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Abstract. This paper provides a general semantic framework for noihooic
reasoning, based on a minimal models semantics on the topMfdystems for
nonmonotonic reasoning. This general framework can baritisted in order to
provide a semantic reconstruction within modal logic of tiwion of rational
closure, introduced by Lehmann and Magidor. We give two attarizations of
rational closure: the first one in terms of minimal models kehgropositional in-
terpretations associated to worlds are fixed along minitiwzathe second one
where they are allowed to vary. In both cases a knowledgerbastbe expanded
with a suitable set of consistency assumptions, repregéytaegated condition-
als. The correspondence between rational closure and @alinidel semantics
suggests the possibility of defining variants of rationabkare by changing either
the underlying modal logic or the comparison relation on aised

1 Introduction

In a seminal work Kraus Lehmann and Magidor [7] (hencefolitivi proposed an ax-
iomatic approach to nonmonotonic reasoning. Plausiblerénfces are represented by
nonmonotonic conditionals of the ford |~ B, to be read as “typically or normally
entailsB”: for instancemonday |~ go-work, “normally on Monday | go to work”. The
conditional is nonmonotonic since frorh |~ B one cannot derivel A C' |~ B, in our
example, one cannot deriveonday A ill ~ go-work. KLM proposed a hierarchy of
four systems, from the weakest to the strongest: cumulédiyie C, loop-cumulative
logic CL, preferential logid® and rational logidR. Each system is characterized by a
set of postulates expressing natural properties of nontoaiwinference. We present
below an axiomatization of the two stronger logitandR (C andCL being too weak

to be taken as an axiomatic base for nonmonotonic reasorBugefore presenting
the axiomatization, let us clarify one point: in the oridipaesentation of KLM sys-
tems, [7] a conditionall |~ B is considered as a consequence relation between a pair
of formulas A and B, so that their systems provide a set of “postulates” (orwi®s
conditions) that the intended consequence relations natisfys Alternatively, these
postulates may be seen iadesto derive new conditionals from given ones. We take
a slightly different viewpoint, shared among others by tdatpand Friedman [4] (see
Section 8) and Boutilier [2] who proposed a modal intergietaof KLM systemsP



andR: in our understanding these systems are ordinary logicaésys in which a con-
ditional A |~ B is a propositional formula belonging to the object langualjeenever
we restrict our consideration, as done by Kraus Lehmann aagidir, to the entailment
of a conditional from a set of conditionals, the two viewgsicoincide a conditional
is a logical consequence in logiR of a set of conditionals if and only if it belongs to
all preferential/rational consequence relations extegthat set of conditionals, or (in
semantic terms), it is valid in all preferential/rationabdels (as defined by KLM) of
that set.

Here is the axiomatization of logid3 and R, in our presentation KLM postu-
lates/rules are jusixioms We use-p¢c (resp.=pc) to denote provability (resp. va-
lidity) in the propositional calculus .

All axioms and rules of propositional logic

A A (REF)
if Fpc A Bthen(Ar C) — (B~ C), (LLE)
if -pc A — Bthen(C ~ A) — (C ~ B) (RW)
(ArB)AN(ARC)) = (AANB~C) (Cm)
(ArB)AN(ARC)) = (A BAC) (AND)
(AR C)ANBRC)) = (AVBRrC) (OR)
(A B) AN ~(A | =0)) —» (ANC) 1~ B) (RM)

The axiom (CM) is called cumulative monotony and it is chéeestic of all KLM
logics, axiom (RM) is called rational monotony and it chaeaizes the logic of rational
entailmentR. The weaker logic of preferential entailmentcontains all axioms, but
(RM). P and R seem to capture the core properties of nonmonotonic reagoas
shown in [4] they are quite ubiquitous being characterizedifierent semantics (all of
them being instances of so-called plausibility structures

Logics P andR enjoy a very simple modal semantics, actually it turns oat th
they are the flat fragment of some well-known conditionalideg For P the modal
semantics is defined by considering a set of wolldsequipped by an accessibility
(or preference) relatior: assumed to be transitive, irreflexive, and satisfying the so
called Smoothness Condition. For the strongex is further assumed to be modular.
Intuitively the meaning of: < y is thatz is more normal/less exceptional thanWe
say thatA |~ B is true in a model ifB holds in all most normal worlds wheréis true,

i.e. in all <-minimal worlds satisfying4.

KLM systems formalize desired properties of nonmonotonference. However,
they are too weak to perform useful nonmonotonic inferenéesinstance KLM sys-
tems cannot handle irrelevant information in conditionftsm monday |~ go-work,
there is no way of concludingronday A shines ~ go_work in any one of KLM
systems. Partially motivated by the weakness of the axierapproach, Lehmann and
Magidor have proposed a true nonmonotonic mechanism orotheftlogicR called
rational closure Rational clsure on the one hand preserves the propertiRsaif the
other hand allows one to perform some truthful nonmonotmi@rences, like the one



just mentionedsquonday A shines ~ go-work).* The authors has given a syntactic
procedure to calculate the set of conditionals entailednieyrational closure as well
as a quite complex semantic construction. It is worth nogidhat a strongly related
construction has been proposed by Pearl [9] with his notfdrentailment, motivated
by a probabilistic interpretation of conditionals.

