Graph-based rule editor

Maciej Nowak, Jaroslaw Bak, Czeslaw Jedrzejek

Institute of Control and Information Engineering,
Poznan University of Technology,
M. Sklodowskiej-Curie Sqr. 5, 60-965 Poznan, Poland
{firstnane. | ast name} @ut . poznan. pl

Abstract. In this paper we present a prototypical impleragonh of a graphical
tool for creating rules. This tool uses a grapheba®alantir tool environment as
a user interface to model rule conditions and agsichs. It is also used to visu-
alize data and results of reasoning. We presembeeps of converting graph
models stored in an XML format file into the Jesowledge base and rules.
Results obtained in the reasoning process are pgegsemthe user in the same
form as source data.

Keywords. graphical rule representation, Jess, Palantisor@ag

1 Introduction

Rule engines are becoming one of the most commasdyl technologies in
business and engineering projects. The usage efemgines enables the rea
process which enriches gathered data and searotetigpds, utilizing pattern m
ing applied in rules. Rules and rule engines aceessfully used in: expert sys
business processes, data integration and trandiormaand in other applica
requiring intelligent data processing. Despite ¢lear advantages of rule-basec
nologies, there are many software application avdare they occur in a relal
simple form, e.g. by using filters. In the areacominal analysis, the addition of
to investigation systems would enable analysts iszoder very complex c
schemes, totally beyond the capacity of traditiayatems.

A wide range of rule environments have been praposach with its own sy
and semantics for a rule engine and interface. phmess of acquiring
knowledge can be simplified with the use of a gregdhrepresentation of rules
user-friendly interface.

The main aim of this demo paper is to present plgtased tool, in which ai
trained analyst is able to construct a set of stmples and use them in order to
new (inferred) information. The rules constitute thxpert's knowledge of a ¢
domain, while facts represent data. Both rulesfaots are expressed graphici
the form of directed graphs. Rules can be appliethatts using a reasoning e
After the inference process, a user gets the regtth can be a graph with:

» the addition of new objects and/or relations,

« the modification of existing objects and/or relatp

» the lack of objects and/or relations that were téelle

The paper is organized as follows. Section 2 ptes#ie main overview of the
proposed approach and related w@kction 3 describes a prototypical implementa-
tion and applied tools. Section 4 demonstratesxample which reflects a fragment
of analysis of the real-world crime case. Secti@oitains concluding remarks.

2 Graph-based Rule Representation

2.1 Existing methods

Graphical rule representation and creation has bleersubject of research con-
ducted by many investigators and companies. Sofogehave sought to standardize
graphical notations, for example: Unified Modelihgnguage/Object Constraints
Language (UML/OCL) [5], UML-based Rule Modeling lgarage (URML) [6] or
Object Role Modeling (ORM) [7]. Among them, the OR&hguage is the most intui-
tive and easy to use for people who are not familith the complex syntax of rules
and UML/OCL. The ORM concepts were adopted [8] atsthhe SBVR (Semantics of
Business Vocabulary and Business Rules) standdr®[8 ideas are based on ORM
and graph-based representation. Other popularregleesentations include: decision
tables, decision trees and eXtended Tabular Te¥s [

Tools that implement graphical rules representadian

* Visual Rules [11] — supports building flow rulesdadecision tables using rich
and intuitive graphical editors.

e Drools Guvnor [12] — provides many ways of repréisgnrules: guided editor
(easy to use, but not graphical), guided decisalies creation, rule flows
(which represent the flow of logic).

* VisiRule [13] — is an extension to Win-Prolog whisbipports building deci-
sion models using a graphical paradigm. It offai@bical representation of
forward chaining rules, with access to Prolog.

» OntoStudio Graphical Rule Editor [14] — is basedQirjectLogic [15] inter-
nally. It supports drawing rule diagrams, which sishof concepts, attributes
of these concepts and relations between them.el$ dot allow the compari-
son of variables (only comparisons between valudsvariables are allowed).

