
Verifying Reference Nets By Means of Hypernets:
a Plugin for Renew

Marco Mascheroni1, Thomas Wagner2, and Lars Wüstenberg2

1 Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano Bicocca
Viale Sarca, 336, I-20126 Milano (Italy)⋆⋆

mascheroni@disco.unimib.it
2 University of Hamburg,

Faculty of Mathematics, Informatics and Natural Sciences,
Department of Informatics

http://www.informatik.uni-hamburg.de/TGI/

Abstract. In this paper we examine ways to verify reference nets, a
class of high level Petri nets supported by the Renew tool. We choose
to restrict reference nets to hypernets, another nets-within-nets model
more suitable for verification purposes thanks to an expansion toward
1-safe Petri nets. The contribution of the paper is the implementation
of such analysis techniques by means of a Renew plugin. With this
plugin it is now possible to draw, and to analyze a hypernet. The work
is demonstrated by means of a simple example.

Keywords: Verification, High-level Petri nets, Reference nets, Hyper-
nets

1 Introduction

The verification of properties of a software system has become an important
part of software engineering. Especially specifications critical to the correct ex-
ecution of a software system need to be verified in order to guarantee them
after deployment. The problem of verification is its complexity and the effort
required for it. Without proper methods the verification itself is difficult, costly
and time-consuming.

In this paper we approach the general problem of verification with the help
of Petri nets. The formalism is deeply rooted within established theoretical and
formal methodologies, as well as being supported by a multitude of tools and
analysers. Petri nets have been studied in detail and contain properties, for which
established verification techniques exist. Using Petri nets the general approach
is to map and translate specific software issues and properties to these Petri
⋆⋆ Partially supported by MIUR, and DAAD

Recent Advances in Petri Nets and Concurrency, S. Donatelli, J. Kleijn, R.J. Machado, J.M. Fernandes
(eds.), CEUR Workshop Proceedings, ISSN 1613-0073, Jan/2012, pp. 285–299.



net properties. These properties can then be verified using the known Petri
net techniques. Assertions made for these can then be translated back for the
software behind it.

High level nets, Petri net models enriched with additional abstraction con-
structs, are well suited to represent complex systems due to their high abstrac-
tion constructs. One of their problems is that verification of their properties
is difficult. Properties which are computable with low-level formalisms become
undecidable, and thus cannot be verified anymore in some high-level models.
However, high-level formalisms can be restricted in some way so that they can
be translated into low-level formalisms, which in turn can be verified again. In
particular, the interest of this paper is on high level nets which use the nets-
within-nets paradigm, formalisms in which the tokens of a Petri nets can be
structured themselves as Petri net. The two formalisms analyzed are reference
nets, the formalism used as a basis for the Renew tool, and hypernets, another
nets-within-nets formalism with particular restrictions that allow the expansion
toward an equivalent 1-safe Petri nets. In this paper we will show how to trans-
late a subset of the high-level reference net formalism into hypernets, which in
turn can be easily translated into 1-safe nets. These can then be analysed by
existing toolsets. The main result of our work is the implementation of a Re-
new hypernet plugin which incorporates features for computing S-invariants,
and features for model checking a hypernet. As far as we know, this is the first
time that analysis techniques typical of Petri nets has been implemented in a
tool which support the nets-within-nets paradigm, and it is mature enough to
be used in a real application context. In the rest of the paper when we will talk
about invariants we are always referring to S-invariants.

The paper is structured into the following sections. Following this introduc-
tion the theoretical and technical background is shortly discussed in section 2.
This section will focus on the reference net and hypernet formalisms. In section 3
we will show how to translate reference nets into hypernets and determine the
prerequisites for analysis. Section 4 describes the Hypernet plugin created for
Renew. Section 5 gives a short example how these different tools are incorpo-
rated and used to analyse a given net. The conclusion of the paper is found in
section 6.

