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Abstract. The notion of data quality cannot be separated from the context in
which the data is produced or used. Recently, a conceptual framework for captur-
ing context-dependent data quality assessment has been proposed. According to
it, a database D is assessed wrt. a context which is modeled as an external sys-
tem containing additional data, metadata, and definitions of quality predicates.
The instance D is “put in context” via schema mappings; and after contextual
processing of the data, a collection of alternative clean versions D′ of D is pro-
duced. The quality of D is measured in terms of its distance to this class. In this
work we extend contexts for data quality assessment by including multidimen-
sional data, which allows to analyze data from multiple perspectives and different
degrees of granularity. It is possible to navigate through dimensional hierarchies
in order to go for the data that is needed for quality assessment. More precisely,
we introduce contextual hierarchies as components of contexts for data quality
assessment. The resulting contexts are later represented as ontologies written in
description logic.

1 Introduction

In previous research we have proposed a model of context for data quality assessment
[6, 7], with the goal of formalizing the empirical fact that data quality is context depen-
dent. In that work we presented the context C as essentially a logical theory, into which
a database D under assessment can be mapped, for further processing and analysis. The
resulting instance (or set thereof) at the contextual level can then be compared with the
original one, through a distance measure between D and the resulting instance [6, 7].

More specifically, the contextual theories used in [6] appeared as a form of data
integration system, with additional (possibly partial) data, metadata, and definitions of
quality predicates. The latter are used to extract quality data from those in the exter-
nal dirty instance. In particular, the problem of doing clean query answering, i.e. of
obtaining clean answers to queries posed to D via the context C was introduced and
investigated.

An important element that was not included in those contexts is the one of data
dimension. And this is necessary, because data for data quality analysis are usually of a
dimensional or hierarchical nature. Furthermore, dimensions provide different perspec-
tives or points of view from which data can be seen and analyzed.
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In this work we enrich our context model by introducing dimensions and their cat-
egories. The main purpose of this paper is to convey the general ideas, problems, ap-
proach, and issues that appear when dimensions are introduced in combination with
the other contextual elements mentioned above. For the same reason, we concentrate
mainly on the introduction of dimensions, rather than on their use in data quality as-
sessment.

More precisely, we show how to use dimensional navigation for accessing the data
that is necessary to assess the external data. We also show how this navigation can
be combined, for the same purpose, with general knowledge expressed by rules. We
also show the relevance of introducing and having intra- and interdimensional semantic
constrains. They restrict certain combinations of related values that may appear in (or
are associated to) different categories in a dimension, or pair of them.

To this end, we introduce in the context model an extension of the model for mul-
tidimensional databases (MDDBs) in [21]. This model is extended with different kinds
of relations associated to categories and dimensions (going far beyond fact tables); and
also with the above mentioned dimensional constraints.

Finally, following [6, 7], and in the spirit of having a context as a theory, we pro-
vide an ontological representation of the contexts as enriched with dimensions. This
is because ontologies written in, e.g. description logic (DL) become logical theories.
An ontology provides language components and constructs for representing knowledge
about a domain of interest, and also reasoning capabilities. More concretely, we rep-
resent contexts as ontologies written in a description logic of the DL-Lite family [12],

actually, DL-Lite(HN)+

Horn [2].
The rest of this paper is structured as follows. In Section 2, we present and discuss

contexts for data quality assessment. In Section 3, we introduce dimensions into our
context framework. In Section 4, we show how to specify dimensional contexts by
means of DL-ontologies. In Section 5, we discuss related work. Finally, in Section 6,
we draw some conclusions and point to ongoing work.

2 Contexts for Data Quality Assessment

The quality of data is relative to their intended and interpreted use [22]. It is related to
the possible differences between the actual stored values and the real values that were
expected or supposed to be stored [6]. Furthermore, the notions of “good” and “poor”
data quality are inseparable from the context in which the data is used or produced [6].

In this paper, data quality (DQ) is addressed from these points of view, i.e. in re-
lation to semantic discrepancy [22] (as opposed to misspellings, for example), and as
determined by a formal context that enables data quality analysis.

Example 1. Tom is a patient in a hospital. Several times a day different medical tests
are performed on him, and test values are recorded by a nurse. His doctor, John, wants
to see Tom’s test values every day, to follow his evolution.