In this work we give only a short overview of thaimdifferences. Detailed com-
parisons among the mentioned standards will beepted elsewhere.

In most of the current approaches, rules are aeateontrol data workflows and
making decisions, while we apply rules to discomew information and to process
data. Accordingly, one rule (LHS and RHS respetbjvés represented by two
graphs. Tools like Visual Rules, Drools Guvnor ete rule authoring frameworks
while our approach is only an attempt to integrates and data in one graph-based
form and perform reasoning. Such work, to the loéstur knowledge, has not yet
been done for the Jess engine.

2.2 Overview of the approach

The main goal of this paper is to present the gtzged tool, in which a user can:
import data, construct rules, perform reasoning abthin results. Rules and data,
represented graphically, can be more easily urmtsaisby an untrained analysts and
by engineers without intensive training. Our aimtasprovide an easy-to-use and
easy-to-understand analytical tool which can bedusemany domains where rules
and graphs can be employed to support a user’s.work

The process of rule creation consists of creativig graphs which will later serve
as sides of the constructed rule: the LHS (lefihside, called the body) and the RHS
(right hand side, called the head). In our approates should be understood ids
LHSthen RHS statements. These rules (expressed in the Japsalge) can be used to
infer new information in a given rule-based knovgedase.

The LHS is built from condition elements (pattertigt need to be fulfilled in or-
der to execute instructions written in the RHS. rEhare two types of conditions: the
(non-) existence of a fact in the knowledge basth wpecified attributes, and the
relationship between two attributes of existingt$ad he execution of the rule may
cause one of the following results: modificationremoval of an existing fact, or
addition of a new one. These operations are defiméte RHS of a rule.

It is possible to represent conditions from theybofia rule in a graphical form,
more precisely in a graph. The graph consists afescand edges. The nodes are
graphical representation of objects from the Palamtology (see Section 3.1), and
the edges are the relations between them. Olgaothave many properties; the type
of an object is the most important one. Relatiomsdt possess properties other than
a type. The presence of an object in the graph swdat a representing fact should
exist in the knowledge base with attributes eqaahe properties of the object. The
presence of an object or a relation on a red backgl means that these artefacts
should not exist in the knowledge base. The redwobn the graph expresses the
negation of existence of objects or relations.

The construction of a rule is made with the followisteps (within the Palantir en-
vironment):

1. A user creates a graph which constitutes the bdédieorule, the conditions.
The user creates objects and relations between tialues of objects’ prop-
erties, variables and constraints are specifiedhin Rule Creation Panel
(RCP).

2. The user creates another graph, a modificatiomeffitst one which consti-
tutes the head of a rule. The user adds/removesfierodbjects or relations of
this graph. Conclusions - changes in the knowldulge after the application
of the rule - can be modelled as the differencavben two graphs.

Such an approach allows modelling of rules dependim object types, relations
between them and values of objects’ propertieslldtvs comparing attributes’ values
with each other, which is a significant advantagercsome other tools (e.g. OntoStu-
dio). There is no graphical way of presenting thmparison on the graph, so the only
solution is to present it in the corresponding pafer this purpose, we use a simple
tab called Rule Creation Panel, which is presemtédgure 1.

[@| ||Rule Creation Panel
A5
|9
2 _
——— Constraints Add constraint
?TaxObligation
& Make all variables distinct
van ¥ (< W (a2 o (x
Qi Cuimpany Properties Add property
5 g Non-existence
?TaxObligation
vz)
Object Type Money transter | % | ehangs
goodsitemCode || [2go0dx] B
By Company Value ¥ | val2 %
Transfer Type % | Taxobligation X
Ehe 2T -
P ?TaxPaid
=€) R
L Object Type Money transfer | % change
?TaxPaid 2 =
Walue ¥ | vall X
“_Fn_am_sle_r‘[ypa | w _fax_pgymg_ﬂl |
goodsitemCods | %] | ?go0dx X

Figure 1. Attributes and relationships of selected 6bjebt§r(lighted in yellow).