2 Background and related work

In this section we will introduce by means of examples the basic theoretical
formalisms used in this paper, as well as motivate why we have chosen them as
our means of verification and modelling. The interested reader can find them
in the cited references. In general Petri nets offer a simple way of modelling
concurrent behaviour of a system. Higher level nets often introduce abstractions
from the simple net models, which offer structures and methods not available to
or difficult to model in low-level Petri nets. One major such abstraction is the idea
of nets within nets, introduced in [11] for Object Petri nets. This paradigm allows
for arbitrary nets to be the tokens of other nets. In this way it is possible to model

286 Petri Nets & Concurrency Mascheroni, Wagner, and Wüstenberg



the behaviour and interaction of different entities within a complex system, all
modelled with Petri nets. Using these formalisms to model and even implement
software systems is quite natural. Of course high-level Petri nets and especially
formalisms following the nets-within-nets idea are far more complex then the
relatively simple low-level Petri nets. This increases the effort and complexity
of verifying properties within these nets, which is the main motivation of this
paper.

In the following subsections we will describe the reference and hypernet for-
malisms.

2.1 Reference Nets and Renew

The reference net formalism serves as the starting point of our examinations. It
was described in [7]. It is a high level Petri net formalism based on the nets-
within-nets paradigm. In this formalism it is possible for tokens within a net to
be almost arbitrary objects and especially other Petri nets. Nets can then be used
like tokens within their respective so-called system net, but it is also possible
to let nets of different layers communicate with one another. The reference net
formalism uses reference semantics. This means that tokens within a net do not
exclusively correspond to their object/net (value semantics), but only reference
their object/net. As a result of this multiple tokens can refer to the same object.
This makes it possible to express complex systems in a natural way.

Communication between different net instances within the reference net for-
malism is handled via synchronous channels, based on the concepts proposed
in [5]. Synchronous channels connect two transitions during firing. Transitions
inscribed with a synchronous channel can only fire synchronously, meaning that
both transitions involved have to be activated before firing can happen. Dur-
ing firing arbitrary objects can be transmitted bidirectionally over the channel.
While the exchange of data is bidirectional there is a difference in the handling
of the two transitions. The transition, or more accurately the inscription of the
transition, initiating the firing is called the downlink. The downlink must know
the name of the net in which the other transition, the so-called uplink, is located.
The inscription of the downlink has the form netname:channelname(parameters),
in which the parameters are the objects being send and received during firing.
If the downlink calls an uplink located in the same net the net name is simply
replaced by the keyword this. The uplink’s inscription is similar, but looses the
net name, so that it has the form :channelname(parameters). Uplinks are not
exclusive to one downlink and can be called from multiple downlinks, so that
this construct can be used in a flexible way. It is also possible to synchronise
transitions over different abstraction levels. While during firing one downlink is
always linked to just one uplink, it is possible to inscribe one transition with
multiple downlinks, so that more than two transitions can fire simultaneously.

Figure 1 shows a simple example of a reference net system. The example
was modelled using the Renew tool, which will be described later. It models
a producer/consumer system, which holds an arbitrary number of producers
and consumers. The system consists of three kinds of nets: the system net, the

Verifying reference nets with hypernets Petri Nets & Concurrency – 287



Fig. 1. Reference net example

producer nets and the consumer nets. The producer and consumer nets both
possess the same basic structure, but use different channels. The system net
serves as a kind of container for the other nets. The transitions labeled manual
initiate the creation of new producers and consumers by creating new tokens
when a user manually fires them during simulation3. The transitions labeled
C and P actually create new producer or consumer nets when firing. These
new nets are put onto the places below the transitions. The transition labeled
I synchronises the firing of a transition in one consumer and one producer each
(labeled I1 and I2 in the other nets). In this way it is possible to simulate
the behaviour in such a way, that whenever a producer produces a product an
arbitrary consumer consumes it. It is of course possible to enhance this model
by, for example, adding an intermediary storage, which can store items from
arbitrary producers until consumers need them. Another way of making the
model more realistic is to explicitly model the products as nets as well. That
way they would not just be simple tokens but actual objects being exchanged
via the synchronous channels between the producers and consumers. In this case
the parameters of the channels would be the nets, which would be transmitted
from within the producer nets into the consumer nets.

The Petri net editor and simulator Renew (The REference NEt Workshop)
was developed alongside the reference net formalism, and is also described in [7]
as well as in [8]. It features all the necessary tools needed to create, modify, simu-

3 This is a special function of the Renew tool, which was used for this example.

288 Petri Nets & Concurrency Mascheroni, Wagner, and Wüstenberg



late and examine Petri nets of different formalisms. It is predominantly used for
reference nets, but can be enhanced and extended to support other formalisms.
It is fully plugin based, meaning that all functionality is provided by a num-
ber plugins that can be chosen, depending on the specific needs. Plugins can
encapsulate tools, like a file navigator or certain predefined net components, or
extensions to the standard reference net formalism, like hypernets or workflow
nets. Renew is freely available online and is being further developed and main-
tained by the Theoretical Foundations Group of the Department for Informatics
of the University of Hamburg. Since the tool supports the idea of nets within
nets and is flexible enough to support multiple formalisms, it was chosen as the
basic environment for the examinations of this paper.

