DL-workbench: a meta-modeling approach to ontology
manipulation

Mikhail KAZAKOV" 2 Habib ABDULRARB?

! Research division, Open Cascade S.A. 91400, Saclay, France
mikhail kazakov@opencascade.com
2PSI laboratoire, INSA de Rouen, BP 8, 76131, Mont Saint Aignan, France
abdulrab@insa-rouen. fr

Nowadays many ontological editors are available. However, several specific
requirements forced us to develop a new ontology edition platform which we
call DL-workbench. DL-workbench contains three main modules. First module
defines a meta-model for description of ontological formalisms. It provides an
API that allows management of ontological entities, containers of entities, and
many other features that are useful when one needs to use an ontological model
within its project. A second module of DL-workbench is a formalism-
independent processing module with integrated GUI for edition of elements
based on the meta-model. This module uses the meta-model and is implemented
as a plug-in to the IBM Eclipse platform. A third module defines the SHIQ
description logic formalism using the meta-model. The third module customizes
also the user interface (images, etc.). DAML+OIL is used within this module as
a persistent format. DL-workbench pays much attention to edition of logical
equations and to management of a group of ontologies within a project. DL-
workbench allows easy integration of ontological model with other data inside
one standalone or distributed application. DL-workbench can be used both as
the ontological editor and as an ontology manipulation platform integrated with
other tools and environments. This paper describes our motivation for creation
of DL-workbench, implemented features and lessons learned from
implementation of ontological editor.

1. Introduction

Ontologies have become an increasingly important research topic. This is a result of
their usefulness in many application domains (software engineering, databases,
medical domain, conceptual modeling, etc.) and the role they will play in the
development of emerging Semantic Web activity. It is clear that development and
manipulation of ontologies have to be supported by corresponding software tools
(annotation tools, editors, reasoners, etc.) and standards (OWL [9], etc.).

Nowadays many application domains are looking for use of ontologies. Each
domain, that uses ontologies, sets its own requirements for tools. One of such
domains is software integration. The main challenge of software integration is: how to
make working together software entities that were not initially created to work with
each other. We are currently working on the topic of semi-automated integration of

various numerical simulation multi-physics solvers [2]. Here the use of ontologies (as
formal description models) helps to share a common view on specification of solvers
that come from different vendors. Integration topic is out of the scope of this article
and will be published in a separate paper. Some preliminary results are given in [16].

Since we use logical models in our specific domain, we need a formalism that will
be used for creation of these models and tools that support the formalism (creation of
ontologies and reasoning). Also we need an API that allows us to integrate all these
tools with software, specific to the integration domain. Taking into account the
research origin of our work, we have formulated a set of requirements for an
ontological tool that would be convenient for us (the same requirements arise often
within the variety of other domains):

e Full support of at least one of ontological formalisms. Several formalisms are
preferred for research purpose. During the work on our research project
dedicated to semi-automated integration we experimented with several
ontological formalism and at the moment of DL-workbench creation we were
not sure, whether description logics are appropriate or not for our research.

e Convenient user interface to work with complex logical expressions (with
ability to modify the structure of expressions via the graphical user interface).
While trying several ontological editors, we found that most of the ontological
editors don’t implement expression editors. Those who implement them were
not convenient from our point of view.

e Presence of reasoner connection for implemented formalisms. Within our
research we have to work with complex logical axioms and ontological
models. These require the presence of reasoner both for validation of
ontologies and for performing of additional reasoning tasks that are dedicated
to semi-automated integration of software components.

e Ability to integrate that tool into a specific domain environment. Our research
is dedicated to integration environments that already exist as prerequisite. The
next requirement is coming from the same origin.

e Ability to manipulate ontologies and their elements from specific domain
environment. We need that in order to merge several ontological formalisms
within the same environment. For example the ontological data is merged with
specifications of Java interfaces.

« Ability to work with structured “ontological projects’ but not with “files’.
Following our methodology of semi-automated integration we need to work
with several separated ontological files at the same time. Managing of these
files within the “project”-like environment seems to be an acceptable solution.
Most of the people in software engineering who will use our products are
familiar with this concept.