The data that John needs about Tom appear, among other, in the PatientValue rela-
tion in Table 1 below. John has additional quality concerns. He only wants to see, for all
his patients, test results that are taken with instruments of the brand B1. On Sep/5, for
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morning tests, the nurse, Jane, performed the test on Lou with an instrument of brand
B2, and inserted it as the 6th tuple into the PatientValue relation.

Table 1: PatientValue
Patient Value Time

Tom Waits 38.5 11:45/5/Sep/2011
Tom Waits 38.2 12:10/5/Sep/2011
Tom Waits 38.1 11:50/6/Sep/2011
Tom Waits 38.0 12:15/7/Sep/2011
Tom Waits 110/70 11:45/8/Sep/2011
Lou Reed 37.9 12:10/5/Sep/2011

Based on John’s quality concerns, this tuple should not appear in a quality relation,
one that satisfies John’s requirements. However, its does appear in the doctor’s view of
data (which is Table 1). In this case, there is a difference between the value which is
recorded and the real value which was expected to be recorded (one measured with an
instrument from the intended brand). This is an example of “semantic discrepancy” or
“semantically inaccurate data” [3]. �

The quality of data depends on the context [6]. In this work, we define a context for
the quality assessment of a database instance D of schema S as a separate information
system C. The latter may contain its own relational schema C, a possibly partial (incom-
plete) instance I of C, additional predicates with definitions in C that can be used for
D’s quality assessment, etc.

The schema C could be an extension of S, and I an extension of D. In order to assess
the quality of D, the latter has to be put in context via schema mappings between S and
C. Different cases and situations can be accommodated in this framework [6]. A quality
database instance D′, as an alternative to the instance D at hand, could be a footprint
of the contextual instance I after some additional processing via quality predicates at
the contextual level. Depending on how much D departs from D ′, we can assign to the
data in D a quality grade or measure. In other cases, instead of a single quality instance
D′, we can obtain a whole class K of quality instances, and D has to be assessed on the
basis of its distance to K [6].

We can see that a context for data quality assessment can be conceived as a shared
information space that is designed to serve a particular purpose [14].

Example 2. (example 1 cont.) We have a contextual relation Measurement (Table 2). It
contains all the values of different tests that are performed on patients by using instru-
ments of different brands at different times. From relation Measurement we obtain the
values that are taken by instruments of brand B1, satisfying the doctor’s requirement.

Table 2: Measurement
Patient Value Hour Brand

Tom Waits 38.5 11:45/5/Sep/2011 B1

Tom Waits 38.2 12:10/5/Sep/2011 B1

Tom Waits 38.1 11:50/6/Sep/2011 B1

Tom Waits 38.0 12:15/7/Sep/2011 B1

Tom Waits 110/70 11:45/8/Sep/2011 B2

Lou Reed 37.9 12:10/5/Sep/2011 B2

The quality version of PatientValue relation based on John’s condition is (Table 3).
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Table 3: PatientValue’
Patient Value Time

Tom Waits 38.5 11:45/5/Sep/2011
Tom Waits 38.2 12:10/5/Sep/2011
Tom Waits 38.1 11:50/6/Sep/2011
Tom Waits 38.0 12:15/7/Sep/2011

This new instance is obtained via a select-
project view on Measurement at the con-
textual level. The quality of Table 1 is as-
sessed by comparing it with the extension
of PatientValue’ in Table 3 by using some
appropriate distance measure [6]. �

The context C could also contain additional metadata or general knowledge that can be
used in data quality assessment.

Example 3. (example 2 cont.) Let us assume that, instead of Table 2, we have the table
PatientWard (Table 4). It contains all the patients and the wards they were staying on
each day. Note that it does not explicitly contain information about the tests or the
instruments used. However, the context has information about hospital guidelines:

Table 4: PatientWard
Patient Date Ward

Tom Waits 5/Sep/2011 W1

Tom Waits 6/Sep/2011 W1

Tom Waits 7/Sep/2011 W1

Lou Reed 5/Sep/2011 W2

Hospital Guideline 1: “Medical tests on
patients in ward W1 have to be performed
by instruments of brand B1”.