In this work we tackle the problem of giving a purely semauwtiaracterization of
rational closure, stemming directly from the modal sen@ndif logicR. Notice that
we restrict our attention to finite knowledge bases. Moreigedy, we try to answer to
the following question: given the fact that lodgicis characterized by a specific class of
Kripke models, how can we characterize the Kripke models@fational closure of a
set of positive conditionals?

The characterization we propose may be seen as an instarecgesferal recipe
for defining nonmonotonic inference: (i) fix an underlyingaabsemantics for condi-
tionals (such as the one &for R), (ii) obtain nonmonotonic inference by restricting
semantic consequence to a class of “minimal” models acegriti some preference
relation on models. The preference relation in itself isrdfiindependently from the
languageand from theset of conditionalgknowledge base) whose nonmonotonic con-
sequences we want to determine. In this respect our appisaimilar in spirit to
“minimal models” approaches to honmonotonic reasoningh s circumscription.

The general recipe for defining nonmonotonic inference we Betched may have
a wider interest than that of capturing Lehmnan and Magsdational closure. First of
all, we may think of studying variants of rational closureséd on other modal logics
and/or on other comparison relations on models. Secondipgba purely semantic
approach (the preference relation is independent fronatiguage), our semantics can
cope with a larger language than the one considered in KLMéraork. To this regard,
already in this paper, we consider a richer language allgwivolean combinations of
conditional$. In the future, we may think of applying our semantics to Nomatonic
Description Logics, where an extension of rational clofhiebeen recently considered
(3.

In any case, the quest of a modal characterization of rdt@osure turns out to be
harder than expected. Our semantic account is based on ttir@ization of theheight
of worlds in models, where the height of a world is defined imt® of length of the
<-chains starting from the world. Intuitively, the lower theight of a world, the more
normal (or less exceptional)is the world and our minimizattorresponds intuitively
to the idea of minimizing less-normal or less-plausible ld®r{or maximizing most
plausible ones).

* Actually the main motivation of Lehmann and Magidor leadioghe definition of rational
closure wagechnical it turns out that the intersection of all rational consemeerelations
satisfying a set of conditionals coincides with the lgaefferentialconsequence relation sat-
isfying that set, so that (i) the axiom/rule (RM) does not adgithing and (ii) such relation in
itself fails to satisfy (RM). Their notion of rational closure providesaution to both prob-
lems and can be seen as the “minimal” (in some sense) rattonakquence completing a set
of conditionals.

5 An extension of rational closure to knowledge bases corimgrisoth positive and negative
conditionals has been proposed in [1].



We begin by considering the nonmonotonic inference ratatietermined by re-
stricting considerations to models which minimize tigight of worlds In this first
characterization we keep fixed the propositional integifeh associated to worlds. The
consequence relation makes sense in its own, but as we siwstrictly weakerthan
rational closure. We can obtain nonetheless a first chaization of rational closure
if we further restrict attention to minimaanonical modelshat is to say, to models
that contain all propositional interpretations compatiblith the knowledge basg
(i.e. all propositional interpretations except those saisfy some formulas inconsis-
tent with the knowledge bad€). Restricting attention to canonical models amounts to
expandingk by all formulas—(A |~ L) (read as 4 is possible”, as it encodes S5A)
for all formulasA such thatK' £z A |~ L. We thus obtain a very simple and neat
characterization of rational closure, but at the price ofgmonentialncrease of thes.

We then propose a second characterization that does ndttkistaxponential blow
up. In analogy with circumscription, we consider a strorfgan of minimization where
we minimize the height of worlds, bute allow to varythe propositional interpretation
associated to worlds. Again the resulting minimal consagaegelation makes sense
in its own, but as we show it still does not correspond to raticlosure. In order to
capture rational closure, we must basically add the assamibtat there are “enough”
worlds to satisfy all conditionals consistent with the kiesge base(. This amounts
to adding amallset of consistency assumptions (represented by negatickitiomals).

In this way we capture exactly rational closure, without &panential increase of the
knowledge base.

2 General Semantics

In KLM framework the language of both logiésandR consists only of conditionals
A |~ B. We consider here a richer language allowing boolean coatibims of condi-
tionals (and propositional formulas). Our langualyes defined from a set of proposi-
tional variablesATM . We useA, B, C, . .. to denote propositional formulas (not con-
tainingy), andF’, G, . . . to denote arbitrary formulas. More precisely, the formoias
are defined as follows: ifl is a propositional formulad € £; if A andB are proposi-
tional formulas A ~ B € L; if F'is a boolean combination of formulas6fF € £. A
knowledge bas# is any set of formulas: as already mentioned in this work vgtrict
our attention to finite knowledge bases.