* Fast and portable user interface and presence of extension points

Studying the state of the art, we did not find any tool that could comply with our
requirements. Thus the decision to create own platform was taken. The name of the
platform is DL-workbench (short of Description Logic Workbench, since SHIQ
description logic [7] is the main formalism that is used). DL-workbench is published
now under open source license (http://www.opencascade.org/dl-workbench).

Semantic Web activity is an important world-wide effort that combines many
techniques and touches many application domains. We hope that our experience in
creating of software tools for manipulation of ontologies (and DL-workbench itself)
will be useful for the semantic web community. This paper describes a meta-model
approach that was used for creation of DI-workbench. First we give the concept of
DL-workbench and our motivations. Further, we describe the meta-model kernel and
other modules. At the end we share some of lessons learned during creation of this
tool.

2. DL-workbench conception

The next list of principles and it constitutes the main concept of DL-workbench:

e DL-workbench is based on a meta-model that is capable to describe the structure
of ontological formalisms and data that is used within a specific domain.

e DL-workbench has a modular (plug-in based) architecture with clearly specified
dependencies among modules.

e Main processing module of DL-workbench is based only on the meta-model and
does not depend on any of specific formalisms. This module implements features
such as persistence skeleton, tracking of changes, transactions!, lifecycle of
instances and many others.

¢ Each generic module provides a set of documented extension points that can be
used by other modules / software to customize the platform.

e The work with ontologies is performed using a notion of a project. A project here
is a structured set of ontological files (ontological resources) and other domain
specific data if needed.

e DL-workbench defines an internal data model and “Ul-ready” data model. That
allows organization of different views on the same data (i.e. project view,
namespace view, taxonomy view)

e DL-workbench supports manipulation/edition of complex expressions and
axioms. In many application domains, the complete and *“reasoning-able”’
ontologies require the use of logical expressions and axioms.

e DL-workbench provides the user interface of an ontological editor.

We strongly believe that an ontological manipulation platform shall be based on
these principles to be interoperable and useful for researchers, software architects and
end users. DL-workbench source code is public and we hope it will be useful for
vendors of ontology edition tools.

DL-workbench can be viewed both as a meta-model based platform for creating
ontology-manipulation tools and as an ontological editor that supports SHIQ
description logic (i.e. the meta-model is used to define SHIQ model). DL-workbench

! Transaction support is not implemented in the current version of DL-workbench

uses DAMLA+OIL? [8] as persistent format and Racer [11] as DL reasoner. DL-
workbench is implemented as a set of plug-ins to IBM Eclipse platform [10]. Eclipse
is an emerging open source environment for creation of project-based tools.

3. DL-workbench structure

Meta-model

The major advantage of the DL-workbench is its meta-model based architecture. It
allows easy-to-use definition of entities and relations of an ontological formalism that
has to be used within the workbench. The meta-model is implemented as a set of Java
interfaces for the convenience of use from programming environments. Java
programming is involved for instantiation of the meta-model. This is an explicit
design choice. We benefit of existing type checking system and absence of another
compiler. That makes the objects instantiated from meta-objects working very fast.
The power of Java language can be used for definition of behavioral parts of the meta-
model. Moreover most of the people working in integration area are familiar with
Java.

A meta-model is a language that is used for description of ontological formalisms
by specifying their elements, structure and invariants (invariants have to be satisfied
when instances of these elements are created or modified). For example: one needs to
work with a simple propositional logic that includes notions of “atomic proposition”
and “composite proposition” expressed via logical expression with conjunction,
disjunction and negation operands.

Our meta-model is implemented as a light module and is independent from Eclipse
or any other tool. The main goal of the module is to achieve the maximal level of
independence from specific formalism and to enable implementing generic software
features (object lifecycle, transactions, etc.). The module also helps achieving the
interoperability among different tools by sharing the same meta-model.

The meta-model is basically intended for specifying structural models. Semantics
of the meta-model were inspired by Description Logics [1]. We tried to keep the meta-
model as simple as possible, but powerful enough for many possible needs.

