
A modal reconstruction of Rational Closure

Laura Giordano1, Valentina Gliozzi2, Nicola Olivetti3, and Gian Luca Pozzato2

1 Dipartimento di Informatica - Universitá del Piemonte Orientale “Amedeo Avogadro”,
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Abstract. This paper provides a general semantic framework for nonmonotonic
reasoning, based on a minimal models semantics on the top of KLM systems for
nonmonotonic reasoning. This general framework can be instantiated in order to
provide a semantic reconstruction within modal logic of thenotion of rational
closure, introduced by Lehmann and Magidor. We give two characterizations of
rational closure: the first one in terms of minimal models where propositional in-
terpretations associated to worlds are fixed along minimization, the second one
where they are allowed to vary. In both cases a knowledge basemust be expanded
with a suitable set of consistency assumptions, represented by negated condition-
als. The correspondence between rational closure and minimal model semantics
suggests the possibility of defining variants of rational closure by changing either
the underlying modal logic or the comparison relation on models.

1 Introduction

In a seminal work Kraus Lehmann and Magidor [7] (henceforth KLM) proposed an ax-
iomatic approach to nonmonotonic reasoning. Plausible inferences are represented by
nonmonotonic conditionals of the formA |∼ B, to be read as “typically or normallyA
entailsB”: for instancemonday |∼ go work, “normally on Monday I go to work”. The
conditional is nonmonotonic since fromA |∼ B one cannot deriveA ∧ C |∼ B, in our
example, one cannot derivemonday ∧ ill |∼ go work. KLM proposed a hierarchy of
four systems, from the weakest to the strongest: cumulativelogic C, loop-cumulative
logic CL , preferential logicP and rational logicR. Each system is characterized by a
set of postulates expressing natural properties of nonmonotonic inference. We present
below an axiomatization of the two stronger logicsP andR (C andCL being too weak
to be taken as an axiomatic base for nonmonotonic reasoning). But before presenting
the axiomatization, let us clarify one point: in the original presentation of KLM sys-
tems, [7] a conditionalA |∼ B is considered as a consequence relation between a pair
of formulasA andB, so that their systems provide a set of “postulates” (or closure
conditions) that the intended consequence relations must satisfy. Alternatively, these
postulates may be seen asrules to derive new conditionals from given ones. We take
a slightly different viewpoint, shared among others by Halpern and Friedman [4] (see
Section 8) and Boutilier [2] who proposed a modal interpretation of KLM systemsP



andR: in our understanding these systems are ordinary logical systems in which a con-
ditionalA |∼ B is a propositional formula belonging to the object language. Whenever
we restrict our consideration, as done by Kraus Lehmann and Magidor, to the entailment
of a conditional from a set of conditionals, the two viewpoints coincide: a conditional
is a logical consequence in logicP/R of a set of conditionals if and only if it belongs to
all preferential/rational consequence relations extending that set of conditionals, or (in
semantic terms), it is valid in all preferential/rational models (as defined by KLM) of
that set.

Here is the axiomatization of logicsP and R, in our presentation KLM postu-
lates/rules are justaxioms. We use⊢PC (resp.|=PC ) to denote provability (resp. va-
lidity) in the propositional calculus .

All axioms and rules of propositional logic

A |∼ A (REF)

if ⊢PC A ↔ B then(A |∼ C) → (B |∼ C), (LLE)

if ⊢PC A → B then(C |∼ A) → (C |∼ B) (RW)

((A |∼ B) ∧ (A |∼ C)) → (A ∧ B |∼ C) (CM)

((A |∼ B) ∧ (A |∼ C)) → (A |∼ B ∧ C) (AND)

((A |∼ C) ∧ (B |∼ C)) → (A ∨ B |∼ C) (OR)

((A |∼ B) ∧ ¬(A |∼ ¬C)) → (A ∧ C) |∼ B) (RM)

The axiom (CM) is called cumulative monotony and it is characteristic of all KLM
logics, axiom (RM) is called rational monotony and it characterizes the logic of rational
entailmentR. The weaker logic of preferential entailmentP contains all axioms, but
(RM). P and R seem to capture the core properties of nonmonotonic reasoning, as
shown in [4] they are quite ubiquitous being characterized by different semantics (all of
them being instances of so-called plausibility structures).

Logics P and R enjoy a very simple modal semantics, actually it turns out that
they are the flat fragment of some well-known conditional logics. For P the modal
semantics is defined by considering a set of worldsW equipped by an accessibility
(or preference) relation< assumed to be transitive, irreflexive, and satisfying the so-
called Smoothness Condition. For the strongerR < is further assumed to be modular.
Intuitively the meaning ofx < y is thatx is more normal/less exceptional thany. We
say thatA |∼ B is true in a model ifB holds in all most normal worlds whereA is true,
i.e. in all<-minimal worlds satisfyingA.