The semantics oP andR is defined respectively in terms of preferential and ra-
tionaf models, that are possible world structures equipped withregegence relation
<, intuitively x < y means that the world/individual is more normal more typical
than the world/individuay. The intuitive idea is thatd |~ B holds in a model if the
most typical/normal worlds/individuals satisfyingsatisfy alsaB. Preferential models
presented in [7] characterize the systeémwhereas the more restricted class of rational
models characterize the syst&n8].

& We use the expression “rational model” rather than “rankedett which is also used in the
literature in order to avoid any confusion with the notiorrafk used in rational closure.



Definition 1. Apreferentiamodel is atripleM = (W, <, V') where)V is a non-empty
set of items< is an irreflexive, transitive relation oV satisfying the Smoothness
relation defined below! is a functionV : W — 24T 'which assigns to every world
w the set of atoms holding in that world. # is a boolean combination of formulas,
its truth conditions (M, w | F) are defined as for propositional logic. Let be a
propositional formula; we defin@/in?'(4) = {w € W | M,w = A andVu/,
w' < wimpliesM,w" = A}. We also defineM,w = A |~ B if for all v/, if w’ €
Min'(A) thenM,w' = B. Last we define th8moothness Conditioif M, w = A,
thenw € Min'(A) or there isw’ € Min'(A) such thatw’ < w. Validity and
satisfiability of a formula are defined as usual. Given a sdbohulasK of £ and a
modelM = (W, <, V'), we say thatM is a model ofK, written M = K, if, for every
F € K, and everyw € W, we have thai\l, w = F. K preferentially entails a formula
F,written K =p F if F'is valid in all preferential models ok

Since we limit our attention to finite knowledge bases, we restrict our attention to
finite models, as the logic enjoys the finite model properbs@ve that in this case the
smoothness condition is ensured trivially by the irrefléyiof the preference relation).
From Definition 1, we have that the truth condition4f~ B is “global” in a model
M = (W, <, V): given a worldw, we have thaiM,w = A |~ B if, for all «/, if

w' € Min'(A) thenM,w’ = B. Itimmediately follows that4 |~ B holds inw if
only if A v Bis valid in a model, i.e. it holds that1,w’ = A ~ B for all w’ in W;
for this reason we will often writé = A |~ B. Moreover, when the reference to the
modelM is unambiguous, we will simply writéZin (A) instead ofMin’!(A).

Definition 2. Arationalmodel is a preferential model in whighis further assumed to
be modular for all z,y,z € W, if x < y then eitherz < z or z < y. K rationally
entails a formulal’, written K =p F'if F'is valid in all rational models ofs.

When the logic is clear from the context we shall wiife= F instead ofK =p F or
K g F.From now on, we restrict our attentionr@ional models

Definition 3. The height, of a worldw in M is the length of any chaing < ... <
w fromw to aw, such that for nav’ it holds thatw’ < wy °.

Notice that in a rational modéW, V, <), k¢ is uniquely determined. Moreover, finite
Rational models can be equivalently defined by postulatiegeikistence of a function
k:W — N, and then letting: < y iff k(z) < k(y).

Definition 4. The height:,(F) of a formulaF' isi = min{km(w) : M,w = F}. If
there is now | M, w = F, F has no height.

Proposition 1. Forany M = (W, V, <) and anyw € W, we haveM E A |~ B iff
km(ANB) < kM(A/\ -B).

"In the literature the functiorkr is usually callecranking but we call itheightin order to
avoid any confusion with the different notion @fnking as defined by Lehmann and Magidor
and used in this paper as well. Our notion of ranking is sintddahe one originally introduced
by Spohn [11] and to the one introduced by Pearl [9]. The dé&imbf height can be adapted
to preferential models by considering tlomgestchain rather than any chain in the definition.



As already mentioned, although the operatqgris nonmonotonigcthe notion of logical
entailment just defined is itsetfionotonicif K =p F andK C K’ then alsoK’ =p
F (the same holds faeg). In order to define a nonmonotonic entailment we introduce
our second ingredient of minimal models. The underlyingigeto restrict attention to
models that minimizéhe height of worldsinformally, given two models ok, one in
which a givenz has height 2 (because for instance: y < ) , and another in which
it has height 1 (because only< x), we would prefer the latter, as in this models
“more normal” than in the former.

In analogy with circumscription, there are mainly two waysomparing models
with the same domain: 1) by keeping the valuation functioadiftonly comparing\t
and M’ if V andV’ in the two models respectively coincide); 2) by also compgai1
and M’ in caseV # V'. We consider the two possible semantics resulting fromethes
alternatives. The first semantics igixed interpretations minimal semantjdsr short
FIMS.