The main element of meta-model is a meta-concept (IMetaConcept Java
interface). It represents any typed element with a set of properties. For example:
“Expression”, “proposition”, “atomic proposition”’, “logical operand” are the
instances of meta-concept. Each meta-concept has a meta-name that is represented in
a form of java interface. The taxonomy of these Java interfaces defines the taxonomy
(i.e. subsumption relationships) of corresponded meta-concept instances. For
example: an “atomic proposition” is a “proposition” and an “expression” with atomic
propositionsis also a*“proposition”.

2 We consider using the OWL language [9] instead of DAMLA+OIL as soon as OWL parsers
will appear on the market.

Another important element of a meta-model is a meta-property (IMetaProperty
Java interface). A meta-property represents a property that can potentially restrict a
meta-concept (similar to description logic semantics of “property”). For example, the
“atomic proposition” concept has “name’ property; an “expression” concept has
“operand”, “left part” and “right part” properties. Meta-property also has a meta-name
that is represented in the same way as for meta-concepts (i.e. in the form of Java
interfaces). Each meta-concept instance may have a set of meta-property instances as
its definition. An instance of meta-concept that inherits other meta-concepts also takes
all their properties. Generally, the most specific meta-concept is restricted by the
transitive closure of all the properties

Any meta-property has the notion of domain restriction, range restriction, inverse
property restriction and transitivity. Semantics of all these notions (meta-concept,
meta-property, domain, range, etc.) are very close to semantics of corresponded
elements from description logics [7].

In addition to these semantics, each meta-property can be augmented with a pre-
post processing handler for checking the invariant conditions of given property
values. For example: the “name” property of the “proposition” concept has a “String”
type. It must be complaint with the URI specification (i.e. no spaces, quotes, etc). An
invariant handler that does such check can be written for the “name” property.

The meta-model includes a simple type system. Types are used to define meta-
property range restrictions and to type instances of meta-model elements. Type
system includes singular types and collection types. A singular type can be primitive
(String, Boolean, Integer, Float, and Enumeration) or a meta-concept instance.
Collection type is defined by the type of its elements (any other type).

In order to specify some logical model (formalism), meta-concept and meta-
property classes must be instantiated. A special meta-model factory is implemented
within DL-workbench to facilitate this task. It is worth to mention, that many
formalisms can exist at the same time, can share their definitions and can be searched
for specific meta-concepts and meta-properties.

Here it's necessary to mention, that three meta-modeling levels exist.
IMetaConcept interface carries the notion of “meta-concept”, its Java instance is a
specific instance of the “meta-concept” (model concept) and IModelInstance
interface specify an instance of the model concept (i.e. model instance). In order to
instantiate the formalism, the notion of value is defined (I1value interface). Every
primitive type and collection has its value object (IPrimitivevalue,
IModelCollection). Every instance of meta-concept within some formalism can
have many model instances represented by instances of IModelInstance interface.

Each model instance has its type represented by a meta-concept instance and a set
of values according to properties of the model concept. For example: a model instance
of “expression” meta-concept can be created with three values of their properties:

o “left part”: model instance of type : “atomic prop.” :“name” = “MARY” : String
e “operand” : model instance of type : “conjunction”
e “right part” : model instance : type “atomic prop.” : “name” = “PETER”: String

As we can see the instances of the above mentioned simple propositional
formalism are expressed in terms of meta-model. The structure of the ontological
formalism can be easily traversed by any application. Consequently, an ontological
editor that supports only the notion of (concept — property — value) triple can be easily

implemented. That is extremely important for specific application domains, where the
ontological information must be included within some other application.

The last element of meta-model is a “Container”. Container is a collection of
model instances or other containers that supports basic operations of addition,
removal, iteration, checking of containment and size request. Creation of dynamic
groups of elements is useful when sending information to reasoner, saving sub-
ontology, classifying elements, etc.

We use the same meta-model for description of Java interfaces within the software
integration domain. The meta-model is generic enough while having rich semantics.
Many structural data formalisms can be easily expressed in the presented meta-model.