KLM systems formalize desired properties of nonmonotonic inference. However,
they are too weak to perform useful nonmonotonic inferences. For instance KLM sys-
tems cannot handle irrelevant information in conditionals: from monday |∼ go work,
there is no way of concludingmonday ∧ shines |∼ go work in any one of KLM
systems. Partially motivated by the weakness of the axiomatic approach, Lehmann and
Magidor have proposed a true nonmonotonic mechanism on the top of logicR called
rational closure. Rational clsure on the one hand preserves the properties ofR, on the
other hand allows one to perform some truthful nonmonotonicinferences, like the one



just mentioned (monday ∧ shines |∼ go work).4 The authors has given a syntactic
procedure to calculate the set of conditionals entailed by the rational closure as well
as a quite complex semantic construction. It is worth noticing that a strongly related
construction has been proposed by Pearl [9] with his notion of 1-entailment, motivated
by a probabilistic interpretation of conditionals.

In this work we tackle the problem of giving a purely semanticcharacterization of
rational closure, stemming directly from the modal semantics of logicR. Notice that
we restrict our attention to finite knowledge bases. More precisely, we try to answer to
the following question: given the fact that logicR is characterized by a specific class of
Kripke models, how can we characterize the Kripke models of the rational closure of a
set of positive conditionals?

The characterization we propose may be seen as an instance ofa general recipe
for defining nonmonotonic inference: (i) fix an underlying modal semantics for condi-
tionals (such as the one ofP or R), (ii) obtain nonmonotonic inference by restricting
semantic consequence to a class of “minimal” models according to some preference
relation on models. The preference relation in itself is defined independently from the
languageand from theset of conditionals(knowledge base) whose nonmonotonic con-
sequences we want to determine. In this respect our approachis similar in spirit to
“minimal models” approaches to nonmonotonic reasoning, such as circumscription.

The general recipe for defining nonmonotonic inference we have sketched may have
a wider interest than that of capturing Lehmnan and Magidor’s rational closure. First of
all, we may think of studying variants of rational closure based on other modal logics
and/or on other comparison relations on models. Secondly, being a purely semantic
approach (the preference relation is independent from the language), our semantics can
cope with a larger language than the one considered in KLM framework. To this regard,
already in this paper, we consider a richer language allowing boolean combinations of
conditionals5. In the future, we may think of applying our semantics to Nonmonotonic
Description Logics, where an extension of rational closurehas been recently considered
[3].

In any case, the quest of a modal characterization of rational closure turns out to be
harder than expected. Our semantic account is based on the minimization of theheight
of worlds in models, where the height of a world is defined in terms of length of the
<-chains starting from the world. Intuitively, the lower theheight of a world, the more
normal (or less exceptional)is the world and our minimization corresponds intuitively
to the idea of minimizing less-normal or less-plausible worlds (or maximizing most
plausible ones).

4 Actually the main motivation of Lehmann and Magidor leadingto the definition of rational
closure wastechnical: it turns out that the intersection of all rational consequence relations
satisfying a set of conditionals coincides with the leastpreferentialconsequence relation sat-
isfying that set, so that (i) the axiom/rule (RM) does not addanything and (ii) such relation in
itself fails to satisfy (RM). Their notion of rational closure provides asolution to both prob-
lems and can be seen as the “minimal” (in some sense) rationalconsequence completing a set
of conditionals.

5 An extension of rational closure to knowledge bases comprising both positive and negative
conditionals has been proposed in [1].



We begin by considering the nonmonotonic inference relation determined by re-
stricting considerations to models which minimize theheight of worlds. In this first
characterization we keep fixed the propositional interpretation associated to worlds. The
consequence relation makes sense in its own, but as we show itis strictly weakerthan
rational closure. We can obtain nonetheless a first characterization of rational closure
if we further restrict attention to minimalcanonical modelsthat is to say, to models
that contain all propositional interpretations compatible with the knowledge baseK
(i.e. all propositional interpretations except those thatsatisfy some formulas inconsis-
tent with the knowledge baseK). Restricting attention to canonical models amounts to
expandingK by all formulas¬(A |∼ ⊥) (read as “A is possible”, as it encodes S53A)
for all formulasA such thatK 6|=R A |∼ ⊥. We thus obtain a very simple and neat
characterization of rational closure, but at the price of anexponentialincrease of theK.

We then propose a second characterization that does not entail this exponential blow
up. In analogy with circumscription, we consider a strongerform of minimization where
we minimize the height of worlds, butwe allow to varythe propositional interpretation
associated to worlds. Again the resulting minimal consequence relation makes sense
in its own, but as we show it still does not correspond to rational closure. In order to
capture rational closure, we must basically add the assumption that there are “enough”
worlds to satisfy all conditionals consistent with the knowledge baseK. This amounts
to adding asmallset of consistency assumptions (represented by negative conditionals).
In this way we capture exactly rational closure, without an exponential increase of the
knowledge base.

2 General Semantics

In KLM framework the language of both logicsP andR consists only of conditionals
A |∼ B. We consider here a richer language allowing boolean combinations of condi-
tionals (and propositional formulas). Our languageL is defined from a set of proposi-
tional variablesATM . We useA, B, C, . . . to denote propositional formulas (not con-
taining|∼), andF, G, . . . to denote arbitrary formulas. More precisely, the formulasof L
are defined as follows: ifA is a propositional formula,A ∈ L; if A andB are proposi-
tional formulas,A |∼ B ∈ L; if F is a boolean combination of formulas ofL, F ∈ L. A
knowledge baseK is any set of formulas: as already mentioned in this work we restrict
our attention to finite knowledge bases.