A guideline like this can be used in different forms, e.g. as a hard rule, as a default rule,
or as a semantic constraint at the contextual level. If we had the guideline instead of
Table 2 with the detailed measurements, and assuming that the guideline is satisfied, we
can use the contextual relation PatientWard in combination with the hospital guideline
to conclude that all tests performed on Tom Waits between 5/Sep and 7/Sep (the dates
in which he was in ward 1) were done with instruments of brand B 1. The quality version
of PatientValue relation is again Table 3. �

The framework for data quality assessment proposed in [6] is depicted in Figure 1. It
shows the relational schema S with is predicates R1, R2, ..., Rn. The instance D of S
under quality assessment has extensions R1(D), Rn(D) for them. Context C contains
a contextual schema, C, including a set B of built-in predicates, e.g. comparisons; and
also a set, P = {P1, ..., Pk}, of contextual quality predicates (CQPs) with definitions
over C. The built-in predicates are used in the definitions of other predicates, like those
in P , so they are not explicitly shown in Figure 1.
The connection between the schemas in the framework is provided by schema map-
pings [4], αi, like those found in virtual data integration systems (VDISs) [5, 23] or
data exchange [1]. Now, schema S ′ is a copy of schema S, with relational predicates
R′

1, ..., R
′
n. Their extensions are the ideal, quality instances for the R ′

is. Each of the R′
is

is defined as a conjunctive view over the contextual schema, say ∀x̄(αP
i (x̄) ≡ R′

i(x̄)),
where αP

i is a conjunction of atomic formulas with predicates in C ∪ P . These views
are computed on top of contextual instances I for schema C, that are related to D in
terms of contents by the mappings αi. In this way, D is mapped into C, integrated into
contextual instances I , and further qualified via the views R ′

i, to obtain quality data [6].
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Fig. 1: Data quality assessment framework

3 Extending the Contextual Framework with Dimensions

In Example 2, the required data was explicitly stored in a relation that extends the
table under assessment. However, in some other situations we may have to go outside
a contextual table and navigate within the context, searching for the necessary data.
This is particularly the case when the contextual data is of a multidimensional and
hierarchical nature [8, 9].

Example 4. (example 3 cont.) John has a new quality requirement. He asks nurses to
perform all the medical tests with instruments made by manufacturer M 1. Furthermore,
there is a new hospital guideline in place:

Hospital Guideline 2: “Medical tests on patients in standard care and intensive care
units have to be taken with instruments made by manufacturer M 1 and M2, respec-
tively”.

The information explicitly provided by the contextual relation Measurement (Table
2) is about the Ward category, but data about the units, that could be used in combination
with Guideline 2, belongs to a higher or more general category, Unit. This is illustrated
in Figure 2.

  

Table 4: PatientWard 
Patient Date Ward 

Tom Waits 5/Sep/2011 W1 
Tom Waits 6/Sep/2011 W1 
Tom Waits 7/Sep/2011 W1 
Lou Reed 5/Sep/2011 W2 Nurse 

Suzan Cathy Jane Juan Mary

Ward 

W1 W2

Unit 

Standard Intensive

W3 W4

Terminal 

Fig. 2: PatientWard to Location mapping

In order to reach the relevant data, we have to navigate through the hierarchy. In this
case, by rolling up from Ward to Unit, we can identify the wards that belong to standard
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care units, namely W1 and W2. This allows us to build a quality version of the original
instance, the one shown in Table 5. �

Table 5: PatientValue”
Patient Value Hour

Tom Waits 38.5 11:45/5/Sep/2011
Tom Waits 38.2 12:10/5/Sep/2011
Tom Waits 38.1 11:50/6/Sep/2011
Tom Waits 38.0 12:15/7/Sep/2011
Lou Reed 37.9 12:10/5/Sep/2011

Data in a contextual hierarchy are orga-
nized in categories that are (possibly par-
tially) ordered according to the level of de-
tail they provide. A contextual hierarchy
provides information from one perspective
according to different granularities.

By having several hierarchies in a context, we will have multiple perspectives for data
analysis and quality assessment.

Example 5. The hierarchy in Figure 2 is a portion of the Location hierarchy (or dimen-
sion) in Figure 3. The dimension schema in Figure 3a shows the categories and their
relationships. Figure 3b shows a possible dimension instance for the Location; and a
partial order relation between the elements of categories. �

Dimensions can be made part of a context by embedding in it a multidimensional
database. For this purpose we can use an extension of the Hurtado-Mendelzon (HM)
data model for multidimensional databases (MDDBs) [21]. Before discussing the pos-
sible extensions we may need, we briefly describe the HM model.

