
Disambiguating automatically-generated

semantic annotations for Life Science open

registries
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Abstract. This paper presents our preliminary evaluation of the auto-
matic semantic annotation of open registries. Conversely to traditional
application of semantic annotation to scientific abstracts (e.g., PubMed),
open registries contain descriptions that mix terminologies of Computer
Science, Biomedicine and Bioinformatics, which makes their automatic
annotation more prone to errors. Moreover, the extensive use of acronyms
and abbreviations in these registries may also produce wrong anno-
tations. To evaluate the impact of these errors in the quality of the
automatically generated annotations we have built a Gold Standard
(GS) with single-word annotations. Additionally, we have adapted a
knowledge-based disambiguation method to measure the hardness in dis-
tinguishing right from wrong annotations. Results show that for some
semantic groups the disambiguation can be performed with good preci-
sion, but for others the effectiveness is far from being acceptable. Future
work will be focused on developing techniques for improving the semantic
annotation of these poorly represented semantic groups.

1 Introduction

In recent years, open metadata registries have become a popular tool for re-
searchers trying to locate resources in different domains, mainly in Life Sciences
and Open Linked Data. These registries allow users to provide metadata about
the resources in order to facilitate their discovery, which can be structured meta-
data, such as tags or categories, or free text descriptions. Although sophisticated
standards have been proposed for annotating the resources, most of the meta-
data available in the registries are expressed in natural language, which makes
more difficult the discovery of these resources in traditional search engines. De-
scriptions contain useful information about the resources and, moreover, they
implicitly describe the features of the resources. Therefore, to facilitate the dis-
covery of the most appropriate web resources, all these metadata has to be
normalized in order to be automatically processed.

Semantic annotation techniques are frequently used to normalize the meta-
data. Semantic annotation (SA) is the process of linking the entities mentioned



in a text to their semantic descriptions, which are stored in knowledge resources
(KRs) such as thesauri and domain ontologies, like UMLS R© Metathesaurus R©

and EDAM ontology [20] in Life Sciences. During the last years, we have wit-
nessed a great interest in massively annotating biomedical information. Most of
them are based on dictionary look-up techniques. These approaches try to find
in the documents each text span that exactly matches some lexical forms of the
terminological resource. Other approaches, like MetaMap [2] and EAGL [22], al-
low partial matching between text spans and lexical forms. Their main drawback
is that precision is usually very low and they suffer from scalability issues. These
annotators only base the matching on isolated text spans without taking into
account the context of the matching, which is the main source of errors when
annotating open collections.

Another issue that has to be taken into account in metadata normalization
is that metadata in web resources registries usually contains vocabulary taken
from different domains. For instance, in Life Sciences registries, the metadata
contains words about medicine, bioinformatics and computers, with a high degree
of overlapping between them. However, if the domains are not equally covered
by the knowledge resources, some senses of some words can be disregarded and,
therefore, the precision of the semantic annotations and, as consequence, also
the quality of the retrieved resources may be affected. Thus, the quality of the
semantic annotations becomes crucial in the discovery process.

There are two main problems that need to be addressed. One of them is
ambiguity, since a term can be mapped to more than one concept or sense. The
second one is the lack of coverage of the terminological resources. A term can be
ambiguous but this might not be reflected in the terminological resource. As a
consequence, there is no guarantee in many cases that even though the mapping
is not ambiguous that is correct.

In this paper we study these issues in the context of the semantic annotation
of open registries of Life Science resources, using the currently largest biomedical
knowledge resource, that is, the NLM’s UMLS [5].

2 Methods

We propose to study the effectiveness of unsupervised Word Sense Disambigua-
tion (WSD) approaches. The definition of the concept is turned into a bag-of-
words representation in which the words are weighted according to their rele-
vance to the concept and related concepts. This concept profile is compared to
the context of the ambiguous word and if it is over a trained threshold according
to a similarity measure, then it is assigned the given concept. In this work, the
window for the context of the ambiguous word is all the terms in the description
of the registry.

The concept profiles are prepared based on the NLM’s UMLS [5], which
provides a large resource of knowledge and tools to create, process, retrieve,
integrate and/or aggregate biomedical and health data. The UMLS has three
main components:



– Metathesaurus, a compendium of biomedical and health content terminolog-
ical resources under a common representation which contains lexical items
for each one of the concepts, relations among them and possibly one or more
definitions depending on the concept. In the 2009AB version, it contains over
a million concepts.