The meta-model kernel has a small abstract model expressed by means of meta-
model. It contains the most useful semantic such as named object, namespace, generic
expression and many others. We believe that this model is useful for expressing
different formalisms. The DL-workbench meta-model documentation [5] may be
consulted for further information.

The meta-model kernel publishes an API that allows defining and manipulating the
meta-model instances (models), instantiation of these models, manipulation of
instances of models (for example ontological elements) and many other features.

Processing module

A generic model processing module implements manipulation and edition of
ontologies. This module is integrated with Eclipse workspace and depends only on the
meta-model module. Eclipse framework provides us with the project-oriented
workspace. The framework enables transparent connection to many environments of
software integration domain (IBM Web Sphere, some UML tools, etc.).

The processing module implements the “view” and “controller” concepts
according to the Model-View-Controller paradigm. Here the “model” concept is
represented by a formalism that is an instance of the meta-model. “Controller” can be
viewer as the Ul operations. “View” data model is built on top of meta-model and
enables many representations for specified formalism. An ontological project can be
viewed by default as:

e astructured set of persisted ontologies (files)

e aset of namespaces (in case if formalism supports namespace)

* each element of some formalism is presented by a tree including properties of
corresponded meta-elements and their typed values

The processing module defines all the generic Ul operations for lifecycle of
model instances independently of the formalism used. Processing module generates
user interface controls following the structure of a given model instance. For example:
the “expression” meta-concept instance has two properties of type “proposition” and
one property of type enumeration. In this case, when a user asks for edition of an
instance of “expression”, three groups of controls will be generated independently on
the end-user semantics of “expression”. This principle works for any operation within
the module. User interface elements are created only once for each type of elements

and cashed to reduce unnecessary OS interactions. Each module, dependent on this
one, must specify the formalism itself and its Ul resources (icons, names, order, etc.).
Several concurrent/joint formalisms can be also supported.

The processing module publishes an API for manipulation and configuration of
the user interface. It has an Ul ready API that encapsulates instances coming from
meta-modeling kernel allowing their visual presentation. Further details of
implementation, extension points and API can be found in [5].

SHIQ module

SHIQ module implements a model of SHIQDn description logic formalism [7] that
is based on the meta-model, implements DAMLAOIL reader and writer and defines
DIG interface [4] connection for the solver. The implementation of SHIQ formalism
can be found in [5] and is not repeated in this paper. The module implements an
additional view — taxonomical view: Selecting of any SHIQ “concept” or “object
property” concepts within the Eclipse workspace causes the dynamic building of the
taxonomy tree for this concept/property. The view is shown by default on the right
edge of the Eclipse window within the DL-workbench perspective. The taxonomy is
dynamically rebuilt using “subClassOf” and “sameAs’ properties of the SHIQ
“concept”/"properties”. SHIQ module (as any formalism specific module) also
specifies a set of Eclipse extensions: association of *.daml files with the plug-in,
association of specific icons with menu items and others UI features. Integration with
Eclipse is described in DL-workbench documentation [5].

As one can observe, the inclusion of specific formalism and customization of the
user interface represent a very small part of the ontological editor code. SHIQ logic
formalism was described via the meta-model within one working day. GUI
customization was done within one week. The F-logic formalism was prototyped as
an example during several hours using the same meta-model and benefits all the
editor features (F-logic module is not published with DL-workbench due to
incompleteness of GUI customization and absence of persistent format connection.).

Racer reasoner [11] is used via DIG interface. We choose Racer due to its support
of ABox reasoning. However, the DL-workbench itself uses a reasoner only for
satisfability and subsumption checks, thus FaCT [12] or any other DIG-complaint
reasoner can be used. DAMLAOIL reading support is done with the help of Jena
DAML parser [17]. DAML+OIL writing was done via Xerces XML parser. Since
DAMLAOIL is a superset of RDFS, RDFS files can be also read by DL-workbench.

More details on the user interface and use of DL-workbench as ontological editor
can be taken from [5]. The product itself and its source code can be downloaded
following link in [5].

4. Lessons learned

In this section we'd like to indicate some positive experience and observations that
were received during the creation of DL-workbench and use of ontologies for a
specific application domain.

