Web Conference, pages 66–73, 2004

[13] I. Maros. Computational Techniques of the Simplex Method. Springer,

2003.

[14] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial
Optimization. Wiley-Interscience, New York, NY, USA, 1988.

[15] OASIS. Web services business process execution language, April 2007.

http://docs.oasis-open.org/ wsbpel/2.0/wsbpel-v2.0.pdf.

[16] D. Pisinger. Algorithms for Knapsack Problems. PhD thesis, University
of Copenhagen, Dept. of Computer Science, February 1995.

[17] O Yeniay penalty function methods for constrained optimization with

genetic algorithms journal of Mathematical and Computational
Applications, Vol. 10, No. 1, pp. 45-56, 2005.

[18] Q Yu, A Bouguettaya. Foundations for Efficient Web Service Selection

Springer Science+Business Media, 2010.

[19] K. . P. Yoon and C.-L. Hwang. Multiple Attribute Decision Making: An

Introduction (Quantitative Applications in the Social Sciences). Sage
Publications, 1995

[20] T. Yu, Y. Zhang, and K.-J. Lin. Efficient algorithms for web services

selection with end-to-end qos constraints. ACM Transactions on the
Web, 1(1), 2007.

[21] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z. Sheng.

Quality driven web services composition. In Proceedings of the
International World Wide Web Conference, pages 411–421, 2003.

[22] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and H.

Chang. Qos-aware middleware for web services composition. IEEE
Transactions on Software Engineering, 30(5):311–327, 2004.