The semantics ofP andR is defined respectively in terms of preferential and ra-
tional6 models, that are possible world structures equipped with a preference relation
<, intuitively x < y means that the world/individualx is more normal/ more typical
than the world/individualy. The intuitive idea is thatA |∼ B holds in a model if the
most typical/normal worlds/individuals satisfyingA satisfy alsoB. Preferential models
presented in [7] characterize the systemP, whereas the more restricted class of rational
models characterize the systemR [8].

6 We use the expression “rational model” rather than “ranked model” which is also used in the
literature in order to avoid any confusion with the notion ofrank used in rational closure.



Definition 1. A preferentialmodel is a tripleM = 〈W , <, V 〉 whereW is a non-empty
set of items,< is an irreflexive, transitive relation onW satisfying the Smoothness
relation defined below.V is a functionV : W 7−→ 2ATM , which assigns to every world
w the set of atoms holding in that world. IfF is a boolean combination of formulas,
its truth conditions (M, w |= F ) are defined as for propositional logic. LetA be a
propositional formula; we defineMinM

< (A) = {w ∈ W | M, w |= A and ∀w′,
w′ < w impliesM, w′ 6|= A}. We also defineM, w |= A |∼ B if for all w′, if w′ ∈
MinM

< (A) thenM, w′ |= B. Last we define theSmoothness Condition: if M, w |= A,
thenw ∈ MinM

< (A) or there isw′ ∈ MinM
< (A) such thatw′ < w. Validity and

satisfiability of a formula are defined as usual. Given a set offormulasK of L and a
modelM = 〈W , <, V 〉, we say thatM is a model ofK, writtenM |= K, if, for every
F ∈ K, and everyw ∈ W , we have thatM, w |= F . K preferentially entails a formula
F , writtenK |=P F if F is valid in all preferential models ofK.

Since we limit our attention to finite knowledge bases, we canrestrict our attention to
finite models, as the logic enjoys the finite model property (observe that in this case the
smoothness condition is ensured trivially by the irreflexivity of the preference relation).
From Definition 1, we have that the truth condition ofA |∼ B is “global” in a model
M = 〈W , <, V 〉: given a worldw, we have thatM, w |= A |∼ B if, for all w′, if
w′ ∈ MinM

< (A) thenM, w′ |= B. It immediately follows thatA |∼ B holds inw if
only if A |∼ B is valid in a model, i.e. it holds thatM, w′ |= A |∼ B for all w′ in W ;
for this reason we will often writeM |= A |∼ B. Moreover, when the reference to the
modelM is unambiguous, we will simply writeMin<(A) instead ofMinM

< (A).

Definition 2. A rationalmodel is a preferential model in which< is further assumed to
bemodular: for all x, y, z ∈ W , if x < y then eitherx < z or z < y. K rationally
entails a formulaF , writtenK |=R F if F is valid in all rational models ofK.

When the logic is clear from the context we shall writeK |= F instead ofK |=P F or
K |=R F . From now on, we restrict our attention torational models.

Definition 3. The heightkM of a worldw in M is the length of any chainw0 < . . . <

w fromw to aw0 such that for now′ it holds thatw′ < w0
7.

Notice that in a rational model〈W , V, <〉, kM is uniquely determined. Moreover, finite
Rational models can be equivalently defined by postulating the existence of a function
k : W → N, and then lettingx < y iff k(x) < k(y).

Definition 4. The heightkM(F ) of a formulaF is i = min{kM(w) : M, w |= F}. If
there is now | M, w |= F , F has no height.

Proposition 1. For anyM = 〈W , V, <〉 and anyw ∈ W , we haveM |= A |∼ B iff
kM(A ∧ B) < kM(A ∧ ¬B).

7 In the literature the functionkM is usually calledranking, but we call itheight in order to
avoid any confusion with the different notion ofrankingas defined by Lehmann and Magidor
and used in this paper as well. Our notion of ranking is similar to the one originally introduced
by Spohn [11] and to the one introduced by Pearl [9]. The definition of height can be adapted
to preferential models by considering thelongestchain rather than any chain in the definition.



As already mentioned, although the operator|∼ j is nonmonotonic, the notion of logical
entailment just defined is itselfmonotonic: if K |=P F andK ⊆ K ′ then alsoK ′ |=P

F (the same holds for|=R). In order to define a nonmonotonic entailment we introduce
our second ingredient of minimal models. The underlying idea is to restrict attention to
models that minimizethe height of worlds. Informally, given two models ofK, one in
which a givenx has height 2 (because for instancez < y < x) , and another in which
it has height 1 (because onlyy < x), we would prefer the latter, as in this modelx is
“more normal” than in the former.

In analogy with circumscription, there are mainly two ways of comparing models
with the same domain: 1) by keeping the valuation function fixed (only comparingM
andM′ if V andV ′ in the two models respectively coincide); 2) by also comparingM
andM′ in caseV 6= V ′. We consider the two possible semantics resulting from these
alternatives. The first semantics is afixed interpretations minimal semantics, for short
FIMS .

