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Abstract. QuestionCube is a framework for Question Answering (QA)
that combines several techniques to retrieve passages containing the ex-
act answers for natural language questions. It exploits: (a) Natural Lan-
guage Processing algorithms for question and candidate answers analysis
both in English and Italian; (b) Information Retrieval probabilistic mod-
els for candidate answers retrieval and (c) Machine Learning methods
for question classification. The data source for the answer is an unstruc-
tured text document collection stored in search indices. In this paper an
overview of the QuestionCube framework architecture is provided, to-
gether with a description of Wikiedi, a QA system for Wikipedia which
exploits the proposed framework.

1 Introduction

Question Answering (QA) emerged in the last decade as one of the most promis-
ing fields in Artificial Intelligence due to some competitions organized during in-
ternational conferences [31, 25], but the first studies can be dated back to 1960s
[3, 29]. In the last years some enterprise applications shown the potential of the
state of the art technology, for example the IBM’s Watson/DeepQA system [12,
11]. By exploiting techniques borrowed from Information Retrieval and Natural
Language Processing (NLP), QA systems are able to answer user questions ex-
pressed in natural language with short passages of text which contain the exact
answer or sometimes directly with the exact answer, depending on the domain,
rather than returning long lists of full-text documents that users have to check
in order to find the information needed, as most search engines do.

Most closed-domain QA systems use a variety of NLP methods to help the
understanding of user’s queries and the matching of passages extracted from
documents [13, 15, 7]. The most commonly adopted linguistic analysis steps in-
clude: stemming, lemmatization with dictionaries, part-of-speech tagging, pars-
ing, named entity recognition, lexical semantics (Word Sense Disambiguation),
etc. The use of those NLP steps is fundamental to find the correct answer in
closed-domain QA, since there is likely to be few answers to any user’s question
and the way in which they are expressed may be significatively different from
the question. The difficulty of the task lies in mapping questions to answers by
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way of uncovering complex lexical, syntactic, or semantic relationships between
questions and candidate answers.

Open-domain QA systems, instead, have to face different types of problems:
the probability of finding correct answers is higher, but the noise produced from
the Web is also much higher than in the case of closed domain. Most systems
exploit redundancy and textual pattern extraction and matching to solve the
problem [9, 14, 24, 19].

The main limitation of current systems working on specific document col-
lections is that they focus on precise tasks and are not general enough. On the
other hand, open-domain systems, particularly those working on the World Wide
Web, have long response times and lack in accuracy.

This paper describes QuestionCube, a framework for building QA systems
with focus on closed domains, but which could be easily applied to open domains
as well. It exploits NLP algorithms for both English and Italian and integrates a
question categorization component based on Machine Learning techniques and
linguistic rules written by human experts. Text document collections used as data
sources are organized in indices for generic unstructured data storage with fast
and reliable search functions exploiting state-of-the-art Information Retrieval
weighting schemes.

The paper is structured as follows. Section 2 provides a generic overview of
the framework architecture, while in Section 3 details about main components for
analysis, search and filtering are described. Section 4 presents Wikiedi, a proof-
of-concept system which relies on the QuestionCube framework and exploits
Wikipedia pages as data source. Final conclusions, then, close the paper.

2 Framework overview

QuestionCube is a multilingual QA framework built using NLP and IR tech-
niques.

The architecture, shown in Figure 1, is similar to the one proposed in [27],
but it differs in several important aspects that make it more general and easier
to expand. The first step is a linguistic analysis of the user’s question. Ques-
tion analysis is performed by a pipeline of NLP analyzer. The NLP components
tag the question at different linguistic levels. The linguistic tagging process al-
lows to classify the question according to a shared question-type hierarchy. The
question classifier uses an ensemble learning approach that exploits both hand-
written rules and rules inferred by machine learning categorization techniques,
thus bringing together the hand-written rules’ effectiveness and precision and
the machine learning classifier’s recall. The question is then passed to the search
engines, whose architecture is highly parallel and distributed. Moreover, each
single engine has its own query generator, because query’s structure and syntax
may change across different engines. The filter pipeline is then responsible for the
scoring and the filtering of the passages retrieved by the search engines. Finally,
the ranked list of passages is presented to the user.
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Fig. 1. QuestionCube architecture overview

The main motivation behind QuestionCube architecture is to create a Ques-
tion Answering system simply by the dynamic composition of framework compo-
nents. The high level of abstraction of the components allows to add support to
a new language by just creating new interchangeable analyzers which implement
the algorithms for the specific language. Another point that must be underlined
is that our approach relies on several search engines in order to exploit different
data source. For example, documents and passages could be retrieved from a
database, from a Web search engine or from an enterprise search engine. The
parallel approach allows to query several data sources at the same time.