2.2 Hypernets

As we will discuss later in section 3, we introduce hypernets in this paper be-
cause they have been used as a restriction of the reference nets formalism to
allow property verification in Renew. Hypernets are a nets-within-nets formal-
ism introduced to model systems of mobile agents [2]. After their introduction
several studies has been conducted on hypernets. In [3] it has been shown that
it is possible to expand a hypernet in a 1-safe Petri net in such a way that the
(hyper) reachability graph of the hypernet is equivalent to the reachability graph
of the 1-safe net. In [1] a class of transition system, called agent aware transition
systems, has been introduced to describe the behaviour of hypernets. In order to
model a class of membrane systems, a generalisation of the hypernet formalism
which relaxes some constraints of the basic formalism was introduced under the
name of generalised hypernet in [4], and a theorem proving the existence of an
expansion towards 1-safe nets for generalised hypernets was proved in [9].

Due to technical limitations in the Renew tool only the basic version of
the formalismi [3] has been implemented. Now we will informally discuss how
hypernets work by means of an example. From a structural point of view a hy-
pernet is a collection of (possibly empty) agents N = {A1, A2, ..., An}, which are
modelled as particular Petri nets. A state of a hypernet is obtained associating
to each one of the Ai agents (nets), but one, a place p belonging to one of the
other agents. That place will be the place which contains the agent Ai. This
containment relation induces a hierarchical structure which by definition must
be a tree. The root of the tree is the only agent which is not associated to any
place (this agent is the system net).

The system evolves moving agents from place to place. A peculiar character-
istic of hypernets is that the hierarchical structure is not static, but an agent
can be moved from a place p belonging to an agent Ai, to a place q belonging
to a distinct agent Aj . Another characteristic of hypernets is that agents cannot
be created or destroyed. To ensure this ”law of conservation of tokens” each net
representing an agent is structured as a set of modules which have the structure
of synchronised state machines, enriched with some communication places that
allow the exchange of tokens between two agents close in the hierarchy. Agents

Verifying reference nets with hypernets Petri Nets & Concurrency – 289



and modules have a sort, and an agent can only travel along modules of the
same sort.

In Figure 2, and Figure 3 the hypernet modelling a slightly modified version
of the one seater plane case of study is drawn. This case of study has been
introduced in [3], and models an airport in which planes can do basic things like
landing, deplaning/boarding passenger, refuelling, and taking off. The changes
we made in regards to the number of travellers in the example, the simplification
of the safety refuel check and the part of the hypernet which makes sure a plain
is empty when it is being refuelled.

To keep the example simple we considered a version with a plane which has
only one seat. We choose to illustrate this example to show in an informal way
how hypernets works. Moreover, in Section 5 we will show how it is possible
to prove some properties of this simple example using the Renew plugin we
developed.

Fig. 2. Airport agent

The agent in Figure 2 models the behaviour of the airport. It has three mod-
ules, one for handling passengers, one for handling planes and one for synchroni-

290 Petri Nets & Concurrency Mascheroni, Wagner, and Wüstenberg



sation purposes. Transition board belongs to both module passenger and module
plane, and can only be executed synchronously. The same applies for transitions
deplane and to_rf. Communication places are the dashed half circles. They can
either be up-communication places, used for communicating with the net at the
level immediately above in the hierarchy (such as the two communicating places
of the module plane in the airport agent), or down-communication places, used
to communicate with an agent located in another module of the current net
(such as the communication places in the synch, and passenger modules of the
airport). In the latter case, a name of a module is provided. In this module there
must be an agent ready to provide the traveling token which will be moved in
the hierarchy, otherwise the transition is not enabled.