Created rules need to be applied to the working angrbuilt from facts. In this
paper we present a converter (see Section 3.3¢hwitansforms rules and data to the
Jess engine according to the structure express#ueifPalantir ontology. After the
reasoning process, a user obtains results presentachew graph (in comparison to
the source data graph).

In the Jess language, we represent objects antibrsldrom the graph asiples
(as in RDF) [16] in order to express dependencatsiden objects and their attrib-
utes. The triple consists of subject, predicate@bjdct. Each relation (edge) from the
graph is mapped as the predicate, with its stapwigt as the subject and the ending
point as the object of a triple. Each subject (nddes a set of properties, where: itie
of the node constitutes the subject; property naoreesponds to the predicate; and
the value constitutes the object (in triple-bassgresentation). Such an approach can
be compared to the OWL Web Ontology Language, widjectProperties represent
relations between objects and DatatypePropertipeesent links from individuals
(objects) to data values. Employing the triple-lasepresentation we are able to
apply OWL ontology in the future.

We have defined mapping for a bidirectional transi@tion between Palantir and
Jess, executed by the XMLtoJess converter. Talgeedents available expressions,
with examples in the Jess language and graph etsmen

The authors of this paper have successfully uskdemngines in the past [16, 18,
19]. They were used during investigations of a nemif cases. For some economic
crime, the complete model of a crime investigatwas constructed. That allowed
achieving a result in a fully automatic way, butledéime the rule set was made by a
programmer experienced in the Jess language aftesuttation with a business spe-
cialist. We want to shorten this process with teélof the proposed system, and to
increase analytical flexibility by including neweshents of crime schemes.

The introduction of the rule engine offers not ot possibility of reasoning
about complex dependencies, but also to perforrgingries. Any graph containing
nodes and edges can be entered as a search grussengine will search the whole
knowledge base for a given set of conditions, @talrn all objects that meet the spec-
ified requirements.

Table 1. Representations of main elements, using a GraplR&® panel, in the Jess code.

Element Graph and RCP panel representation Jess code
Object ca (triple (subject?Y)
(predicate'Object Type)
Gl (object"GBOrganization))
Relation i@ (E) (triple (subject?TaxPai)l
S redicate'relation-By Com-
€‘; By Company —— ®) v
. pany’)
?TaxPaid Y .
_ (object?Y))
Attribute Value s value [¥] [7paidval (triple (subject?TaxPai)l
E}é (predicaté'property-Value)
TaxPaid (object?paidva))

Comparison of | |?oblgval ¥ | = | ¥ |?paidval ¥| (test(> ?oblgval ?paidv))

attribute values

(not (triple
(subject?TaxPai)l
(predicaté'Object Type)
(object"MoneyTransfer)))

Declaration of
non-existence
(red background)

Distinction of Constraints (test(neg?X ?Y))
Variables

2% 2y # Make all variables distinct
Addition of an New object/relation/attribute on the RHS (asserftriple
object/relation/ | (We add a new object/relation/attribute to| gsubject?TaxObligatio)
attribute graph.) (predicate'Object Type)

(object"MoneyTransfer)))
Modification of Modified object/relation/attribute on the RHS (modify ?f

existing object/ | (We modify an object/relation/attribute in |a(object"DefaultingTrader))
relation/attribute | graph.)

Removal of Lack of object/relation/attribute on the RHS (retract?f)
object/relation/ | (We delete object/relation/attribute from a graph.)
attribute

3 Technologies Used

3.1 Palantir Government Graph Application

Palantir Government [1] is a Java-based platformafalysing and visualizing da-
ta. It is widely used by financial (Palantir Finehand government agencies. It is

capable of importing data structured in many vaiarmats (such as Excel), and,
due to the Palantir Dynamic Ontology (PDO) [2],eatif inside the platform possess
some semantic background meaning, which can bé ¢msisformed into rules. The
PDO is very simple; it only indicates that two dafifeare connected with a certain
relation (represented then on a graph by an icaelation).