Definition 5 (FIMS ). GivenM = 〈W , <, V 〉 andM′ = 〈W ′, <′, V ′〉 we say thatM
is preferred toM′ with respect to the fixed interpretations minimal semantics(M <FIMS

M′) if W = W ′, V = V ′, and for allx, kM(x) ≤ kM′(x) whereas there existsx′ :
kM(x′) < kM′(x′). We say thatM is minimal w.r.t.<FIMS in case there is noM′

such thatM′ <FIMS M. We say thatK minimally entails a formulaF w.r.t. FIMS ,
and we writeK |=FIMS F , if F is valid in all models ofK which are minimal w.r.t.
<FIMS .

The following theorem shows that we can characterize minimal models with fixed in-
terpretations in terms of conditionals that are falsified bya world. Intuitively mini-
mal models are those where the worlds of height0 satisfy all conditionals, and the
height (> 0) of a worldx is determined by the heightkM(C) of the antecedentsC of
conditionalsfalsified by x. Given a modelM = 〈W , <, V 〉 andx ∈ W , we define
Sx = {C |∼ D ∈ K | M, x |= C ∧ ¬D}.

Proposition 2. LetK be a knowledge base andM a model, thenM |= K if and only
if M satisfies the following, for everyx ∈ W :

1. if kM(x) = 0 thenSx = ∅
2. if Sx 6= ∅, thenkM(x) > kM(C) for everyC |∼ D ∈ Sx.

Observe that condition1 is a consequence of condition2, since by2 if Sx 6= ∅ then
trivially kM(x) > 0; we have explicitly mentioned it for clarity (see the subsequent
proposition and theorem, whose proofs can be found in [6]).

Proposition 3. Let K be a knowledge base and letM be aminimal model ofK with
respect toFIMS ; thenM satisfies for everyx ∈ W :

1. if Sx = ∅ thenkM(x) = 0.
2. if Sx 6= ∅, thenkM(x) = 1 + max{kM(C) | C |∼ D ∈ Sx}.

Theorem 1. LetK be a knowledge base and letM be any model, thenM is aFIMS

minimal model ofK if and only ifM satisfies for everyx ∈ W :



1. Sx = ∅ iff kM(x) = 0.
2. if Sx 6= ∅, thenkM(x) = 1 + max{kM(C) | C |∼ D ∈ Sx}.

In our second semantics, we let the interpretations vary. The semantics is called variable
interpretations minimal semantics, for shortVIMS .

Definition 6 (VIMS ). GivenM = 〈W , <, V 〉 andM′ = 〈W ′, <′, V ′〉 we say that
M is preferred toM′ with respect to the variable interpretations minimal semantics,
and writeM <VIMS M′, if W = W ′, and for allx, kM(x) ≤ kM′(x) whereas there
existsx′ : kM(x′) < kM′(x′). We say thatM is minimal w.r.t.<VIMS in case there
is noM′ such thatM′ <VIMS M. We say thatK minimally entails (with respect to
VIMS ) F , and writeK |=VIMS F , if F is valid in all models ofK which are minimal
w.r.t. <VIMS .

It is easy to realize that the two semantics,FIMS andVIMS , define different sets of
minimal models. This is illustrated by the following example.

Example 1.Let K = {penguin |∼ bird, penguin |∼ ¬fly, bird |∼ fly}. We derive
thatK 6|=FIMS penguin∧ black |∼ ¬fly. Indeed inFIMS there can be a modelM in
whichW = {x, y, z},V (x) = {penguin, bird, f ly, black},V (y) = {penguin, bird},
V (z) = {bird, f ly}, andz < y < x.M is a model ofK, and it is minimal with respect
to FIMS (indeed once fixedV (x), V (y), V (z) as above, it is not possible to lower the
height ofx nor of y nor of z unless we falsifyK). Furthermore, inM x is a typical
black penguin (since there is no other black penguin preferred to it) that flies. Therefore,
K 6|=FIMS penguin∧ black |∼ ¬fly.
On the other hand,M is not minimal w.r.t.VIMS . Indeed, consider the modelM′ =
〈W , <′, V ′〉 obtained fromM by lettingV ′(x) = {penguin, bird, black}, V ′(y) =
V (y), V ′(z) = V (z) and by defining<′ as:z <′ y andz <′ x. ClearlyM′ |= K, and
M′ <V IMS M, sincekM′(x) < kM(x), while kM′ = kM for all other worlds.

The example above shows thatFIMS and VIMS lead to different sets of minimal
models for a givenK. Notice however that the modelM′ we have used to illustrate
this fact is not a minimal model forK in VIMS . A minimal model inVIMS for K that
can be defined on the domainW is given byV (x) = V (y) = V (z) = {bird, f ly},
and the empty relation<. This is quite a degenerate model ofK in which there are no
penguins. This illustrates the strength ofVIMS : in case of knowledge bases that only
contain positive conditionals, logical entailment inVIMS collapses into classical logic
entailment. This feature corresponds to a similar feature of the non-monotonic logic
Pmin in [5], and can be proven in the same way.

Proposition 4. Let K be a set of positive conditionals. Let us replace all formulas of
the formA |∼ B in K with A → B, and callK ′ the resulting set of formulas. We have
thatK |=VIMS A |∼ B if and only ifK ′ |=PC A → B.

As forPmin this strong feature ofVIMS can be avoided when considering knowledge
bases that include existence assertions: these are negatedconditionals, in the example
for instance we could add¬(penguin |∼⊥) to force us to consider non trivial models
in which penguins exist. In the next section, we will useVIMS in this kind of way,
by always considering knowledge bases that include existence assertions (expressed by
negated conditionals).