For example, transition deplane of the passenger module in Figure 2 has an
input communication place which indicates that a token is expected. Since this
communication place is marked with the plane annotation, the traveling token
which is being moved to place l must be provided by a plane agent. This plane
agent must be located in the input place of transition deplane in module plane
of the airport, namely lg. In the example the only agent which can provide a
token is P1. The traveling token, which must be a passenger, is then selected

Fig. 3. The P1 plane agent shown in Figure 2

and taken from the seat place of the plane agent (Figure 3), and moved to l.
Transition to_rf is another example of use of communication places. From

the airport perspective it is only required that an agent located in the plane
module has a module synch containing with a transition to_rf preceeded and

Verifying reference nets with hypernets Petri Nets & Concurrency – 291



followed by two up-communication places. This requirement is fulfilled by agent
P1, but from the P1 perspective it is also required the enabledness of the syn-
chronized to_rf transition in the module check-passenger. Therefore this con-
figuration to_rf is not enabled because freePlaces is not marked.

Hypernet being a high level net model means that the execution of a transi-
tion, like deplane, has several firing-modes [10]. Each firing-mode in a hypernet
is a called consortium, and is obtained by selecting a transition, a set of agents
that contain the transition, and a set of passive agents that will be moved as
shown in the previous example when the consortium fires. For example, one en-
abled consortium is the one we just discussed which moves the agent T 1 from
place seat of the plane, to place rf of the airport agent that we just discussed.
Another consortium is corresponding to agent T 2, which in the configuration
shown in the example is not enabled since T 2 is not located in place seat.

One of the most important features of hypernets is that they have a straight-
forward expansion towards a behaviourally equivalent 1-safe nets. This expansion
not only gives hypernets a precise semantics in terms of a well known Petri nets
basic model, but also guarantees the possibility to reinterpret on hypernet all
the analysis techniques developed for the basic model. The 1-safe net is built in
the following way:

– For each agent A, and for each place p in the hypernet a place named 〈A, p〉
is added in the corresponding 1-safe net. A token in this place means that
A is located in p,

– For each consortium Γ in the hypernet a transition named tΓ is added in
the 1-safe net,

– An arc is added from a place 〈A, p〉, to a transition tΓ if A is a passive agent
in Γ , and p is the input place from which the agent A comes.

– An arc is added from a transition tΓ , to a place 〈A, p〉 if A is a passive agent
in Γ , and p is the output place where the agent A is going to.

Finally, a place 〈A, p〉 of the 1-safe net is marked if in the initial configuration
of the hypernet agent A is located in place p.

For example, the one seater plane case of study we just discussed is translated
in the 1-safe net shown in Figure 4. Plane P1 can be in places lg, rf, bg in the
hypernet, thus the 1-safe net contains places 〈P1, lg〉, 〈P1, lg〉,〈P1, lg〉. The same
must be done for traveler agents, and for the CHK check agent. Since transition
deplane in the hypernet has two firing-modes, in the 1-safe net two transitions
which models each of the firing modes of deplane are added (for simplicity both
called deplane). The same has been done for transition board. The firing of a
transition in the 1-safe net exactly models what happens when a consortium
fires in the hypernet.

As already mentioned, it can be demonstrated that this net is 1-safe, and
has a reachability graph isomorphic to the one of the corresponding hypernet.
Details, formal definitions, and proofs discussed can be found here for hypernets
in [3], and in [9] for the generalization version.

292 Petri Nets & Concurrency Mascheroni, Wagner, and Wüstenberg



<T1,seat>

<P1,rf>

<T2,l>

[]
to_rf to_bg

deplane board

[]

<T2,seat>

<P1,bg><P1,lg>

boarddeplane

<CHK,passenger>

<T1,l>
[]

<CHK,freeplaces>

[]

Fig. 4. The expansion toward 1-safe net of the hypernet in Figure 2 and Figure 3

3 Restricting Reference Nets to Hypernet

The main motivation for using high level nets is that, given a system, it is
possible to obtain a model of the system with an high level net which is smaller
compared to the model obtained using basic Petri nets. However, if you are not
careful, the increase of the modelling power decreases the decision power of the
model. For example, in [6] it was shown that, even considering a simple subclass
of reference nets with one system net, and several references to an object net,
the reachability problem becomes undecidable.