A contextual dimension schema DS is a pair (CAT ,↗), where CAT is a set of
named categories, and ↗ is a child/parent relation between categories [21]. The transi-
tive closure of ↗ is denoted by ↗∗. There are no “shortcuts” between categories. There
is also a distinguished top category, denoted with All, which is reachable from all other
categories. The categories without an incoming ↗ are called bottom or base categories.

(a) Schema (b) Instance

Fig. 3: Location dimension schema and an instance
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An instance of a contextual DS is a tuple (M , <), where M is a finite collection of
ground atoms of the form C(a) with C ∈ CAT , and the data element a belongs to
an underlying domain. We assume that different categories do not have elements in
common. Relation < stands for the partial order between elements of categories, and
parallels the partial order ↗ between the corresponding categories. Category All has
only one element, all. Categories are assumed to be disjoint. The transitive closure of
< is denoted with <∗.

Example 6. For the contextual dimension Location in Figure 3, we have the schema:
CAT = {Nurse, Ward , Unit , Hospital , City , Country, All}, and ↗ = {〈Nurse,
Ward〉, 〈 Ward , Unit 〉, . . .}. Now, for the instance, M = {Nurse(Suzan),Nurse(
Cathy), Ward(W1), . . .}, and < = {〈 Suzan, W1〉, 〈Cathy , W1〉,〈W1, Standard
〉,〈Intensive, H1 〉, . . .} (shown also with arrows in Figure 3b). �

As is common in DWHs and MDDBs, in general, we can have fact tables asso-
ciated to the base categories. However, using a multidimensional model and a multi-
dimensional database within a context serves purposes not traditionally found in data
warehousing, OLAP, or data analytics. We can, for example, extend the HM model with
additional tables associated to the different level of the hierarchies or to categories other
than base categories (to which the fact tables are usually associated).

Example 7. (example 3 cont.) In Figure 4 we have two kinds of tables associated to
categories. Relation HospitalDescription (Table 7) is connected only to the Hospital
category, providing descriptions for the elements of the category. In contrast, relation
UnitInst (Table 6) represents Guideline 2 and contains attributes connecting two cate-
gories, Unit and Manufacturer, in different dimensions, say Location and Product. It
contains an extra, non-dimensional attribute Origin.

A table like UnitInst can be used in combination with dimensional navigation to
obtain the required data; in this case about the instrument used with the patients of a
given unit. Notice that the table might be incomplete: not all units or manufactures are
necessarily related. �

 

 

 

 

 

 

  

  

Table 7. HospitalDescription 
Hospital Type System 

H1 Teaching Public 
H2 Community Military 

Table 6. UnitIns 
Unit Instr Origin 

standard M-1 Canada 
intensive M-2 - 

Ward 

W1 W2

Standard Intensive

W3

H1 

Hospital 

W4

Terminal 

Unit 

Brand

Manufacturer 

B-1 B-2 B-3 B-4

M-1 M-2 M-3 

Fig. 4: Attributive and categorial relations

In more general terms, we extend the multidimensional model (MDM) with categorical
relations and attributive relations, both of them connected to categories of dimension
hierarchies.
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In a categorical relation (CR) some of the attributes are category names (or nick-
names for them). In such a case, the attribute and the category share the underlying
domain. In order to establish the connection between the attribute of a CR, R, and the
corresponding category, we need schema mappings. More precisely, if the ith position
of R corresponds to the category C ∈ CAT , then we have the following mapping:

∀x1 . . . xn(R(x1, . . . , xi, . . . , xn) → C(xi)).

Actually, this formula acts as a sort of referential constraint.
UnitInst is an example of a CR. Another example is Measurement (Table 2), as

shown in Figure 2. It contains the attribute Ward, that corresponds to a category in the
Location dimension schema. Accordingly, we have the mapping:

∀p∀v∀h∀w(Measurement(p, v, h, w) → Ward(w)).

We also have attributive relations (AR). They are connected to a single category in a
single dimension schema. Each AR provides, through its attributes, description for the
elements of the category. In terms of mappings between the relational and dimensional
schemas, they may be as for CRs. However, we may also have constraints of the form

∀x∃y1 · · · yn(C(x) → R(y1, . . . , x, . . . , yn)).

HospitalDescription (Table 7) is an example of an AR that provides descriptions for
the elements of the Hospital category of dimension Location. The following constraint
should be satisfied:

∀h∃t∃s(Hospital (h) → HospitalDescription(h, t, s)).