Axioms and logical expression are extremely important for creating of complete
and reasoning-ready ontologies. However, it's extremely difficult to have a
convenient user interface (GUI) for their edition. We' ve implemented our own GUI of
expression editor; however we strongly believe that some deep research must be
conducted on ergonomics of expression editor. It can be something between text input
with dynamic compilation and GUI-based editor that chooses elements from lists.
Current implementation of the expression editor is based on the same principle as
other editors of DL-workbench: editor of “Expression” entity with a set of properties
such as “left part”, “right part” and “operand”. Expression entities can be nested (i.e.
“left part” can be also an expression). The rules of expression building are defined in
the form of invariants and pre-post conditions in a generic model from meta-modeling
module. We came from considerations that the given structure of expressions is
common for most of the possible ontological formalisms. End user has always the
possibility not to use the presented model or replace it according to its needs. The
correctness of expressions is also supported by invariants and all structurally
inconsistent equations are highlighted for the user. The processing module recognize
“equation” as a special type and provide light edition mechanism using drag and drop
and dynamic management of lists of possible elements. Same mechanism tries to
assure that nested equations are not lost when containing structure is modified within
the top level editor (loss happens sometimes in OilEd equation editor).

From our point of view, working with ontologies must follow the project-oriented
paradigm. It’s hard to imagine areal industrial ontology that is saved in one file and
has no references to other files. The use of URI as a physical location of imported
ontology is not always suited for industrial use due to possible unavailability of some
URI at some time. Here the notion of project as a complete set of needed ontological
resources can facilitate manipulation of ontologies. It can clearly separate a physical
structure of files from logical structure of ontologies (i.e. namespaces, taxonomies).
However it is worth to mention that needs of Semantic Web can be different.

Presence of meta-model for implementation of ontological formalism and
connection with other data structures is very important. Above we said many things
about these benefits.

The ability to have many different views (by namespaces, by taxonomies, by files,
graphical view® and many others) on the same ontological structure helps a lot in
many real cases.

Support of several formalisms and several GUI views is extremely important since
it allows creation of different views for different groups of users on the same domain
data and its ontological semantics. For example the same ontology may be presented
by two formalisms with different expressivity to different groups of people.

We found it useful to introduce several macro-semantics into the SHIQ editor that
are computed from basic SHIQ semantics*:

¢ XOR, IMPLIES and EQUALS logical operators can be easily introduced into any
expression. These operands are easily convertible into AND/OR/NOT sequences
and vice versa. That adds more high level semantics to the user.

3 Graphical view is not provided in current version of the DL-workbench
4 These macro-commands are excluded from the first open source version of DL-workbench

e In the same way: “class or equivalents” or “class of disjoints” elements can be
defined on top of basic SHIQ axioms. When writing/reading to DAML+OIL
corresponded transformations are performed.

Easiness of integration of ontological model / ontological edition user interface is
crucial when ontologies are used within some application domains. There is an
evident help from modern frameworks such as Eclipse and use of component
technologies. Especially this is important, when research projects with sharp time
frames are conducted.

By developing DL-workbench we have achieved all the requirements that were
described at the beginning of this paper. Our current research for software integration
is based on DL-workbench. We use described concepts for creation of extensions of
DL-workbench that facilitate our experiments with integration of numerical solvers
and creation of “good enough” ontologies verified by reasoner.

5. Other editors and APIs

Many ideas of user interface were inspired by OilEd [6] ontological editor. OilEd is
the first editor that implements most of the features of SHIQ description logic,
reasoner connection and expression edition. That was an ontological editor we used
before creating DL-workbench. However, despite of all its benefits, some elements of
user interface, such as choice among “subClassOf” and “sameClassAs’, semantic of
some axioms and some others elements are not always clear for the end user. We tried
to resolve these issues in DL-workbench. OilEd is an open source project, but OilEd
API seemed to us difficult to integrate with other tools. Presence of meta-model level
within the DL-workbench gives more flexibility and ease of use together with other
tools.