Definition 5 (FIMS). GivenM = (W, <, V) andM’' = W', <’, V') we say thai\t
is preferred taM’ with respect to the fixed interpretations minimal semarft\es < z/pss
MNYiIEW =W,V =V’ and for allz, kxp(x) < ks (x) whereas there exists' :
km(z') < kae(2)). We say thatM is minimal w.r.t.< s in case there is nout’
such thatM’ < g5 M. We say thatX minimally entails a formula” w.r.t. FIMS,
and we writeK |=rys F, if Fis valid in all models ofK” which are minimal w.r.t.
<FIMS-

The following theorem shows that we can characterize mihimadels with fixed in-
terpretations in terms of conditionals that are falsifiedabworld. Intuitively mini-
mal models are those where the worlds of heigldatisfy all conditionals, and the
height (> 0) of a worldz is determined by the height\((C) of the antecedents' of
conditionalsfalsified by =. Given a modelM = (W, <, V) andz € W, we define
S, ={C~DeK|M,zECA-D}.

Proposition 2. Let K be a knowledge base andl a model, themM = K if and only
if M satisfies the following, for eveny e W:

1. ifkapq(z) = 0 thenS, =
2. if Sy # 0, thenka(z) > kaq(C) for everyC v D € S,.

Observe that conditiof is a consequence of conditi@y since by2 if S, # 0 then
trivially kaq(z) > 0; we have explicitly mentioned it for clarity (see the subhsenf
proposition and theorem, whose proofs can be found in [6]).

Proposition 3. Let K be a knowledge base and & be aminimal model of K with
respect toFIMS; then M satisfies for every € W:

1. if S, = O thenkq(z) = 0.
2. if S, # 0, thenkpy(z) = 1+ max{km(C) | C ~ D € S, }.

Theorem 1. Let K be a knowledge base and &t be any model, then is a FIMS
minimal model of if and only if M satisfies for every € W:



.SIZ(Z) f'fk’M(l’)ZO.
2. if S, # 0, thenkpy(z) = 1+ max{km(C) | C ~ D € S, }.

In our second semantics, we let the interpretations vary sEimantics is called variable
interpretations minimal semantics, for shdfiMsS.

Definition 6 (VIMS). GivenM = W, <, V) and M’ = W', <’ V') we say that
M is preferred toM’ with respect to the variable interpretations minimal seitizm
and write M < ypyg M/, ifW = W', and for allz, kaq(2) < kg () whereas there
existsz’ : kpm(a') < kae(2'). We say thatM is minimal w.r.t.< ys in case there
is no M’ such thatM’ <ys M. We say thafX minimally entails (with respect to
VIMS) F, and write K’ |=ys F, if Fis valid in all models off which are minimal
W.I.t. <vyruvs-

It is easy to realize that the two semanti¢gMS and VIMS, define different sets of
minimal models. This is illustrated by the following exampl

Example 1.Let K = {penguin |~ bird, penguin ~ —fly,bird ~ fly}. We derive
that K £ pius penguin A black ~ —fly. Indeed inFIMS there can be a modéH in
whichW = {z,y, 2z}, V(z) = {penguin, bird, fly, black},V (y) = {penguin, bird},
V(z) = {bird, fly}, andz < y < 2. M is amodel ofK’, and it is minimal with respect
to FIMS (indeed once fixed (z), V(y), V(z) as above, it is not possible to lower the
height ofx nor of y nor of z unless we falsifyK). Furthermore, inM z is a typical
black penguin (since there is no other black penguin preddw it) that flies. Therefore,
K Erpius penguin A black |~ = fly.

On the other handM is not minimal w.r.t. VIMS. Indeed, consider the modéH’ =
(W, <’, V') obtained fromM by letting V'(z) = {penguin, bird,black}, V'(y) =
V(y), V'(z) = V(z) and by defining<’ as:z <’ y andz <’ z. Clearly M’ = K, and
M <yrms M, sinceka (z) < kaq(x), while kg = kaq for all other worlds.

The example above shows thBfMS and VIMS lead to different sets of minimal
models for a givenk. Notice however that the modgl’ we have used to illustrate
this fact is not a minimal model fak in VIMS. A minimal model inVIMS for K that
can be defined on the domaify is given byV (z) = V(y) = V(z) = {bird, fly},
and the empty relatior. This is quite a degenerate model/gfin which there are no
penguins. This illustrates the strengthdfMS: in case of knowledge bases that only
contain positive conditionals, logical entailmentlifiMS collapses into classical logic
entailment. This feature corresponds to a similar featdirdan® non-monotonic logic
P...n in[5], and can be proven in the same way.

Proposition 4. Let K be a set of positive conditionals. Let us replace all forrswé
the formA |~ Bin K with A — B, and call K’ the resulting set of formulas. We have
that K =5 A~ Bifandonly if K’ =pc A — B.

As for P,,,;, this strong feature o¥/IMS can be avoided when considering knowledge
bases that include existence assertions: these are negagitionals, in the example
for instance we could add(penguin |~1) to force us to consider non trivial models
in which penguins exist. In the next section, we will uB&V/S in this kind of way,

by always considering knowledge bases that include existassertions (expressed by
negated conditionals).