3 A Semantical Reconstruction of Rational Closure

We provide a semantic characterization of the well known rational closure, described in
[8] within the two semantics described in the previous section. More precisely, we can
give two semantic characterizations of rational closure, the first based onFIMS , the
second based onVIMS . Since in rational closure no boolean combinations of condi-
tionals are allowed, in the following, the knowledge baseK is just a finite set of positive
conditional assertions. We recall the notion rational closure, giving its syntactical defi-
nition in terms ofrank of a formula.

Definition 7. LetK be a knowledge base (i.e. a finite set of positive conditionalasser-
tions) andA a propositional formula.A is said to beexceptionalfor K iff K |=R ⊤ |∼

¬A8.

The set of conditional formulas which are exceptional forK will be denoted asE(K).
It is possible to define a non sequence of subsets ofK C0 ⊇ C1, . . . by lettingC0 = K

and, fori > 0, Ci = E(Ci−1). Observe that, beingK finite, there is an ≥ 0 such that
for all m > n, Cm = Cn or Cm = ∅.

Definition 8. A propositional formulaA hasranki for K iff i is the least natural num-
ber for whichA is not exceptional forCi. If A is exceptional for allCi thenA has no
rank.

The notion of rank of a formula allows to define the rational closure of a knowledge
baseK.

Definition 9. Let K be a conditional knowledge base. The rational closureK̄ of K is
the set of allA |∼ B such that either (1) the rank ofA is strictly less than the rank of
A ∧ ¬B (this includes the caseA has a rank andA ∧ ¬B has none), or (2)A has no
rank.

The rational closure of a knowledge baseK seemingly contains all conditional asser-
tions that, in the analysis of nonmonotonic reasoning provided in [8], one rationally
wants to derive fromK. For a full discussion, see [8].

Can we capture rational closure within our semantics? A firstconjecture might be
that theFIMS of Definition 5 could capture rational closure. However, we are soon
forced to recognize that this is not the case. For instance, Example 1 above illustrates
that{penguin |∼ bird, penguin |∼ ¬fly, bird |∼ fly} 6|=FIMS penguin ∧ black |∼

¬fly. On the contrary, it can be easily verified thatpenguin ∧ black |∼ ¬fly is in
the rational closure of{penguin |∼ bird, penguin |∼ ¬fly, bird |∼ fly}. Therefore,
FIMS as it is does not allow us to define a semantics corresponding to rational clo-
sure. Things change if we considerFIMS applied to models that contain all possible
valuationscompatiblewith a given knowledge baseK. We call these modelscanonical
models.

8 In [8], |=P is used instead of|=R. However when K contains only positive conditionals the
two notions coincide (see footnote 1) and we prefer to use|=R here since we consider rational
models.



Example 2.Consider Example 1 above. If we restrict our attention to models that also
contain aw with V (w) = {penguin, bird, black} which is a black penguin that does
not fly and can therefore be assumed to be a typical penguin, weare able to conclude
that typically black penguins do not fly, as in rational closure. Indeed, in all minimal
models ofK that also containw with V (w) = {penguin, bird, black}, it holds that
penguin∧ black |∼ ¬fly.

We are led to the conjecture thatFIMS restricted to canonical models could be the
right semantics for rational closure. Fix a propositional languageLProp comprising a
finite set of propositional variablesATM , a propositional interpretationv : ATM −→
{true, false} is compatiblewith K, if there is no formulaA ∈ LProp such thatv(A) =
true andK |=R A |∼ ⊥.

Definition 10. A modelM = 〈W , <, V 〉 satisfying a knowledge baseK is said to be
canonicalif it contains (at least) a world associated to each propositional interpretation
compatible withK, that is to say: ifv is compatible withK, then there exists a world
w in W , such that for all propositional formulasB M, w |= B iff v(B) = true.

It can be easily shown that:

Theorem 2. For a given domainW , there exists a unique canonical modelM for K

overW such that, for all other canonical modelsM′ overW , we haveM <FIMS M′.

In the following, we show that the canonical models that are minimal with respect to
FIMS are an adequate semantic counterpart of rational closure.

To prove the correspondence between the rational closure ofa knowledge baseK
and the fixed interpretation minimal model semantics ofK, we need to prove some
propositions. The next one is a restatement for rational models of Lemma 5.18 in [8],
and it can be proved in a similar way. Note that, as a difference, point 2 in Lemma 5.18
is an “if and only if” rather than an “if” statement.

Proposition 5. Let M = 〈W , <, V 〉 be a rational model ofK. LetM0 = M and,
for all i, let Mi = 〈Wi, <i, Vi〉 be the rational model obtained fromM by removing
all the worldsw with kM(w) < i, i.e.,Wi = {w ∈ W | kM(w) ≥ i}. For any
propositional formulaA, if rank(A) ≥ i, then: (1)kM(A) ≥ i; (2) If A |∼ B is
preferentially entailed byCi, thenMi satisfiesA |∼ B.

Fact 1 If {A1 → B1, . . . , An → Bn} |=PC ¬C then{A1 |∼ B1, . . . , An |∼ Bn} ⊢R

⊤ |∼ ¬C.