It is in this perspective that the implementation of the hypernet formalism as
a plugin of the Renew tool has been made. Restricting reference net is probably
the most intuitive way to use verification techniques in Renew. In particular,
the use of a nets-within-nets formalism like hypernets as a restriction permits
the use of the nets-within-nets paradigm, which is probably the most intresting
feature in Renew. The original contribute of the paper is to show how this
plugin allows the use of verification techniques, like invariants and CTL model
checking, to check properties of systems which are suitable to be modeled with
the the nets-within-nets paradigm.

Verifying reference nets with hypernets Petri Nets & Concurrency – 293



4 The Hypernet Plugin

From a technical point of view the implementation of a new formalism in Renew
is done using a plugin mechanism. The most important method contained in the
classes implementing the plugin is a compile method which takes as input a
shadow net, a set of Java objects containing all the information about the net
the user has drawn in the graphical editor of Renew, and transform it in a set
of Java objects used by the simulator engine to simulate the net. This compile
method is responsible for checking that the net drawn by the user is an actual
hypernet in our case. In particular, in order to be able to use Renew as a
hypernet simulator, the arc and transition inscriptions used in the modeling
process must be restricted in such a way that the drawn net is a hypernet.
Therefore the restrictions applied in the plugin are the following:

– Inscriptions (tokens) inside places can only be in the following forms: iden-
tifier or identifier:netType. In the first case the identifier represent the name
of an empty net, and will be treated by the simulator engine as an black
token; in the second case a new instance of the net netType will be created
and placed inside the place.

– Inscriptions on arcs are restricted to single variables only. Each arc must
contain exactly one variable inscription.

– The inscriptions of input (output) arcs must not be duplicated. In this way it
is possible to preserve the identity of nets: duplication of tokens is forbidden.

– Balancing of transition has to be checked, i.e.: the set of variable names used
to inscribe input arcs must coincide with the set of variable names used to
inscribe output arcs.

– Communication places are deleted, and are simulated by means of syn-
chronous channels. These channels are counted when checking transition
balance.

For example, the airport agent shown in Figure 2 can be drawn as a hypernet
in Renew using the net shown in Figure 5. The traveler empty tokens are place
inscriptions T 1 and T 2, and the plane net instance is created by the P1 : place
inscription. Each transition is balanced. For example transition deplane in the
airport has a bidirectional arc labelled pl, and an output arc labelled pa for which
there is a correspondant downling, namely pl : deplane(pa). Each communication
place is deleted, and it is replaced with a synchronous channel. Land and takeoff
transitions are equipped with two uplink because they were connected to two
up-communication places. Deplane and board transitions contain two downlinks
because they were connected to down-communicating places. The module name
used to label communicating places is used to retrieve the variable name used
in the downlink.

The P1 agent of Figure 3 is drawn in the hypernet plugin of Renew with
the net in Figure 6. Again, up-communication places are replaced by channels,
and transition to_rf must synchronise with the corresponding transition in the
airport agent.

294 Petri Nets & Concurrency Mascheroni, Wagner, and Wüstenberg



pl
:land(pl) :takeoff(pl)

plplplplpl

pa pa

pl

lg bg

l

rf

T2

pl:to_rf()

to_bg takeoffland to_rf

deplane board

pl

pl:board(pa)pl:deplane(pa)

P1:plane

Fig. 5. The airport agent drawn with the hypernet plugin of Renew

chk

pa:board(pa) :deplane(pa) :to_rf()

to_rfdeplaneboard

chk

pa

chk

chk

seat
T1

chk

CK

freeplaces

numPass

Fig. 6. The plane agent drawn with the hypernet plugin of Renew

As we already mentioned, thanks to the expansion to 1-safe nets it is possible
to use verification techniques defined for this class of net to analyse system
modelled with a hypernet. Two of the most useful techniques are invariants
analysis, and model checking. We explored two possibilities of using them in
the plugin we implemented: internal implementation in Renew, or exporting
the 1-safe net in a format understandable by other tools. Since implementing
these analysis techniques in an efficient way is a difficult task (some tools are
very elaborated, and have been implemented over several years), and since very
efficient open source tools are available for free, we decided to use external tools
to implement invariant analysis, and model checking of a hypernet.

In the following sections we will show how the extensions and incorporation
can be used in a practical example.