3 A Semantical Reconstruction of Rational Closure

We provide a semantic characterization of the well knowiorat closure, described in
[8] within the two semantics described in the previous sectMore precisely, we can
give two semantic characterizations of rational closure,first based o' IMS, the
second based o#f/MS. Since in rational closure no boolean combinations of condi
tionals are allowed, in the following, the knowledge ba&ses just a finite set of positive
conditional assertions. We recall the notion rational efesgiving its syntactical defi-
nition in terms ofrank of a formula.

Definition 7. Let K be a knowledge base (i.e. a finite set of positive conditiaasér-
tions) andA a propositional formulaA is said to beexceptionafor K iff K Er T |~
A8,

The set of conditional formulas which are exceptionalZowill be denoted a&l(K).
Itis possible to define a non sequence of subsets 6§, 2 C1, ... by lettingCy = K
and, fori > 0, C; = E(C;-1). Observe that, beinf finite, there is a» > 0 such that
forallm > n,C,, = C, or Cp, = 0.

Definition 8. A propositional formulad hasranki for K iff 7 is the least natural num-
ber for which A is not exceptional fo€’;. If A is exceptional for allC; then A has no
rank.

The notion of rank of a formula allows to define the rationalscire of a knowledge
basekK.

Definition 9. Let K be a conditional knowledge base. The rational closref K is
the set of allA |~ B such that either (1) the rank of is strictly less than the rank of
A A =B (this includes the casd has a rank and4 A =B has none), or (24 has no
rank.

The rational closure of a knowledge bakeseemingly contains all conditional asser-
tions that, in the analysis of nonmonotonic reasoning plediin [8], one rationally
wants to derive fronk . For a full discussion, see [8].

Can we capture rational closure within our semantics? A diosecture might be
that the FIMS of Definition 5 could capture rational closure. However, we soon
forced to recognize that this is not the case. For instancamiple 1 above illustrates
that{penguin  bird, penguin ~ —fly,bird ~ fly} FErmus penguin A black |~
= fly. On the contrary, it can be easily verified thathguin A black |~ —fly is in
the rational closure ofpenguin |~ bird, penguin ~ —fly,bird ~ fly}. Therefore,
FIMS as it is does not allow us to define a semantics correspondingtiopnal clo-
sure. Things change if we considEI)MS applied to models that contain all possible
valuationscompatiblewith a given knowledge bage. We call these modetsanonical
models

8In [8], =p is used instead of . However when K contains only positive conditionals the
two notions coincide (see footnote 1) and we prefer tofugehere since we consider rational
models.



Example 2.Consider Example 1 above. If we restrict our attention to elthat also
contain aw with V(w) = {penguin, bird, black} which is a black penguin that does
not fly and can therefore be assumed to be a typical penguiarevable to conclude
that typically black penguins do not fly, as in rational clesundeed, in all minimal
models of K that also containv with V(w) = {penguin, bird, black}, it holds that
penguin A black ~ — fly.

We are led to the conjecture thatMS restricted to canonical models could be the
right semantics for rational closure. Fix a propositiomalduage’ p,,, comprising a
finite set of propositional variable$T'M, a propositional interpretation: ATM —
{true, false}iscompatiblewith K, if there is no formul&d € £ p,,, suchthav(A) =
trueandK Er A v L.

Definition 10. A modelM = (W, <, V) satisfying a knowledge bag¢ is said to be
canonicalf it contains (at least) a world associated to each proposial interpretation
compatible withK, that is to say: ifv is compatible with/, then there exists a world
w in W, such that for all propositional formulaB M, w = B iff v(B) = true.

It can be easily shown that:

Theorem 2. For a given domain/V, there exists a unique canonical modet for K
overW such that, for all other canonical modelg!’ over\V, we haveM < gryg M.

In the following, we show that the canonical models that aieimmal with respect to
FIMS are an adequate semantic counterpart of rational closure.

To prove the correspondence between the rational closuaeknbwledge bas&
and the fixed interpretation minimal model semanticdgfwe need to prove some
propositions. The next one is a restatement for rationaletsoaf Lemma 5.18 in [8],
and it can be proved in a similar way. Note that, as a diffeeepoint 2 in Lemma 5.18
is an “if and only if” rather than an “if” statement.

Proposition 5. Let M = (W, <, V') be a rational model of<. Let My = M and,
for all ¢, let M; = (W;, <;,V;) be the rational model obtained fromv by removing
all the worldsw with ka(w) < 4, i.e,W; = {w € W | km(w) > i}. For any
propositional formula4, if rank(A) > 4, then: (1)kap(A) > i; (2) If A ~ B is
preferentially entailed by;, then M, satisfiesA ~ B.

Factl If {A1 — B1,...,An — Bn} Epc ~C'then{Al ~ B1,...,An |~ Bn} g
T~ =C.