The following propositions hold (proofs can be found in [6]):

Proposition 6. LetM = 〈W , <, V 〉 be a canonical model ofK, minimal w.r.t.<FIMS .
For all w ∈ W it holds that: ifM, w |= A → B for all A |∼ B in Ci, thenkM(w) ≤ i.

Proposition 7. LetM be a canonical model ofK minimal w.r.t.<FIMS . Then,rank(A) =
i iff kM(A) = i.

We can now prove the following theorem (the proof is in [6]):



Theorem 3. Let K be a knowledge base andM be a canonical model ofK minimal
w.r.t. <FIMS . We show that, for all conditionalsA |∼ B:

M |= A |∼ B if and only ifA |∼ B ∈ K,

whereK is the rational closure ofK.

In Theorem 3 we have shown a correspondence between rationalclosure and minimal
models with fixed interpretations,on the proviso thatwe restrict our attention to mini-
malcanonicalmodels. We can obtain the same effect by extendingK intoK ′ by adding
negated conditionals:K ′ = K ∪ {¬(C |∼⊥) | K 6|=R (C |∼⊥)}. Indeed it can be eas-
ily verified that all models ofK ′ are canonical, hence restrictingFIMS to canonical
models on the one hand and considering the extension ofK asK ′ on the other hand
amounts to the same effect. We can therefore restate Theorem3 above as follows:

Theorem 4. K ′ |=FIMS A |∼ B iff A |∼ B ∈ K.

Notice that the size ofK ′ is exponential in that ofK.
Can we lift the restriction to canonical models by adopting asemantics based on

variable valuations? In the general case, the answer is negative. We have already men-
tioned that if we consider knowledge bases consisting only positive conditionals logical
entailment inVIMS collapses into classical logic entailment. To avoid this collapse, we
can require that, when we are checking for entailment of a conditionalA |∼ B from a
K, at least anA∧B world and anA∧¬B world are present inK. This can be obtained
by adding toK the conditionals¬(A∧B |∼ ⊥) and¬(A∧¬B |∼ ⊥). Also in this case,
however, we cannot give a positive answer to the above question. In fact, it is possible to
build a model ofK, minimal w.r.t.VIMS , which falsifies a conditionalA |∼ B which
on the contrary is satisfied in all the canonical minimal models of K underFIMS . This
is shown by the following example:

Example 3.Let K be the following:

{T |∼ S,
S |∼ ¬D,
L |∼ P ,
R |∼ Q,
E |∼ F ,
H |∼ G,
D |∼ ¬P ∧ ¬Q ∧ ¬F ∧ ¬G,
S |∼ ¬(L ∧ R),
S |∼ ¬(L ∧ E),
S |∼ ¬(L ∧ H),
S |∼ ¬(R ∧ E),
S |∼ ¬(R ∧ H),
S |∼ ¬(E ∧ H)}.

Let A = D ∧ S ∧ R ∧ L ∧ E ∧ H , B = ¬Q ∧ ¬P ∧ ¬F ∧ ¬G and letK ′ =
K ∪ {¬(A ∧ B |∼ ⊥), ¬(A ∧ ¬B |∼ ⊥)}.



We define a modelM = (W , <, V ) of K ′, which is minimal w.r.t.VIMS , as
follows:

W = {x, w, y1.y2, y3}, where:

V (y1) = {S,¬D,¬R,¬L,¬E,¬H, P, Q, F, G}
V (y2) = {¬S,¬D, R, L, E, H, P, Q, F, G}
V (y3) = {¬S,¬D, R, L, E, H, P, Q, F, G}
V (x) = {D, S, R, L, E, H,¬Q,¬P,¬F,¬G}
V (w) = {D, S, R, L, E, H, Q,¬P,¬F,¬G}

with kM(y1) = 0, kM(y2) = 1, kM(y3) = 1, kM(x) = 2 andkM(w) = 2. Observe
that:x is anA∧B minimal world;w is anA∧¬B minimal world;y1 is anS minimal
world; y2 is a minimal world forR, L, E andH ; andy3 is aD minimal world.

M is a model ofK which is minimal w.r.t.VIMS . Also,A |∼ B is falsified inM,
while, on the contrary,A |∼ B holds in all the canonical models minimal w.r.t.FIMS .
Indeed, in all such models the height ofk(A∧B) = 2 while k(A∧¬B) = 3. However,
it is not possible to construct a modelM′ with 5 worlds so thatM′ <V IMS M.
In particular, assigning tox or w height 1 would require the introduction of minimal
worlds for R, L, E andH with height 0. But worldy2 cannot be given height 0, as
it does not satisfy the conditionals with antecedentS. In canonical models there are
distinct minimalR worlds,L worlds,E worlds andH worlds height 0 (which are also
minimalS worlds).

As suggested by this example, in order to characterize rational closure in terms of
VIMS , we should restrict our consideration to models which contain “enough” worlds.
In the following, as in Theorem 4, we enrichK with negated conditionals but, as a
difference withK ′ of Theorem 4, we only need to add toK a polynomial number of
negated conditionals (instead of an exponential number). The purpose of the addition
is that of restricting our attention to models minimal with respect to<VIMS that have
a domain large enough to have, in principle, a distinct most-preferred world for each
antecedent of conditional inK. For this reason, we add for each antecedentC of K a
new corresponding atomφC . If the problem to be addressed is that of knowing whether
A |∼ B is logically entailed byK, we also introduceφA∧B andφA∧¬B, and we define
K ′ as follows.