– Semantic network, which provides a categorization of Metathesaurus con-
cepts into semantic types. In addition, it includes relations among semantic
types.

– SPECIALIST lexicon, containing lexical information required for natural
language processing which covers commonly occurring English words and
biomedical vocabulary.

Concepts are assigned a unique identifier (CUI) which has linked to it a set of
synonyms which denote alternative ways to represent the concept, for instance,
in text. Concepts are assigned one or more semantic types.

In the following section, we present the generation of the WSD profiles and
present the similarity measures that will be used to compare the concept profiles
and the context of the ambiguous words.

2.1 WSD profiles

Word sense disambiguation (WSD), given an ambiguous word in context, at-
tempts to select the proper sense given a set of candidate senses. An example
of ambiguity is the word domain which could either refer to works or knowledge

without proprietart interest or, in biology, the taxonomic subdivision even larger

than a kingdom or a part of a protein. The context in which domain appears
is used to disambiguate it. WSD is an intermediary task which might support
other tasks such as: information extraction (IE) [2], information retrieval (IR)
and summarization [21].

WSD methods are based either on supervised learning or knowledge-based
approaches [23]. Supervised methods are trained on examples for each one of the
senses of an ambiguous word. A trained model is used to disambiguate previously
unseen examples. Knowledge-based (KB) methods rely on models built based on
the information available from available knowledge sources. In the biomedical do-
main, this would include the Unified Medical Language System (UMLS). In this
scenario, the candidate senses of the ambiguous word are UMLS concepts. KB
methods either build a concept profile [18], develop a graph-based model [1] or
rely on the semantic types assigned to each concept for disambiguation [11].
These models are compared to the context of the ambiguous word being disam-
biguated. The candidate sense with highest similarity or probability is selected
as the disambiguated sense.

Due to the scarcity of training data, KB methods are preferred as disam-
biguation methods. KB methods rely on information available in a terminolog-
ical resource. Performance of knowledge-based methods depends partly on the
knowledge resource, which usually is not built to perform WSD or IR tasks [14].



In our first WSD approach, the context words surrounding the ambiguous
word are compared to a profile built from each of the UMLS concepts linked to
the ambiguous term being disambiguated. This approach has been previously
used by McInnes [18] in the biomedical domain with the NLM WSD corpus.

This algorithm can be seen as a relaxation of Lesk’s algorithm [16], which
is very expensive since the sense combination might be exponentially large even
for a single sentence. Vasilescu et al. [24] have shown that similar or even better
performance might be obtained disambiguating each ambiguous word separately.

A concept profile vector has as dimensions the tokens obtained from the
concept definition or definitions if available, synonyms, and related concepts
excluding siblings.

Stop words are discarded, and Porter stemming is used to normalize the
tokens. In addition, the token frequency is normalized based on the inverted
concept frequency so that terms which are repeated many times within the UMLS
will have less relevance.

A context vector for an ambiguous term includes the term frequency; stop
words are removed and the Porter stemmer is applied. The word order is lost in
the conversion.

2.2 Similarity measures

We have compared the context vector of the term under evaluation (A) and the
concept profile vector (B) based on the several similarity measures presented
below. The length of the vectors is usually large due to the vocabulary size. But
the context and profile vectors only have values for a limited number of entries
and the others will have a value of zero.

One of these measures is the cosine similarity, shown in equation 1. The
candidate concept with the highest cosine similarity is selected as candidate
concept. This approach is used with UMLS based concept profiles [13,18].

Cosine =
A · B

‖A‖‖B‖
(1)

Entailment, presented below, looks at the overlap between the two vectors
and normalizes based on the number of tokens in the context vector. Compared to
the cosine similarity, the overlap is based on counting the matches between both
vectors instead of estimating the dot product. The matches are done considering
the non-zero entries. This overlap is normalized by the length of context vector
only to avoid a negative impact of a long concept profile.

Entailment(A,B) =
|A ∩ B|

|A|
(2)

The Jaccard coefficient measures similarity between sample sets, and is de-
fined as the size of the intersection divided by the size of the union of the sample
sets. Compared to entailment, the length of the concept profile is considered.



Jaccard(A,B) =
|A ∩ B|

|A ∪ B|
(3)

Chi-square allows comparing two distributions. In our work, we compare the
concept profile to the context vector. Chi-square has been used as a similarity
measure in text categorization by Chen et al. [6] and we follow their formulation
in this work.