The following propositions hold (proofs can be found in [6])

Proposition 6. LetM = (W, <, V') be a canonical model df’, minimal w.r.t.< gras.
Forall w € Wit holds that: if M,w = A — Bforall A~ Bin C;, thenka(w) < i.

Proposition 7. Let M be a canonical model df” minimal w.r.t.< grys. Thenyank(A) =
iiff kap(A) = 4.

We can now prove the following theorem (the proof is in [6]):



Theorem 3. Let K be a knowledge base andl be a canonical model ok minimal
W.r.t. < przs. We show that, for all conditionald ~ B

M AR BifandonlyifA ~ B € K,

whereK is the rational closure of<.

In Theorem 3 we have shown a correspondence between ratiosatre and minimal
models with fixed interpretationsn the proviso thatve restrict our attention to mini-
mal canonicaimodels. We can obtain the same effect by extendirigto K’ by adding
negated conditionalft’ = K U {—~(C 1) | K ~r (C ~1)}. Indeed it can be eas-
ily verified that all models ofK” are canonical, hence restrictidfA/S to canonical
models on the one hand and considering the extensidti aé K’ on the other hand
amounts to the same effect. We can therefore restate Thebadmve as follows:

Theorem 4. K' =ppys A Biff A~ B e K.

Notice that the size oK’ is exponential in that of.

Can we lift the restriction to canonical models by adoptingeanantics based on
variable valuations? In the general case, the answer iginegdé/e have already men-
tioned that if we consider knowledge bases consisting oojtipe conditionals logical
entailmentinVIMS collapses into classical logic entailment. To avoid thikagse, we
can require that, when we are checking for entailment of alitomal A ~ B from a
K, atleast am A B world and anA A —B world are present iti. This can be obtained
by adding toK the conditionals:(AA B |~ L) and—(AA—B |~ L). Also in this case,
however, we cannot give a positive answer to the above qunesti fact, it is possible to
build a model of K, minimal w.r.t. VIMS, which falsifies a conditionall |~ B which
on the contrary is satisfied in all the canonical minimal nis@é X" underFIMS. This
is shown by the following example:

Example 3.Let K be the following:

{T~S

S~ D,

L~ P,

RprQ,

ErF

H G,

D —-PAN=QAN-FA-G,
S ~ (L A R),

S ﬁ(L/\E),
S ﬁ(L/\H),
S (RAE),
Sh~—(RAH),
Sr-(EANH)}.

LetA=DASARALANEANH, B=-QA-PA-FA-GandletKk’ =
KU{ﬁ(A/\B|~ 1), ﬁ(A/\ﬁB f~ l)}



We define a modeM = (W, <, V) of K’, which is minimal w.r.t. VIMS, as
follows:

W = {z,w,y1.y2,y3}, where:

V(yl) = {S, ﬁD, ﬁR, ﬁL,ﬁE,ﬁH, P, Q,F,G}
V(y2) ={-S,-D,R,L,E,H,P,Q,F,G}
V(ys) ={-S,-D,R,L,E,H,P,Q,F,G}
V(z)={D,S,R,L,E,H,-Q,~P,~F, -G}
V(w)={D,S,R,L,E,H,Q,—~P,~F, -G}

with Eaq(y1) = 0, kam(y2) = 1, kpm(ys) = 1, kam(z) = 2 andka(w) = 2. Observe
that:z is anA A B minimal world;w is anA A =B minimal world;y; is anS minimal
world; ys is a minimal world forR, L, E and H; andys is a D minimal world.

M is a model ofK” which is minimal w.r.t. VIMS. Also, A |~ B is falsified inM,

while, on the contraryA |~ B holds in all the canonical models minimal w.li/MS.
Indeed, in all such models the heightidfA A B) = 2 while k(AA-B) = 3. However,
it is not possible to construct a modgh’ with 5 worlds so thatM’ <y s M.
In particular, assigning te or w height 1 would require the introduction of minimal
worlds for R, L, EE and H with height 0. But worldy, cannot be given height 0, as
it does not satisfy the conditionals with anteced&ntn canonical models there are
distinct minimal R worlds, L worlds, E worlds andH worlds height O (which are also
minimal S worlds).

As suggested by this example, in order to characterizernaltiolosure in terms of
VIMS, we should restrict our consideration to models which dorfeenough” worlds.

In the following, as in Theorem 4, we enridki with negated conditionals but, as a
difference withK’ of Theorem 4, we only need to add 6 a polynomial number of
negated conditionals (instead of an exponential numbég.gurpose of the addition
is that of restricting our attention to models minimal witspect to< y;,¢ that have

a domain large enough to have, in principle, a distinct nposferred world for each
antecedent of conditional i’. For this reason, we add for each antecedenf K a
new corresponding atom. If the problem to be addressed is that of knowing whether
A |~ B is logically entailed byK, we also introducé s, g and¢ 45, and we define
K’ as follows.