3 Details

3.1 Question Analysis

The macro-component of the question analysis is composed of a pipeline of
NLP analyzers, a data-structure to represent linguistic annotated text and the
question classifier, as shown in Figure 2.

The NLP pipeline is easily configurable depending on the application domain
of the QA system. Obviously, a small number of basic NLP analyzers added to
the pipeline allows faster tagging, while more components in the pipeline requires
more time for deeper linguistic analysis.

NLP analyzers are provided for both English and Italian. The stemmer is
implemented by Snowball1 both for English and Italian. The lemmatization is
realized exploiting the morpho-syntactic analyzer of the WordNet API [10] for

1 Available on-line: http://snowball.tartarus.org/
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Fig. 2. Question analysis macro-component

the English, while Morph-it [32] is exploited for the Italian. Named Entity Recog-
nition (NER) is performed by a machine learning classifier based on Support
Vector Machines [8] using an open-source tool called YAMCHA [16]. The same
tool is used for the chunker component. Both in chunking and NER, POS-tags
and lemmas are adopted as features. The Word Sense Disambiguation (WSD) is
implemented by the UKB algorithm [1], which is a graph-based technique based
on a personalized version of PageRank [4] over WordNet graph.

The output of the NLP analyzers is a set of tags that are added to the text
representation. The text representation is the input for the search engines, for
the classifier and also for the filters, as they need linguistic information about
the question to match it with the answers.

The NLP pipeline is also used by each filter to analyze the candidate answer
at the same linguistic level as the question.

3.2 Question Classifier

The annotated text representation of the question is used by the question clas-
sifier. It is composed by three classifiers as shown in Figure 3.

The first one is based on Support Vector Machines and uses the tags from
the text representation as features to classify the question. The main features
are the head word of the question, the terms, their PoS tags, semantic identifiers
provided by WSD and Named Entities.

The other two classifiers are rule-based ones that exploit respectively hand-
written and learned rules in the form of regular expressions based on Named
Entity categories and semantic identifiers.
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The outputs of the classifiers are merged by using a weighted voting system
that returns a question category.

The category is selected among the ones in the typology proposed in [17,
18]. Categories are exploited by filters in order to give a higher score to those
candidate answers containing Named Entities in accordance with the question
category.

3.3 Search Engine
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The search engine macro-component is designed to work in parallel and dis-
tributed environment. It allows to implement several information retrieval strate-
gies and thus to aggregate their results, as shown in Figure 4.

The parallel engine is modular and it is possible to add an arbitrary number of
different search engines inside it. It calls each engine when a new question comes
and merges their outputs in a single list. The list contains all the candidate
answers from all the engines, each one with a reference to the engines that
retrieved it and the score assigned by each engine. Some filters normalize those
scores in order to get an overall best score. Each single search engine has its
own query generation component, because the syntax of the query may change
among different engines. Each query generator may use different annotations
from the text representation: some may use only tokens, others can use lemmas
or stems, others may use WordNet synsets to generate the query. This approach
allows to add a new search engine inside the framework with minimal effort. The
main goal of using more than one search engine is to rely on different retrieval
strategies in order to take the best results from each one. For example, in the
current implementation, we adopt two search engines: the first one works on
keywords, while the second one relies on lemmas. Moreover, the use of multiple
search engines allows to use different retrieval models merging the results in an
unique result set.
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The process performed by each search engine is described in Figure 5. The
query generator builds the query for its search engine from the text represen-
tation provided by the parallel engine. Each query generator may implement
different query improvement techniques (such as relevance feedback and query
expansion). The query is executed by the search engine that returns the best scor-
ing documents. The passage index is used to obtain the passages from retrieved
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documents. These passages are merged into one single list by an aggregation
component and then passed to the filters which score, sort and filter them.

The QuestionCube framework provides a search engine based on BM25 model
[26]. The query generation component for this searcher allows three different
query improvement techniques:

– Query expansion through WordNet synonyms of the synsets found in the
question;

– Kullback-Liebler Divergence, a statistical technique that exploits the terms
distribution of the top-ranked documents [6, 20];

– Divergence From Randomness, a statistical technique that weights the terms
distribution with the Bo1 weighting scheme [2].