5 Example

The invariant analysis, and the model checking extensions we implemented
in Renew can be used to prove properties of a system. We have chosen the
external tools LoLA (see http://www2.informatik.hu-berlin.de/top/lola/
lola.html) and INA (see http://www2.informatik.hu-berlin.de/~starke/

Verifying reference nets with hypernets Petri Nets & Concurrency – 295



ina.html) for analysing purposes. Starting from the hypernet example of Sec-
tion 2.2, we will prove using invariants that there is never more than one passen-
ger on the plane, and we will prove using the model checker that a plane never
refuels if there are a passenger on board.

By running the invariant analysis we get the following invariants:

T2@l T2@seat CHK@pass P1@lg P1@rf P1@bg CHK@freepl T1@seat T1@l
0 0 0 1 1 1 0 0 0
1 1 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0 1
0 1 0 0 0 0 1 1 0

The first four invariants are those which guarantee the truth of “law of con-
servation of agents”, achieved thanks to the state machine decomposition in the
formalism. For each agent there is a corresponding invariant indicating the places
in which that agent can be located. Since the places of each invariant contains
only one token in the initial marking, it is mathematically proved that each agent
can be only in certain places: the places which are of the same sort of the agent
itself. Moreover, these four invariants can also be used to prove that the net is
1-safe: they cover all places of the net, and contain only one token in the initial
marking.

The fifth invariant is {〈T 2, l〉, 〈CHK,numPass〉, 〈T 1, l〉} and contains two
tokens in the initial marking. Together with the second and the fourth invariants
it can be used to prove that if the place 〈CHK,numPass〉 is marked then one
of the two passenger is seated on the plane. The place is not marked only if both
passenger are in the airport.

The sixth invariant is the counterpart of the fifth, and states that only one of
the following places can be marked: {〈T 2, seat〉, 〈CHK, freeplaces〉, 〈T 1, seat〉}.
The information is clear: only one passenger can be in the seat place of the plane.
If none of them is in the plane 〈CHK, freeplaces〉 is marked.

In Figure 7 a screenshot of Renew after the computation of invariants is
shown.

While invariants analysis can be launched, and the computed invariants can
be analysed to extract information about the system, in order to analyze the
system using model checking a formula specified in a temporal logic is needed.
Since we choose LoLA, which is a CTL model checker, we need to specify the
property we want to verify using this logic. For example, checking the property
“if the plane is located in the place representing the refueling station then no
passenger is on board” can be done by entering as input of the Renew plugin
we implemented the following CTL formula:

ALLPATH ALWAY S

NOT ((T 1.seat = 1 AND P1.rf = 1) OR (T 2.seat = 1 AND P1.rf = 1))

296 Petri Nets & Concurrency Mascheroni, Wagner, and Wüstenberg



Fig. 7. A screenshot of the invariants computed inside Renew

The formula checks that in every reachable state (ALLPATH ALWAY S) the
situation in which both placed 〈T 1, seat〉 and 〈P1, rf〉 are marked never occurs
(and the same for places 〈T 2, seat〉 and 〈P1, rf〉). The analysis performed con-
firms that the truth value of the formula is true, which is enough to guarantee
that the property is true for the system.

As it can be seen in this simple example, the advantage of using model check-
ing is that it is possible to express, and consequently to verify, more properties
compared to invariant analysis. In our example, the information that a plane
never refuels if a passenger is on board is not present in the computed invari-
ants, but can be verified using the model checking. However, the drawback is
that it is necessary to explore the whole state space of the system in order to ver-
ify a property. Invariants are computed on the static structure of the net, which
is usually exponentially smaller compared to the state space of the system. In
general, in real huge application both the techniques are useful: invariants give a
quick overview of some properties of the system, model checking take more time
and it can be used to verify specific properties of the system.

6 Conclusion

In this paper we discussed the verification of high-level Petri nets which use the
nets within nets paradigm, with particular attention to the reference nets and
the hypernets formalisms. We examined them, and we showed how to transform
a subset of reference nets into hypernets, which in turn can be transformed
into 1-safe nets. We then proceeded to describe the hypernet plugin created for
Renew in the course of our work. With the help of this plugin and external tools
we can analyse the transformed low-level nets, and in this way verify properties
of the high-level net.

The contributions, and the results of this paper are the implementation of a
plugin for Renew with which it is possible to draw of a hypernet, to compute

Verifying reference nets with hypernets Petri Nets & Concurrency – 297



its invariants, and to model check it. With this approach it is now possible to
verify properties of systems modelled with net within nets oriented formalisms,
such as reference nets and hypernets.