Graph is the most sophisticated part of the Pal&tform. It provides visualiza-
tion of input data, with the structure defined e given ontology. Properties of each
object are not visible directly on the graph; tleeg reachable under the "Browser"
tab. It is possible to export information from tgeaph into an external XML file,
which is an essential element of the integratiotih&irule engine.

3.2 TheJessRuleEngine

Jess [3] is a rule engine and rule-based envirohfoeuilding expert systems. It
uses an enhanced version of the Rete [4] algorithtmth processes rules and facts in
a very efficient way. Jess supports forward andacd chaining, working memory
queries and many other useful features. Jess \gdea as a library written in the
Java language. It can easily be embedded into ddnea applications. We applied
Jess and its forward reasoning as extensions t@dtantir Government tool.

3.3 XMLtoJdessConverter

XML is used as the interchange format between dadsPalantir modules. Rule
engines require input knowledge in form of factsd ahat is why XMLtoJess con-
verter is an essential part of the presented method

The XMLtoJess converter is used to extract objantsrelations stored in a Palan-
tir XML (pXML) document generated from Palantir anteate the Jess knowledge
base. pXML format is the default output structufehe Palantir Platform. It holds
information about objects in the Graph and all prtips related to selected objects.

4 Example

In this section, we provide an example which rdflgmart of the analysis of a real-
world crime case, the VAT carousel crime, alsoethlthe Missing Trader Intra-
Community crime (MTIC). It is a sophisticated imtational fraud exploiting Value
Added Tax (VAT) evasion, in order to create largeants of unpaid VAT liabilities
and VAT repayment claims connected with them. Mafermation can be found on
the demo site [17] and in [18].

Figure 2 depicts a graphical representation ofrtie presented on the next page
(where letters are used as shortcsitssubjectp — predicatep — object).

(defrul e VATFraudsterRul e
?f <- (triple (s ?Z) (p "Cbject Type") (o "GBOrganization"))
(triple (s ?TaxCbligation) (p "Cbject Type") (o "MneyTransfer"))

(triple (s ?TaxOoligation) (p "property-Transfer Type") (o "Taxobligation"))
(triple (s ?TaxCbligation) (p "property-goodsltenCode") (o ?goodl))

(triple (s
(triple (s
(triple (s
(triple (s
(triple (s
(triple (s
(triple (s

?TaxObligation) (p "relation-O Conpany") (o0 ?2))
?TaxObligation) (p "property-Value") (o ?oblgval))
?TaxPai d) (p "Object Type") (o "MneyTransfer"))
?TaxPaid) (p "property-Transfer Type") (o "Taxpaynent"))
?TaxPaid) (p "property-goodsltenCode") (o ?goodl))
?TaxPaid) (p "relation-by Conpany") (o ?7))

?TaxPaid) (p "property-Value") (o ?paidval))

(test (> ?oblgval ?paidval))

(test (neq
=>
(nodi fy 2f

?Taxol i gati on ?TaxPai d))

(obj ect "VATFraudster")))

This rule modifies the icon of the company whiclypabligatory tax, less than it
should be. As a result, this company is called arffaudster. Unfortunately, the
Palantir Government tool limits objects to one tyjseme additional types can be
deduced only by an engineer according to the gredantir Dynamic Ontology).

LHS

7TaxObligation

Of Company

By Company

TTaxPaid

RHS Rule Creation Panel

@
-E);%'{ Constraints Add constraint
?TaxOhligation
©]

i Make all variables distinct

(vait W [< W [ovalz W] [

Properties Add property
Of Company

Mon-existence

A~ ?TaxObligation
4 Object Type ;[vfl_c!_rjgﬁ_c_@_rg_rj_gfe_r E| change
l goodstemose [[rgooox | [
| Value 2 RETH | lag
By Company
| Transfer Type | ¥ | |Taxobligation ®
?TaxPaid
it PRSI L
e Object Type [Maney transfer _|_|l| chante
“TaxPaid | Value [[ovan | &%
| Transfer Type |V_I | Taxpayment | |
lgoodsitemCode [W] [?goodx | e

Figure 2. An exemplary VAT fraudster rule.