Definition 11. We define:

– AK,A|∼B = {C | either for someD, C |∼ D ∈ K or C = A ∧ B or C = A ∧ ¬B,
andK 6⊢R C |∼⊥};

– K ′ = K ∪ {¬(C ∧ φC |∼⊥) | C ∈ AK,A|∼B} ∪ {(φCi
∧ φCj

|∼⊥) | Ci, Cj ∈
AK,A|∼B}.

We here establish a correspondence betweenFIMS andVIMS . By virtue of Theorem
3, this allows us to establish a correspondence between rational closure andVIMS , as
stated by Theorem 6.

Theorem 5. Let M be a canonical model ofK, minimal with respect toFIMS , and
let K ′ be the extension ofK defined as in Definition 11. We have that:



M |= A |∼ B iff K ′ |=VIMS A |∼ B.

The proof can be found in [6].
From Theorem 3 and Theorem 5 just shown, it follows that:

Theorem 6. A |∼ B ∈ K̄ iff K ′ |=VIMS A |∼ B for K ′ of Definition 11.

4 Relation with Pmin and Pearl’s System Z

In [5] an alternative nonmonotonic extension of preferential logicP calledPmin is pro-
posed. Similarly to the semantics presented in this work,Pmin is based on a minimal
modal semantics. However the preference relation among models is defined in a differ-
ent way. Intuitively, inPmin the fact that a worldx is a minimalA-world is expressed
by the fact thatx satisfiesA∧2¬A, where2 is defined with respect to the inverse of the
preference relation (i.e. w.r.t. the accessibility relation given byRuv iff v < u). The idea
is that preferred models are those that minimize the set of worlds where¬�¬A holds,
that isA-worlds which are not minimal. As a difference from the approach presented in
this work, the semantics ofPmin is defined starting from preferential models of Defi-
nition 1, in which the relation< is irreflexive and transitive (thus, no longer modular).
Pmin is a nonmonotonic logic considering onlyP models that, intuitively, minimize the
non-typical worlds. More precisely, given a set of formulasK, a modelM = 〈WM,

<M, VM〉 of K and a modelN = 〈WN , <N , VN 〉 of K, we say thatM is preferred to
N if WM = WN , and the set of pairs(w,¬�¬A) such thatM, w |= ¬�¬A is strictly
included in the corresponding set forN . A modelM is aminimal modelfor K if it is
a model ofK and there is no a modelM′ of K which is preferred toM. Entailment
in Pmin is restricted to minimal models of a given set of formulasK. In Section 3 of
[5] it is observed that the logicPmin turns out to be quite strong. In general, if we
only consider knowledge bases containing only positive conditionals, we get the same
trivialization result (part of Proposition 1 in [5]) as the one contained in Proposition
4 for VIMS . This does not hold for rational closure. This is the reason why we have
introduced the additional assumptions of Definition 11 in order to obtain an equivalence
with rational closure. Similarly, in order to tackle this trivialization inPmin , Section 3
in [5] is focused on the so calledwell-behaved knowledge bases, that explicitly include
thatA is possible (¬(A |∼ ⊥)) for all conditional assertionsA |∼ B in the knowledge
base.

We can now wonder whetherPmin is equivalent toVIMS , which is the semantics
to which it resembles the most. Or whetherVIMS is equivalent to a stronger version
of Pmin obtained by replacingP with R as the underlying logic. We callRmin this
stronger version ofPmin .

Example 4.Let K = {PhD |∼ ¬worker ,PhD |∼ adult , adult |∼ worker ,italian |∼

house owner ,PhD |∼ ¬house owner}.
What do we derive inPmin andRmin, and what inVIMS? By what said above, since
K only contains positive conditionals, both inPmin andRmin, on the one side, and
in VIMS , on the other side, we derive thatitalian ∧ PhD |∼⊥. So let’s add toK the
constraint that people who are italian and have a PhD do existby introducing inK a



conditional¬(italian ∧ PhD |∼⊥), thus obtaining:K ′ = {PhD |∼ ¬worker ,PhD |∼

adult , adult |∼ worker ,italian |∼ house owner ,PhD |∼ ¬house owner ,¬(italian ∧
PhD |∼⊥)}.

Notice that since¬(italian ∧ PhD |∼⊥) entails both that¬(italian |∼⊥) and that
¬(PhD |∼⊥), and that this in turn entails¬(adult |∼⊥), K ′ is also well-behaved.

It can be easily verified that the logical consequences ofK ′ in Pmin , Rmin, and
VIMS differ. In bothPmin andRmin, for instance, we derive neither thatitalian ∧
PhD |∼ house owner nor thatitalian ∧ PhD |∼ ¬house owner: the two alterna-
tives are equivalent. On the other hand, inVIMS we derive thatitalian ∧ PhD |∼

¬house owner .

The previous example shows that in some casesVIMS is stronger than bothPmin and
Rmin. The following one shows that the two approaches are incomparable, since there
are also logical consequences that hold for bothPmin andRmin but not forVIMS .