It is important to underline that the WordNet based query expansion is used
only if the question has been disambiguated.

3.4 Filters
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Fig. 6. Candidate answers filtering macro-component

This macro-component, sketched in Figure 6, contains all the passages filters.
It allows to build a pipeline in which it is possible to add filters. If there is no
dependence between the filters, it is possible to place them in any order to create
different pipelines for several domains and needs.

Each filter checks every passage in input obtained from the search engine
and assigns a score to them depending on the implemented logic. Each filter can
exploit information provided by the text representation and use the category
tag assigned to the question by the classifier. Some filters do not assign scores
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but just sort the passages according to some score or ranking threshold. The
composition of the filters in the pipeline is important to determine the quality
of the results returned by the system, its efficiency and the time taken to give
an answer.

A description of the logic of each filter is given below:

– Zero Filter: removes from the list all those passages that, at the moment
of the analysis, have a general score of 0;

– Top-N Filter: sorts passages in a decreasing order according to their current
score and removes all those passages under the N -th position in the ranking
(N is given as input to the filter);

– Terms filter: assigns a score to every analyzed passage based on the fre-
quency of the question terms in the passage;

– Normalization Filter: assigns a score to each analyzed passage based on
the passage length, by normalizing its overall score. Both a simple normal-
ization filter (which considers only the number of terms and is generally
called Byte-size Normalization) and a filter based on the Pivoted Normalised
Document Length technique are implemented. Both techniques and their ef-
fectiveness are discussed in [21, 30];

– N-grams Filter: assigns a score to each analyzed passage based on the
overlapping of n-grams between the question and the passage (n is given as
input to the filter);

– Density Filter: assigns a score to each analyzed passage based on the dis-
tance of the question terms inside the passage increasing the score of those
passages in which the question terms are closer. The density is calculated by
the Minimal Span Weighting schema proposed by [22]:(

|q∩d|
1+max(mms)−min(mms)

)α ( |q∩d|
|q|

)β
where q and d are the set of terms respectively of the query and the document
(specifically here, the query is the question and the document is the passage);
max(mms) and min(mms) are the initial and final location of the sequence
of document terms containing all the query terms; and α and β are two
parameters.

– Syntactical Filter: assigns a score to each analyzed passage based on the
Phrase Matching algorithm, presented in [23]. The algorithm takes into ac-
count the head of each phrase. If the head is common to the two considered
texts (in this case the query and the passage), the maximal overlapping
length of each phrase is calculated.

– Semantic Filter: assigns a score to each analyzed passage based on the
frequency of terms tagged with the same WordNet synsets inside both ques-
tion and passage. A more complex filter that calculates a semantic similarity
measure between texts based on the semantic distance measure described in
[5] is one of the future developments;

– Category Filter: assigns a score to each analyzed passage based on a list
of pairs that link the question categories to typologies of named entity: if,
on the basis of the question category, entities of the expected typology are
found in the passage the score will be positive.
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– Z-Score Filter: assigns a score to each analyzed passage based on the Z-
Score normalization [28] of scores assigned by search engines and other filters.

A boost factor can be assigned to each filter which intensifies or decreases its
strength.

4 Wikiedi

Wikiedi is a Web application that allows users to ask questions and receive
answers extracted from articles from Italian and English Wikipedia. The Ques-
tion Answering core of Wikiedi is built on the QuestionCube framework with a
specific configuration that balances accuracy and reactivity.

The system is configured to index Wikipedia pages with their respective
linguistic annotations. This ensures quick response time because NLP algorithms
will not process linguistically each passage at runtime. To improve performances,
the annotated passages are represented in a compact binary structure stored in
a database. This allows fast passage retrieval reducing to zero the reconstruction
time.

The filters adopted in Wikiedi range from the most basic ones that work on
tokens to the most sophisticated ones exploiting semantics.

The decision to use documents from Wikipedia to evaluate the potential
of QuestionCube framework is motivated by the heterogeneous nature of the
information on Wikipedia. This reflects the enterprise context where documents
that belong to different domains are stored in a single collection increasing the
noise in the retrieval phase.

The other goal of Wikiedi is to engage the user in improving system per-
formances. After the user has submitted a question to the system, Wikiedi will
display an ordered list of answers. The user will have the possibility of voting for
the correct answer, so that the system can use the feedback to improve precision
and recall in future queries. The next time the question is issued, the results will
be sorted by mixing the score given by the system and users’ judgements.