Notice that from the formal point of view, a one-category categorical relation, i.e. with a
single categorical attribute, does not differ from an attributive relation. However, the lat-
ter kind is always associated to a single category, whose elements are described through
the other attributes. As opposed to CRs, an AR is not meant to support navigation via
the categorical attributes (a process that could be realized with the machinery developed
in [25, 26]).

Many other sensible elements could be added to this dimensional embedding. For
example, intradimensional and interdimensional constraints. The former may restrict
certain combinations of descriptive values (in attributive relations) associated to ele-
ments in different categories that are <∗-connected. The latter may prohibit combina-
tions of values from several dimensions, as would be the case of categorical relations.

Notice that these constraints may have interesting logical interactions with the well-
known semantic constraints of the HM models, e.g. about homogeneity (every element
of a category rolls up to an element of a parent category) and strictness (rolls up to at
most one) [21].

Example 8. Suppose we want to specify the commonsense assumption that no single
measurement can be taken by more than one nurse. For this, we can use PatientValue(
Patient ,Value,Time), that can be seen as a CR linked to the Time dimension through
its last attribute; and also PatientWard(Patient ,Day,Ward), a CR linked to both the
Location and Time dimensions. We also need to appeal to the Nurse category of the
Location category. With all these elements, the above requirement can be expressed as
an interdimensional constraint:
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¬∃p v t d w n1n2 ( PatientValue(p, v, t) ∧ PatientWard(p, d, w) ∧ T (t , d) ∧
L(n1 ,w) ∧ L(n2 ,w) ∧ n1 �= n2 ).

Here, T and L are (the extensions of) the partial orders (<) between elements of cate-
gories Time and Day in the Time dimension, and Nurse and Ward in the Location dimen-
sion, respectively. This constraint takes the form of a denial constraint, that prohibits
certain combinations of atoms. �

In this section we have shown how contexts can be enriched by the introduction of
multidimensional models. The basis can be a model for MDDBs, like the one in [21].
However, it can be extended with additional data associated to category elements. On
the other side, a given contextual relation can be linked to one or several dimension
instances. Navigation through them allows us to find explicit additional information
or implicit information, like the one provided by guidelines, as rules in the contextual
framework.

4 Ontological Representation of Contextual Dimensions

A context can be represented as an ontology expressed in a logical language. As such,
contexts will possibly admit several models in comparison to a context that is repre-
sented by a single relational database. As a consequence, logical reasoning, for ex-
ample for checking inconsistencies, deriving implied relations, inferring instances of
relationships and concepts, etc., becomes a new issue. From this point of view, a con-
text becomes a knowledge base containing explicit data, e.g. in relational tables, explicit
metadata, including data semantics, and also general rules that can be used for extract-
ing implicit information. This would be the case, for example, of the hospital guidelines
of the previous sections. An ontology would allow us to extract and analyze information
via some sort of logical reasoning.

In this section, with the motivation of having a full-fledge ontology as a contextual
framework for data quality assessment [6], we will show how the dimensions (and their
extensions) introduced in the previous section can be expressed as a part of an ontology
in a description logic (DL). In DL there is knowledge both at the intentional level, in
a terminological TBox, T , and at the extensional level, in an assertional ABox, A. DL
ontologies contain formulas expressed in terms of concepts and roles. Some of them are
atomic and other can be defined.

Ontological, DL-based representation of dimensions have been previously proposed
in [15, 16], as representations of data warehouse conceptual schemas. They start from
description of DWH schemas as extended entity relationship (EER) diagrams, and pro-
vide the formal semantics for the EER representation via the ALCFI description logic
[19].

Here, we sketch a DL-based representation of our extended contextual MD model
in one of the members of DL-Lite family [12]. In general, DL-Lite and its extensions
have a good balance of expressive power and good computational properties; and have
found interesting applications in data management and semantics web [13].

The contextual relational schema and the contextual dimension schemas become
part of the TBox T . Since we may be dealing with large amounts of data, we keep
the data at their sources, which are connected to the TBox, T , via mappings. For that
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purpose we use functions symbols, as proposed in [27], for linking data sources to
DL ontologies. Thus, instances of contextual dimensions, categorical and attributive
relations will all be mapped to the corresponding constructs in T (concepts and roles).

Example 9. Consider the dimension schema for Location in Figure 3a. The categories
(category names) and attribute domains for attributive relations are represented as con-
cepts in T : Nurse, Ward, Unit, . . . , Integer, String, etc.