χ2

υ
= h

[
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sum(A) =

n
∑
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Ai (5)

sum(B) =

n
∑

i=1

Bi (6)

h = sum(A) + sum(B) (7)

2.3 Data set

In this paper, our aim is to analyze the impact of the automatic semantic anno-
tations in the quality of the results of a retrieval system. To do that, we use a
dictionary look-up semantic annotator [3] to automatically annotate the meta-
data of the resources registered in three Life Sciences registries: BioCatalogue [4],
myExperiment [10] and SSWAP [9].

The semantic annotator is able to deal with several ontologies in order to
cover as much as possible the different vocabularies that appear in the resources
descriptions. In this work, the semantic annotator uses as knowledge resources
(KRs): UMLS, EDAM (an ontology designed for Life Science open registries),
myGrid (reference ontologies of BioCatalogue) and the entries of the Wikipedia
that have as category some sub-category of the Bioinformatics category. A de-
tailed description of the semantic annotator can be found in [19].

A preliminary analysis of the automatically generated semantic annotations
suggests that concepts matching several words are usually unambiguous and are
associated to a right sense. However, single word concepts are much prone to
ambiguity and errors.

For this reason, we have manually created a Gold Standard (GS) with those
annotations matching a single word. The GS has been curated by two people
who have analyzed each combination of concept-word in each semantic anno-
tation in the resources description, selecting the most appropriate concept in
each case. The GS contains for each semantic annotation, represented as a triple
(concept, word, contextvector), a bit indicating if the sense is correct (1) or not
(0). This GS contains 8863 single-word semantic annotations.



The whole catalogue contains 72958 semantic annotations, from which 42686
where annotated only with concepts from UMLS, 12269 were annotated with
concepts from UMLS and the other KRs and 18003 were annotated with concepts
from the other KRs but not from UMLS.

3 Results

We intend to evaluate the concept profiles and the similarity measures for filter-
ing annotations in our data set. From our data set, we have selected the semantic
groups of interest and split the set for each one of the semantic groups sets into
2/3 for training and 1/3 for testing. The semantics groups are the following:
CONC (Concepts & Ideas), DISO (Disorders), LIVB (Living Beings) and PHYS
(Physiology) as defined in the UMLS Semantic Network [17]3, while the groups
CHED (Chemicals & Drugs) and PRGE (Proteins & Genes) follow the defini-
tion under the CALBC challenge4. CALBC groups definition is closer to our
interests compared to the ones defined by the UMLS Semantic Network in these
two cases.

Table 1 shows the distribution of semantic annotations of the GS per semantic
group. Positive instances are the ones that are labeled with the specified semantic
group and the negative ones are instances that should not be labeled with the
semantic group. The distribution is usually skewed towards the negative class, i.e.
the concept does not represent the correct sense of the word, except for the PRGE
group in which the positive examples are more frequent. For example, in the
service SMART registered in BioCatalogue, the word domain refers to protein
domain and it has been annotated with the concepts C1514562:PRGE, that
refers to the protein domain, and C1883221:CONC, that refers to the general
concept of domain. Therefore, C1514562 is the correct concept in this case and
it is represented as a positive instance in the GS.

Semantic Group Training Positive Negative Testing Positive Negative

CHED 527 148 379 263 70 193
CONC 2139 598 1541 1068 283 785
DISO 180 6 174 90 4 86
LIVB 408 166 242 203 83 120
PHYS 169 44 125 84 22 62
PRGE 654 460 194 326 232 94

Table 1. Semantic group data set distribution

We would like to be able to decide if an annotation is correct given the
measures presented above. We have trained a threshold for each of the measures
based on the training set. This threshold is used to decide if the instance should

3 http://semanticnetwork.nlm.nih.gov/SemGroups
4 http://www.ebi.ac.uk/Rebholz-srv/CALBC/challenge guideline.pdf



be labeled with the semantic group or not. The optimization measure has been
the F-measure, while other measures could be considered. On the other hand,
due to the skewness of the data, other measures as accuracy would not be as
effective.

Table 2 shows the filtering performance of the different measures. Overall the
similarity measures seem to perform similarly except for chi-square that performs
better on average over the other measures. Chi-square shows a larger difference
compared to other measures for the LIVB and PHYS semantic groups.