Example 5.Let K = {PhD |∼ adult , adult |∼ work ,PhD |∼ ¬work , italian |∼

house owner}.
What do we derive about typicalitalian ∧ PhD ∧ work , for instance? Do they inherit
the property of typical italians of beinghouse owner? Again, in order to prevent the
entailment ofitalian ∧ PhD ∧ work |∼⊥ from K both in VIMS and inPmin and
Rmin, we add toK the constraint that italians with a PhD who work exist, henceforth
they also have typical instances. Therefore we expandK into:

K ′ = {PhD |∼ adult , adult |∼ work ,PhD |∼ ¬work ,

italian |∼ house owner ,¬(italian ∧ PhD ∧ work |∼⊥)}.

By reasoning as in Example 4 we can show thatK ′ is a well-behaved knowledge base.
Now it can be shown that

italian ∧ PhD ∧ work |∼ house owner

is entailed inPmin andRmin, whereas nothing is entailed inVIMS . This difference
can be explained intuitively as follows. The set of properties for which an individual
is atypical matters inPmin andRmin where one has to minimize the set of distinct
¬�¬C: even if anitalian ∧ PhD ∧ work is an atypical PhD,Pmin andRmin still
maximize its typicality as an italian, and therefore entailthat it is a houseowner, as all
typical italians. As a difference, inVIMS , what matters isthe set of individuals which
are more typicalthan a givenx, rather thanthe set of propertiesby which they are more
typical. As a consequence, since anx which is italian ∧ PhD ∧ work is an atypical
PhD, there is no need to maximize its typicality as an italian, as long as this does not
increase the set of individuals more typical thanx.

In [9] Pearl has introduced two notions of 0-entailment and 1-entailment to perform
nonmonotonic reasoning. We recall here the semantic definition of both and then we re-
mark upon their relation with our semantics and rational closure. A modelM for a finite
knowledge baseK has the formM = ({true, false}ATM , kM) where{true, false}ATM

is the set of propositional interpretations for, say, a fixedfinite propositional language,



andkM is our height function mapping propositional interpretations toN , the defini-
tion of heightkM(A) of a formula is the same as in our semantic. A conditionalA |∼ B

is true in a modelM if kM(A∧B) < kM(A∧¬B). Then the two entailments relations
are defined as follows:

K |=0−ent A |∼ B if A |∼ B is true in all models ofK
K |=1−ent A |∼ B if A |∼ B is true in the (unique) modelM of K which is
minimalw.r.t. kM.

(minimal w.r.t.kM means that no other modelM′ assigns a lower valuekM′ to any
propositional interpretation). First, observe that Pearl’s semantics (both 0 and 1 entail-
ment) cannot cope with conditionals having an inconsistentantecedent. This limitation
is deliberate and is motivated by a probabilistic interpretation of conditionals: in assert-
ing A |∼ B, A must not be impossible, no matter how it is unlikely. For thisreason, a
knowledge base such asK = {A |∼ P, A |∼ ¬P, B |∼ Q} is out of the scope of Pearl’s
semantics, and nothing can be said about its consequences. As a difference with respect
to Pearls approach we are able to consider such K, we just derive that A is impossible,
without concluding that K is inconsistent or trivial, in thesense that everything follows
from it. Moreover both 0-entailment and 1-entailment fail to validate:

∅ |=0−ent/1−ent A |∼ ⊤ whenever⊢PC ¬A

which is valid in any KLM logic, whence in rational closure (as well as in our seman-
tics). However two definitions should make apparent the relations with our semantics
and rational closure. If we consider aK such that∀A |∼ B ∈ K, K 6|=R A |∼ ⊥,
we get an obvious correspondence between ourcanonicalmodels (which will contain
worlds for very possible propositional interpretation) and models of Pearl’s semantics.
The correspondence preservesFIMS minimality, so that we get immediately:

Proposition 8. K |=1−ent A |∼ B iff A |∼ B holds in anyFIMS -minimalcanonical
model ofK.

By Theorem 3, we therefore obtainK |=1−ent A |∼ B iff A |∼ B ∈ K̄. This is not
a surprise, the correspondence between 1-entailment and rational closure was already
observed by Pearl in [9, 10]. However, it only works for knowledge bases with the strong
consistency assumption as above.

5 Conclusions and Future Works

We have provided a semantic reconstruction of the known rational closure within modal
logic. We have provided two minimal model semantics, based on the idea that preferred
rational models are those one in which the height of the worlds is minimized. We have
then shown that adding suitable possibility assumptions toa knowledge base, these two
minimal model semantics correspond to rational closure.

The correspondence between the proposed minimal model semantics and rational
closure suggests the possibility of defining variants of rational closure by varying the
three ingredients underlying our approach, namely: (i) theproperties of the preference



relation<: for instance just preorder, or multi-linear [5], or weakly-connected (observe
thatP is complete w.r.t. any of the three classes); (ii) the comparison relation on models:
for instance based on the heights of the worlds or on the inclusion between the relations
<, or on negated boxed formulas satisfied by a world, as in the logic Pmin ; (iii) the
choice between fixed or variable interpretations. The systems obtained by various com-
binations of the three ingredients are largely unexplored and may give rise to useful
nonmonotonic logics. We finally intend to extend our approach to richer languages,
notably in the context of nonmonotonic description logics.
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