The results of this paper will make it possible to automatically analyse a hy-
pernet, instead of first transforming it by hand, and then analysing the equiva-
lent low-level nets. This will make the verification simpler and more user-friendly,
which in turn will make it easier for software engineers to use these techniques
in practical use cases. We plan to use these approaches to verify the model of
an actually adopted Grid tool for High Energy Physics data analysis, and in the
context of the HEROLD project. Future work will also focus on extending the
possibilities of the verification, automating the process as far as possible and
extending the toolset to other high-level Petri nets formalisms. The flexibility
and adaptability of the Renew tool will be a large asset in this endeavour.
Finally, the definitions of analysis techniques directly on the high level model,
without the need of converting it to a low-level one, is a subject for future in-
vestigations, because it will avoid the conversion to low-level nets, which is an
expensive operations in term of computational resources.

References

1. M Bednarczyk, L Bernardinello, W Pawłowski, and L Pomello. Modelling and
analysing systems of agents by agent-aware transition systems. In F. Fogelman-
Soulie, editor, Mining Massive Data Sets for Security: Advances in Data Mining,
Search, Social Networks and Text Mining, and their Applications to Security, vol-
ume 19, pages 103–112. IOS Press, 2008.

2. Marek A. Bednarczyk, Luca Bernardinello, Wiesław Pawłowski, and Lucia
Pomello. Modelling mobility with Petri Hypernets. In Recent Trends in Alge-
braic Development Techniques, volume 3423/2005 of Lecture Notes in Computer
Science, pages 28–44. Springer Berlin / Heidelberg, 2005.

3. Marek A. Bednarczyk, Luca Bernardinello, Wiesław Pawłowski, and Lucia
Pomello. From Petri hypernets to 1-safe nets. In Proceedings of the Fourth Inter-
national Workshop on Modelling of Objects, Components and Agents, MOCA’06,
Bericht 272, FBI-HH-B-272/06, 2006, pages 23–43, June 2006.

4. Luca Bernardinello, Nicola Bonzanni, Marco Mascheroni, and Lucia Pomello. Mod-
eling symport/antiport p systems with a class of hierarchical Petri nets. In Mem-
brane Computing, volume Volume 4860/2007 of Lecture Notes in Computer Sci-
ence, pages 124–137. Springer Berlin / Heidelberg, 2007.

5. Soren Christensen and Niels Damgaard Hansen. Coloured petri nets extended with
channels for synchronous communication. Lecture Notes in Computer Science,
815/1994:159–178, 1994. Application and Theory of Petri Nets 1994.

6. Michael Köhler and Heiko Rölke. Properties of object Petri nets. In Jordi Cor-
tadella and Wolfgang Reisig, editors, ICATPN, volume 3099 of Lecture Notes in
Computer Science, pages 278–297. Springer, 2004.

7. Olaf Kummer. Referenznetze. Logos Verlag, Berlin, 2002.
8. Olaf Kummer, Frank Wienberg, Michael Duvigneau, Jörn Schumacher, Michael

Köhler, Daniel Moldt, Heiko Rölke, and Rüdiger Valk. An extensible editor and
simulation engine for Petri nets: Renew. In J. Cortadella and W. Reisig, editors,

298 Petri Nets & Concurrency Mascheroni, Wagner, and Wüstenberg



International Conference on Application and Theory of Petri Nets 2004, volume
3099 of Lecture Notes in Computer Science, pages 484 – 493. Springer-Verlag, 2004.

9. Marco Mascheroni. Generalized hypernets and their semantics. In Proceedings of
the Fith International Workshop on Modelling of Objects, Components and Agents,
MOCA’09, Bericht 290, 2009, pages 87–106, September 2009.

10. Einar Smith. Principles of high-level net theory. In Lectures on Petri Nets I: Basic
Models, volume Volume 1491/1998 of Lecture Notes in Computer Science, pages
174–210. Springer Berlin / Heidelberg, 1998.

11. Rüdiger Valk. Object Petri nets: Using the nets-within-nets paradigm. In Jörg
Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Advanced Course on
Petri Nets 2003, volume 3098 of Lecture Notes in Computer Science, pages 819–
848. Springer-Verlag, 2003.

Verifying reference nets with hypernets Petri Nets & Concurrency – 299