Two different category of the Location dimension are assumed to be disjoint, which
is captured by axioms in T , e.g. Nurse 
Ward �⊥, Ward 
 Unit �⊥, etc.

Each dimension schema has a unique role, denoted with the same name as the cor-
responding dimension. It represents the child/parent relation between elements of cate-
gories (<), and we also make it transitive, using the axiom: Tra(Location).

As shown in Figure 3a, for categories Ward and Unit, we have: Ward ↗ Unit ,
which is represented by the following axiom: Unit � ∃Location−.Ward .

Attribute HospitalType in attributive relation HospitalDescription (cf. Table 7 in
Example 7, providing descriptions for elements of the Hospital category, is represented
as a role, HospitalType, between the Hospital category and the attribute domain. For
HospitalType, the following axioms are introduced:

∃HospitalType− ≡ Hospital , ∃HospitalType � String , ≥2HospitalType �⊥.

Similarly for other attributes. The first two describe the kind of argument the role
takes, and the third one that each hospital is at most of one type.

The ABox is not explicitly represented. Instead, the TBox goes for data (or facts)
to the data sources via mappings. For example, assume that we have a relation loca-
tionIns(Ward,Unit). It is a subrelation of the dimension instance; actually the one at the
top of Figure 2. It has to be mapped into the Location role. More precisely, the (virtual)
instances of the concept Ward and the role Location are, possibly only partially built
from locationIns via:

∀w∀u(locationIns(w, u) → Ward(fward (w)),

∀w∀u(locationIns(w, u) → Location(fward(w), funit (u)).

The reason for having the functional terms on the right-hand-side is that the “abstract
representation” of data values at the ontological level may differ from the actual values
at the source level. Thus, the latter are mapped to abstract values through the represen-
tation functions [27]. The reader can safely assume for the rest of this section that each
of those functions is the identify function.

The attribute Type in the attributive relation HospitalDescription (Table 7) is mapped
to the role HospitalType through the mapping:

∀h∀t(HospitalDescription(h, t) → HospitalType(fhospital (h), t).

In this case, the hospital type (a string) is mapped as it is as a value at the ontological
level.

Guidelines, e.g. Hospital Guideline 2 stating that medical tests on patients in stan-
dard care units have to be taken with instruments made by manufacturer M 1, can be
captured as axioms in the TBox T . In order to do this, we first need to specify two con-
cepts, StandardCon and M1Con, respectively containing the element standard from
category Unit, and the element M1 from category Manufacturer. That is, M1Con(M1)
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and StandardCon(standard) are facts in the ontology.1 These two new concepts sat-
isfy the following conditions:

StandardCon � Unit , M1Con � Manufacturer .

We introduce a new concept StandardRelate that contains all the locations that have
standard as an ancestor in Unit category. Similarly, M1Relate is a concept with instru-
ments with M1 as an ancestor in the Manufacturer category. The satisfy the conditions:

StandardRelate ≡ ∃Location.StandardCon , M1Relate ≡ ∃Instrument.M1Con .

Finally, Guideline 2 can be expressed using the role UnitInst that represents the attribu-
tive relation in Table 6, by: ∃UnitIns−.StandardRelate � M1Relate. �

More specifically, our ontological representation can be done in DL-Lite (HN)+

Horn [2].
DL-Lite contains names for atomic concepts, e.g. Nurse, and ⊥, the empty concept,
used, e.g. to say that Nurse and Ward are disjoint. In DL-Lite we also have atomic roles,
R, and inverse role, R−, which we used in the axiom ∃HospitalType− ≡ Hospital ,
saying that the domain of role HospitalType coincides with the concept Hospital.

In an extension of DL-Lite, DL-LiteN , we find number restrictions of the form ≥
qR, that we used in ≥ 2HospitalType �⊥, for expressing that concept Hospital is
functional via attribute HospitalType. Now, DL-liteN

Horn allows for concept inclusions
of the form B1 
B2
 . . .
Bn � B, that we used in Nurse 
Ward �⊥.2

Next, with DL-LiteHN
Horn, we also have role hierarchies (H), or inclusions of the

form R1 � R2, which is used as a basis for defining the property of transitive role,

producing the extension DL-Lite(HN)+

Horn [2]. We used it with the axiom Tra(Location).

DL-Lite(HN)+

Horn also offers the qualified existential quantifier ≥qR.C, that we used
in Unit � ∃Location−.Ward (with q = 1), for expressing that Units contains values
that are connected to the elements of Wards through the role Location.