Moreover, when one of the answers provided by Wikiedi is not correct, users
will have the opportunity of inserting the correct one. Using this strategy it is
possible to enrich the system with additional information. Users asking the same
question will then obtain both automatically obtained results alongside with user
added answers.

To meet users information needs, the QuestionCube framework also allows
to implement “similar questions” function easily by indexing user questions as
they are asked and calculating their similarity. Moreover, the framework allows to
implement a simple content-based recommender system that suggests questions
the user may be also interested in.

The results are shown segment by segment, as shown in Figure 7. Clicking
on a result, a page of the full Wikipedia article text is shown. The page is
automatically enriched mashing up several multimedia contents from Web 2.0
websites such as Fotopedia, Flickr, Youtube and Vimeo.
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Fig. 7. Wikiedi web interface

The Italian version of Wikiedi is available on-line: www.wikiedi.it. The En-
glish version will follow soon on www.wikiedi.com.

As for the evaluation, currently statistics about Wikiedi performances are
currently not available, since a large number of users’ feedback is needed to
evaluate them. However, an evaluation of a system built with the QuestionCube
framework has been performed using a standard dataset adopted in QA called
CLEF 2010 ResPubliQA [25] based on multi-lingual documents from European
Legislation. The dataset consists of 10,855 documents and 200 questions. The
system is evaluated using the c@1 measure, which takes into account the accuracy
on the first returned passage. Table 1 reports the results of our system for each
language. The last column shows the results obtained by the best participant
system. The obtained results show improvements both in English and Italian.

Table 1. Results on CLEF 2010 ResPubliQA with c@1 measure

Language QuestionCube Best system

Italian 0.68 0.63

English 0.75 0.73

5 Conclusions

In this paper, the QuestionCube framework has been presented. QuestionCube
finds the correct answer to a question by combining Natural Language Process-
ing algorithms, Information Retrieval probabilistic models and Machine Learn-
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ing methods. Wikiedi was also presented as an example enterprise application.
Wikiedi allows the user to ask questions in natural language on Wikipedia pages
combining the power of the QuestionCube framework with feedback and addi-
tional information provided by the community of users. Finally, an evaluation on
a standard dataset, CLEF 2010 ResPubliQA, has been provided, which shows
an improvement in comparison to other state-of-the-art systems.
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14. Harabagiu, S.M., Paşca, M.A., Maiorano, S.J.: Experiments with open-domain tex-
tual question answering. In: Proceedings of the 18th conference on Computational
linguistics - Volume 1. pp. 292–298. COLING ’00, Association for Computational
Linguistics, Stroudsburg, PA, USA (2000)



12 Piero Molino and Pierpaolo Basile

15. Hovy, E.H., Gerber, L., Hermjakob, U., Junk, M., Lin, C.Y.: Question answering
in webclopedia. In: TREC (2000)

16. Kudo, T., Matsumoto, Y.: Fast Methods for Kernel-Based Text Analysis. In: Pro-
ceedings of the 41st Annual Meeting of the Association for Computational Lin-
guistics. pp. 24–31. ACL, Sapporo, Japan (July 2003)

17. Li, X., Roth, D.: Learning question classifiers. In: Proceedings of the 19th interna-
tional conference on Computational linguistics - Volume 1. pp. 1–7. COLING ’02,
Association for Computational Linguistics, Stroudsburg, PA, USA (2002)

18. Li, X., Roth, D.: Learning question classifiers: the role of semantic information.
Nat. Lang. Eng. 12, 229–249 (September 2006)

19. Lin, J.: An exploration of the principles underlying redundancy-based factoid ques-
tion answering. ACM Trans. Inf. Syst. 25 (April 2007)

20. Lv, Y., Zhai, C.: Positional relevance model for pseudo-relevance feedback. In:
Proceeding of the 33rd international ACM SIGIR conference on Research and
development in information retrieval. pp. 579–586. SIGIR ’10, ACM, New York,
NY, USA (2010)

21. Manning, C.D., Raghavan, P., Schtze, H.: Introduction to Information Retrieval.
Cambridge University Press, New York, NY, USA (2008)

22. Monz, C.: Minimal span weighting retrieval for question answering. In: Gaizauskas,
R., Greenwood, M., Hepple, M. (eds.) Proceedings of the SIGIR Workshop on
Information Retrieval for Question Answering. pp. 23–30 (2004)

23. Monz, C., de Rijke, M.: Tequesta: The university of amsterdam’s textual question
answering system. In: TREC (2001)
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