WebODE project [3] is an ontological workbench that provides various ontological
services. The project has a highly flexible architecture and provides many viewpoints
on data. The meta-modeling approach chosen by DL-workbench allows on-fly
changing of ontological formalism and easy integration with non-ontological data
structures. In addition, DL-workbench is an open source project.

Protege [18] ontological editor has a convenient plug-ins API for its extension.
However our intention was to integrate an ontological editor as a plug-in into software
development tools but not vice-versa.

KAON API and a set of related KAON tools [14] define a distributed ontology
manipulation infrastructure that is based on client-server architecture and provides
many useful features. KAON has a hard coded API for its ontological formalism, that
is mostly RDFS based and doesn’t support extended semantics of equations nor very
expressive description logics (such as SHIQ). We found the OI-modeler ontological
editor of KAON to be difficult for the end user.

Many other ontological editors are present nowadays. Due to the absence of space
in the paper we can’'t compare many tools. [13] is a good survey of ontological tools.
The deliverable 1.3 [19] of OntoWeb project gives a comprehensive comparison of
tools.

6. Conclusions and future plans

We have presented DL-workbench, both an Eclipse-based ontological editor for SHIQ
logic and a meta-model based platform for manipulation of ontologies in conjunction
with other tools. We've shown the benefits to use meta-model for creating of
ontology-based products especially when working within specific application
domains.

Today the DL-workbench is a research prototype and it lacks the stability that is
needed for industrial development of ontologies. It lacks the functionality of merging
and aligning of ontologies and more extensive support of reasoners features on the
user interface level. All of that is planned to be improved soon. The user interface
ergonomics and usability study is required.

We use DL-workbench for development of our domain specific extensions and
integration with other tools. That assures the constant evolution and support of the
DL-workbench. In the future we plan to introduce a transaction mechanism with
undo-redo operations, merging/alignment of ontologies, graphical representation of
ontological information and make many other improvements.

References

1. F. Baader et all, “The Description Logic Handbook: theory, implementation and
applications” , Cambridge University Press, 2003 ISBN 0-521-78176-0

2. The SALOME project, Online: http://www.opencascade.org/salome

3. WebODE project, Online : http://delicias.dia.fi.upm.es/webODE

4. S. Bechhofer, “The DIG description logic interface: DIG/1.0", 2002, Online:
http://www.th-wedel.de/~mo/racer/interface1.0.pdf

5. DL-workbench project web site. Online: http://www.opencascade.org/dl-workbench

6. S. Bechhofer et al, “OilEd: a Reason-able Ontology Editor for the Semantic Web”,
Springfied-Verlag, LNCS, 2001

7. 1. Horrocks, IU. Settler, and S. Tobies. “Reasoning with individuals for the description
logic SHIQ”. LNAI number 1831 pp. 482-496. Springer-Verlag, 2000

8. DAMLAOIL language, Online: http://www.w3.org/TR/daml+oil-reference

9. OWL language, Online: http://www.w3.org/TR/owl-absyn

10. IBM Eclipse 2.1 platform, project page, Online: http://www.eclipse.org

11. Racer reasoner. http://www.th-wedel.de/~mo/racer

12. FaCT reasoner, http://www.cs.man.ac.uk/~horrocks/FaCT

13. M. Denny, “Table 1. Ontology editor survey results", 2002, Online
http://www.xml.com/2002/11/06/Ontology Editor Survey.html

14. KAON API, Online: http:/km.aifb.uni-karlsruhe.de/kaon/Members/rvo/kaon_api

15. OMG MOF repository specification, Online:
http://www.omg.org/technology/documents/formal/mof.htm

16. M. Kazakov, H. Abdulrab, E. Babkin, “Intelligent integration of distributed components:
Ontology Fusion approach”, In proceedings of CIMCA 2003 conference, 2003, ISBN 1-
740-88069-2

17. Jena DAML and RDF parser, Online: http://www.hpl.hp.com/semweb/index.html

18. Protege environment, Online: http://protege.standord.edu

19. OntoWeb project, “Deliverable 1.3 report”, Online: http://www.ontoweb.org