Definition 11. We define:

— Ak app = {C | eitherforsomeD,C ~ D€ KorC=AANBorC = AN-B,
andK t/r C ~L};
~ K' = KU{=(CAdc L) | C € Aganp} U{(dc, Ade, kL) | Ci,C; €
Ak ArB}-
We here establish a correspondence betwe&dis and VIMS. By virtue of Theorem

3, this allows us to establish a correspondence betweameditlosure and/IMS, as
stated by Theorem 6.

Theorem 5. Let M be a canonical model ak’, minimal with respect ta"/M.S, and
let K’ be the extension df defined as in Definition 11. We have that:



M'ZA\NBiﬁKI):V]MsAP\/B.

The proof can be found in [6].
From Theorem 3 and Theorem 5 just shown, it follows that:

Theorem 6. A ~ B € K iff K’ Evius A~ B for K’ of Definition 11.

4 Relation with P,,,;, and Pearl’s System Z

In [5] an alternative nonmonotonic extension of preferndgic P calledP ,,;,, is pro-
posed. Similarly to the semantics presented in this wBrk;, is based on a minimal
modal semantics. However the preference relation amongaaddefined in a differ-
ent way. Intuitively, inP,,;,, the fact that a world: is a minimal A-world is expressed
by the fact that: satisfiesA AO—A, whereO is defined with respect to the inverse of the
preference relation (i.e. w.r.t. the accessibility reatjiven byRuv iff v < u). The idea

is that preferred models are those that minimize the set ofiwevhere-[J1—A holds,
that is A-worlds which are not minimal. As a difference from the apmiopresented in
this work, the semantics @?,,,;,, is defined starting from preferential models of Defi-
nition 1, in which the relatior< is irreflexive and transitive (thus, no longer modular).
P...n is @ nonmonotonic logic considering ortymodels that, intuitively, minimize the
non-typical worlds. More precisely, given a set of formulasa modelM = (W,
<m, Vm) of K and a modeN = Wy, <, V) of K, we say thaiM is preferred to
N if Wa = Wy, and the set of pairgu, -[0-A) such thatM, w = —~[-A is strictly
included in the corresponding set faf. A model M is aminimal modefor K if it is

a model of K and there is no a modeélt’ of K which is preferred toV. Entailment

in P.,.;, is restricted to minimal models of a given set of formul@sin Section 3 of
[5] it is observed that the logi®,,.;,, turns out to be quite strong. In general, if we
only consider knowledge bases containing only positived@@nals, we get the same
trivialization result (part of Proposition 1 in [5]) as th@e contained in Proposition
4 for VIMS. This does not hold for rational closure. This is the reasby we have
introduced the additional assumptions of Definition 11 ieito obtain an equivalence
with rational closure. Similarly, in order to tackle this/alization inP,,;,,, Section 3

in [5] is focused on the so callegell-behaved knowledge basésat explicitly include
that A is possible t:(A |~ L)) for all conditional assertiond |~ B in the knowledge
base.

We can now wonder whethé&?,,,;,, is equivalent toVIMS, which is the semantics
to which it resembles the most. Or whethéf)/S is equivalent to a stronger version
of P,,:, obtained by replacin@ with R as the underlying logic. We caR.,,,;,, this
stronger version oP ;. .

Example 4.Let K = {PhD |~ —worker, PhD |~ adult, adult  worker,italian
house_owner, PhD |~ —~house_owner}.

What do we derive iP,,,;, andR.,,,;,,, and what inVIMS? By what said above, since
K only contains positive conditionals, both B,,;,, andR.,,,;,,, on the one side, and
in VIMS, on the other side, we derive thatlian A PhD ~L. So let’'s add tak the
constraint that people who are italian and have a PhD do kyisitroducing inK a



conditional—(italian A PhD ~L1), thus obtainingK’ = { PhD |~ —~worker, PhD |~
adult, adult ~ worker italian |~ house_owner, PhD |~ —house_owner,—(italian N
PhD ~1)}.

Notice that since-(italian A PhD ~L1) entails both that-(italian L) and that
—(PhD 1), and that this in turn entails(adult ~L), K’ is also well-behaved.

It can be easily verified that the logical consequencesofn P,,.;,, Rnin, and
VIMS differ. In bothP,,,;,, andR,,;,, for instance, we derive neither thatlian A
PhD |~ house_owner nor thatitalian A PhD |~ —house_owner: the two alterna-
tives are equivalent. On the other hand,idMS we derive thatitalian A PhD |~
—house_owner.

The previous example shows that in some cdgéBdS is stronger than botR,,,;, and
R.,..n.- The following one shows that the two approaches are incoalybs, since there
are also logical consequences that hold for #4f,, andR.,,.;,, but not for VIMS.

Example 5.Let K = {PhD |~ adult, adult ~ work, PhD ~ —work, italian
house_owner}.