SG Measure Threshold Precision Recall F-measure

CHED chisquare -3642.0724 0.4898 0.6857 0.5714
cosine 0.9698 0.5169 0.6571 0.5786
entailment 0.9269 0.4783 0.6286 0.5432
jaccard 0.9961 0.4538 0.7714 0.5714

CONC chisquare -121.9878 0.2939 0.8693 0.4393
cosine 1.0000 0.2647 1.0000 0.4186
entailment 1.0000 0.2647 1.0000 0.4186
jaccard 1.0000 0.2647 1.0000 0.4186

DISO chisquare -41397.6546 0.2500 0.2500 0.2500
cosine 0.9956 0.1212 1.0000 0.2162
entailment 0.9407 0.2000 0.5000 0.2857
jaccard 0.9768 0.0000 0.0000 0.0000

LIVB chisquare -3416.2337 0.7349 0.8133 0.7722
cosine 0.9995 0.4774 0.8916 0.6218
entailment 0.9302 0.6173 0.6024 0.6098
jaccard 0.9996 0.4774 0.8916 0.6218

PHYS chisquare -884.3186 0.4884 0.9545 0.6462
cosine 1.0000 0.2619 1.0000 0.4151
entailment 0.9662 0.3415 0.6364 0.4444
jaccard 0.9855 0.4063 0.5909 0.4815

PRGE chisquare -173.5428 0.7099 0.9914 0.8273
cosine 1.0000 0.7117 1.0000 0.8315
entailment 1.0000 0.7117 1.0000 0.8315
jaccard 1.0000 0.7117 1.0000 0.8315

Table 2. Semantic group results on the test set

4 Discussion

The results are interesting but there is still room for improvement. Among the
evaluated measures, chi-square seems to perform better on average compare to
the other measures. Cosine has been the preferred similarity measure in many
biomedical disambiguation work [13] and would be interesting to evaluate chi-
square in similar studies.



The best performing groups are LIVB and PRGE. In the case of LIVB,
there are not only the species which have shown already easy to annotate [8],
even though this semantic group includes in addition several population groups
which seem more difficult to annotate. On the other hand, the best F-measure is
obtained when all the cases are annotated as PRGE. This means that in addition
to being difficult to annotate, the skewness is in favour of this semantic group.

DISO has a small set of positive cases related to the term diabetes. Most of
the wrongly assigned terms are abbreviations like CA (California) or SIB (Swiss
Bioinformatics Institute). Other mentions like brain, have been already identified
in previous work [12] and different proposals for lexicon cleansing could be used.
This semantic group has a reduced set of annotations which are relevant in our
data set, which might indicate that the open registries include almost no mention
of diseases.

CONC has the largest number of candidate instances from which only a small
part is relevant to this semantic group and appears in large part of the example
cases. In this first work, the context vector might be too broad to help decision
making over annotations.

PHYS shows a large difference in performance with the chi-square measure.
Looking at the examples, there is a limited number of terms used which seem to
be always linked to PHYS. Examples of these terms are pathway, transcription

and transport. Other terms annotated as PHYS rarely are labeled as PHYS in
the gold standard. Among these terms, we find interactions, size or status.

Annotation of chemical entities has already proved to result in low perfor-
mance [7]. CHED annotations seem to be complicated to filter properly. Again,
there are sets of common terms that can be pre-filtered for this domain that
in many cases are not related to the topic of interest. Examples of these terms
are products, CA or date.

5 Conclusions and Future Work

We have introduced the problem of determining the correct sense of ambiguous
terms depending on their context in the semantic annotations in open registries
and evaluated the use of knowledge based methods used in disambiguation in
the automatic annotation of these registries.

Better performance is required to use the filtered annotations in a retrieval
system. We have worked with a large window, all the words in the definition
of the registries, in the development of the context vector. A more restrictive
window might provide a more focused context. In addition, we have seen that
there are terms which seem to have a preferred sense in this data set. Chi-square
performs better than other evaluated measures but has not been evaluated in
biomedical WSD and could provide better performance than existing work.

We have evaluated knowledge-based WSD methods since, when we started
this work, no training data was available. Given the current data set, trained
conditional random fields approaches [15] could be evaluated on the annotated
set.



Some direct follow-ups of this work are the refinement of particular details
of the semantic annotator, such as the detection of locutions as entities that do
not have to be annotated, the disambiguation of acronyms, the use of lexical
patterns to recognise fragments that are entities as a whole, e.g. the citations,
or the disambiguation of single words that are simplifications of multi-words.
In addition, we are also considering the use of lexicon cleansing techniques to
improve the lexicon.
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