5 Conclusions

In this paper we have demonstrated a tool whiclpeup graph-based creation of
rules for the Jess engine. The tool integratesaadarules in the Palantir Government
tool. Graph-based representation is convenientrgodive for an untrained analysts.
Such tool can be used in many domains where ruldsgeaphs can be employed to
support a user in her/his work.

Because of copyright issues connected with thenlal&overnment application,
we provide only the presentation which containeaseshots of executing the example

concerning an analysis of a real-world criminalecabhe presentation with a more
detailed description is available on the demo[4i7§.

Acknowledgement. This work was supported by DS-MK 45-102/12 and 45-
085/11 DS-PB grants.

References

1. Palantir Government Platform, http://palantir.coavgrnment

2. Palantir Dynamic Ontology,
https://wiki.palantir.com/pgdz/palantir-dynamic-olagy-properties.html

3. Jess (Java Expert System Shell), http://jessraes.c

4. Forgy C., Rete: A Fast Algorithm for the Many Pait®lany Object Pattern Match Problem, Atrtifi-
cial Intelligence, 19, pp. 17-37, 1982.

5. Object Constraint Language (OCL), v2.0. http://wemug.org/spec/OCL/2.0/

. UML-based Rule Modelling Language, http://oxygeformatik.tu-cottbus.de/rewerse-i1/?q=URML

7. Halpin T.: Object-Role Modeling: an overview, 2001,
http://www.orm.net/pdf/ORMwhitePaper.pdf

8. Lukichev S., Jarrar M.: Graphical Notations for &Modeling. In: A. Giurca, D. Gasevic, and K.
Taveter (Eds), Handbook of Research on Emerging-Based Languages and Technologies: Open
Solutions and Approaches, IGI Publishing, 2009

9. Semantics of Business Vocabulary and Business Rutkps//www.omg.org/spec/SBVR/1.0/

10. Grzegorz J. Nalepa, Antoni Lgga, and Krzysztof Kaczor. 2011. Overview of knowgedormaliza-
tion with XTT2 rules. In Proceedings of the 5theimtational conference on Rule-based reasoning,
programming, and applications (RuleML'2011), NicksBiliades, Guido Governatori, and Adrian
Paschke (Eds.). Springer-Verlag, Berlin, Heidelb8&p-336.

11. Visual Rules, http://www.visual-rules.com/busineskes-management-software-rules-engine.html

12. Drools Guvnor Rules Authoring,
http://docs.jboss.org/drools/release/5.4.0.Finadts-guvnor-docs/html/ch04.html

13. VisiRule, http://www.lpa.co.uk/vsr.htm

14. OntoStudio Graphical Rule Editor,
http://ontorule-project.eu/showcase/OntoStudio_Gieg_Rule_Editor

15. Michael Kifer, Georg Lausen, and James Wu. Lodisahdations of object oriented and frame-based
languages. J. ACM, 42(4):741-843, 1995.

16. Bak J., Jedrzejek C., Falkowski M.: Usage of th&s Jengine, Rules and Ontology to Query a Rela-
tional Database. In Proceedings of the 2009 Intemnal Symposium on Rule Interchange and Appli-
cations (RuleML '09), Guido Governatori, John Halhd Adrian Paschke (Eds.). Springer-Verlag,
Berlin, Heidelberg, 216-230.

17. Demo site: http://draco.kari.put.poznan.pl/rulenil20

18. Jedrzejek C., Bak J., Falkowski M., Cybulka J., M&wl., On the Detection and Analysis of VAT
Carousel Crime, in: Frontiers in Artificial InteJence Applications, vol. 235, Proceedings of JURIX
2011: The Twenty-Fourth Annual Conference Legal Wiedge and Information Systems, pp. 130 —
134, 10S Press, 2011

19. Nowak M., Jedrzejek C., Bak J., Szwabe A., A hédsed expert system for building evidence in
VAT-carousel, Proceedings MISSI'12, Multimedialdnternet Systems: New Solutions, in print.