What do we derive about typicédalian A PhD A work, for instance? Do they inherit
the property of typical italians of beinpuse_owner? Again, in order to prevent the
entailment ofitalian A PhD A work |~L from K both in VIMS and inP,,;, and
R,.in, We add toK the constraint that italians with a PhD who work exist, héoxta
they also have typical instances. Therefore we exganato:

K' = {PhD | adult, adult ~ work, PhD  —work,
italian |~ house_owner, —(italian A PhD N work ~L)}.

By reasoning as in Example 4 we can show tRats a well-behaved knowledge base.
Now it can be shown that

italian A PhD N work |~ house_owner

is entailed inP,,;, andR.,,;,, whereas nothing is entailed ii/)S. This difference
can be explained intuitively as follows. The set of propertior which an individual
is atypical matters iP,,,;,, andR,,;, where one has to minimize the set of distinct
—0-C: even if anitalian A PhD N work is an atypical PhDP,,,;, andR,,,;,, still
maximize its typicality as an italian, and therefore entadit it is a housewner, as all
typical italians. As a difference, ivIMS, what matters ishe set of individuals which
are more typicathan a givern, rather tharthe set of propertiesy which they are more
typical. As a consequence, since amvhich is italian A PhD N work is an atypical
PhD, there is no need to maximize its typicality as an ital@nlong as this does not
increase the set of individuals more typical than

In [9] Pearl has introduced two notions of 0-entailment arehiailment to perform
nonmonotonic reasoning. We recall here the semantic defiraf both and then we re-
mark upon their relation with our semantics and rationadigie. A modelM for a finite
knowledge basé& has the form\M = ({true, false}A™ k) where{true, false}A™
is the set of propositional interpretations for, say, a fifieile propositional language,



andk,, is our height function mapping propositional interpresas to, the defini-
tion of heightk ,((A) of a formula is the same as in our semantic. A conditichal B
istrue inamodeM if ka(AAB) < kapm(AA—B). Then the two entailments relations
are defined as follows:

K Eo—ent A v Bif A~ Bistrue in all models oK
K Ei-ent A Bif A~ Bistruein the (uniqgue) modeU of K which is
minimalw.r.t. k.

(minimal w.r.t. k,», means that no other moda’ assigns a lower valuk, to any
propositional interpretation). First, observe that Peagmantics (both 0 and 1 entail-
ment) cannot cope with conditionals having an inconsisaatécedent. This limitation
is deliberate and is motivated by a probabilistic intergtien of conditionals: in assert-
ing A ~ B, A must not be impossible, no matter how it is unlikely. For tt@ason, a
knowledge base such & = {A ~ P, A ~ =P, B |~ Q} is out of the scope of Pearl's
semantics, and nothing can be said about its consequercasiifierence with respect
to Pearls approach we are able to consider such K, we justedibiat A is impossible,
without concluding that K is inconsistent or trivial, in teense that everything follows
from it. Moreover both 0-entailment and 1-entailment failalidate:

0 ):Ofent/lfent A T WheneVef—pC —-A

which is valid in any KLM logic, whence in rational closures(aell as in our seman-
tics). However two definitions should make apparent theticela with our semantics
and rational closure. If we considerfa@ such thatvA ~ B € K, K £r A ~ L,
we get an obvious correspondence betweercanonicalmodels (which will contain
worlds for very possible propositional interpretationflanodels of Pearl’s semantics.
The correspondence preserv&3/S minimality, so that we getimmediately:

Proposition 8. K E1_¢nt A ~ B iff A ~ B holds in anyFIMS-minimal canonical
model ofK.

By Theorem 3, we therefore obtaii =;_.,; A ~ Biff A ~ B € K. This is not
a surprise, the correspondence between 1-entailment &indalclosure was already
observed by Pearlin [9, 10]. However, it only works for kneddje bases with the strong
consistency assumption as above.

5 Conclusions and Future Works

We have provided a semantic reconstruction of the knowamaticlosure within modal
logic. We have provided two minimal model semantics, baseithe idea that preferred
rational models are those one in which the height of the vgddaninimized. We have
then shown that adding suitable possibility assumptiomskioowledge base, these two
minimal model semantics correspond to rational closure.
The correspondence between the proposed minimal modehsesand rational

closure suggests the possibility of defining variants dbretl closure by varying the
three ingredients underlying our approach, namely: (i)ttoperties of the preference



relation<: for instance just preorder, or multi-linear [5], or wealdgnnected (observe
thatP is complete w.r.t. any of the three classes); (ii) the consparrelation on models:
for instance based on the heights of the worlds or on the $imflbetween the relations
<, or on negated boxed formulas satisfied by a world, as in tgie B,,.,; (iii) the
choice between fixed or variable interpretations. The systebtained by various com-
binations of the three ingredients are largely unexploredi may give rise to useful
nonmonotonic logics. We finally intend to extend our applosxricher languages,
notably in the context of nonmonotonic description logics.
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