5 Related Work

A hierarchal framework for organizing data quality dimensions is proposed in [29],
with a discussion of high-quality data as intrinsically good, contextually appropriate
for the task, and clearly represented and accessible to the data consumer. Research
on data quality problems are mainly based on the implicit assumption that data errors
are mostly syntactic errors [3]. As discussed in [22], data quality may also be related
to the semantic of data. For example, a data quality problem occurs when there is a
difference between the intended meaning (according to its producer) and interpreted
meaning (according to its consumer) of a data value. The discrepancy occurs because
the communication between the data producer and costumer is not clear.

In [24], contexts are represented as first class, named objects in a logical theory, i.e.
they appear in the form ist(c, p), saying that proposition p is true in context (denoted
by) c.

1 Since these concepts reside at the ontological level, in order to be consistent with the our previ-
ous development, we should abstractly represent their elements by functions funit (standard),
fmanuf(M1 ), with mappings from the sources, as above. For simplicity we omit doing this.

2 Notice that in this extensions of DL-Lite we do not have explicit negation of concepts, as it is
the case in its krom or bool extensions.
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A context n be defined as a partial description of the world [17, 18]. Each context
is represented in a formal language, and checking the satisfiability of a formula in that
language is local and performed in its context. In addition, contexts mutually influence
themselves and different forms of reasoning, in different contexts, are made compatible.

There are some previous proposals for using contexts in data management [6, 8, 10],
including some dimensional aspects [9]. In [10], contextual commonsense assumptions
are expressed as sets of variables that may be a point of interest for an agent. The values
of those variables influence the agent’s actions. The representation of context in [10, 9]
is based on a tree-like context model, whose instances are sets of context elements, in
essence, collections of attribute-value pairs, e.g. role = ‘CEO’, situation = ‘in-office’
and location = ‘city’. Context-aware views are automatically or semi automatically
generated from a given database and a contextual instance, allowing to see the data
from different perspectives or points of view. The model also allows for the specification
of constraints on a context instance, e.g. sating that when a role is ‘CEO’, a situation
cannot be ‘on-site’. In our work, this type of conditions is captured by interdimensional
constraints.

In this work we represented contexts as extensions of MD ontologies written in
DL. As previously discussed in this paper, there are other proposals for representing
a data warehouse conceptual schema [15, 16, 28]. These use as a first modeling step
an extended entity relationship (EER), whose formal semantics of EER is captured by
means of an ontology written a DL in the ALCFI family.

6 Conclusions

In this paper we have pointed to issues, problems around, and sketched approaches to,
using and going for data that can be used by a context to assess the quality of a given
database instance. The latter is put in(to the) context via schema mappings [6, 7]. In this
paper, instead of emphasizing the use of the contextual data for quality assessment, we
have concentrated on extending the context model introduced in [6, 7], by adding rules,
dimensions, dimensional data, and, finally putting all this together as a DL ontology. As
a next step, (not developed in this paper, but see [6]), the ontological context is used for
assessing the quality of a database instance through the use of quality properties. The
assessment is done by comparing the database instance under assessment with a class
of alternative, intended instances that are obtained by the interaction of the original
data with the context. Investigating the quality query answering through the ontological
context is also a part of our ongoing research [6]. In addition, we are currently exploring
alternative representations for the contextual ontologies and the access to data through
them, e.g. using Datalog+

− [11].
In this work, we have focused mainly on the introduction of contextual dimension

for navigating in search for the data required to assess the quality of another set of
data. This also allows doing data quality assessment from multiple views and level of
granularity. In this regard, we can benefit from tools and methodologies developed in
[25, 26] in the form of an extended relational algebra, the contextual relational algebra.

Our proposed multidimensional contexts allows for natural extensions, such as the
introduction of explicit, lower-level data quality predicates [22], the access to external
data sources at quality-assessment time, and also intra- and interdimensional semantic
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constraints. This latter addition is particularly interesting since they do not commonly
appear in MDDBs, but they could interact with usual MD semantic constraints, like
homogeneity and strictness [21]. Notice that the combination of role transitivity, e.g.
of Location above, and functionality, e.g. Nurse 
 ≥2Location.Ward �⊥ (of the
roll-up relation from Nurse to Ward), is problematic [20]. All these issues are subject to
our ongoing research.
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