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meghyn@lri.fr

Daniel Deutch
Ben Gurion University

deutchd@cs.bgu.ac.il

Davide Martinenghi
Politecnico di Milano

martinen@elet.polimi.it

Pierre Senellart
Institut Mines–Télécom
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ABSTRACT
Several approaches harvest, query, or combine Deep Web sources.
Yet, in addition to well-studied aspects of the problem such as query
answering using views, access limitations, or top-k querying, the
Deep Web exhibits a number of peculiarities that are often neglected.
First, the services usually deliver not all results, but only the top-n
results according to some ranking function. This function may not be
compatible with the ordering specified in a user’s query. Subsequent
results have to be obtained by paging, or may not even be accessible.
Second, the services may deliver results in a granularity that is
incompatible with the query or joinable services (e.g., months vs.
exact dates). Moreover, the services may perform selections or
ranking over attributes that are not exposed in the results: this
poses an incompleteness problem. Additional challenges come from
uncertainty, recency constraints, and inter-service dependencies. In
this article, we shed light on these peculiarities, and compile a list
of desiderata of a query answering system for the Deep Web.

1. INTRODUCTION
A wealth of structured information lies in the Deep Web [11], the

part of the Web accessible only by submitting Web forms or using
Web services. A simple example is hotel information (availability,
category, price, user rating) that requires accessing Web sites of
travel agencies or individual hotels. Realtor Web sites are another
example. They offer apartments for sale, and display apartments
that match user-specified criteria. The sites also show the apartment
properties, such as ranking, size, location, etc. The structured char-
acter of the information means that query answering over the Deep
Web can be much more elaborate than on the Surface Web.

Because of this potential, many research works have studied
problems relevant to the Deep Web. In addition to work on form
understanding and wrapper induction [11], a number of aspects of
query answering over the Deep Web have been investigated: in
particular, answering queries using views, limited access constraints,
top-k ranking (see Section 5 for an overview of the literature). For
the most part, the emphasis has been on building clean theoretical
models of Deep Web services over which query answering is studied.
We pinpoint in this work a number of annoying quirks of actual Deep
Web sources that do not fit well into these models. We claim that
these quirks significantly impact query answering and that they need
to be taken into account by any practical system for querying Deep
Web sources. Let us illustrate with two examples.
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Choosing hotels for an academic conference is a non-trivial task.
In particular, for conferences with a large number of participants,
the organizers may wish to choose for the conference attendees two
highly-rated hotels, which are located close to each other so that
all participants can easily attend talks. Of course, the hotels should
have availability for the conference dates, and room prices should
not exceed some threshold. All these constraints can be expressed
as a query over a virtual schema, with services such as hotel Web
sites, mapping services, and travel sites modeled as limited-access
views over this schema. However, existing services do not readily
lend themselves to finding an optimal rewriting (or even a single
rewriting) of the query using the views: a proximity service may
only return the n hotels closest to a given hotel, with no possibility
of going beyond this limit if none of them meet the other ranking
criteria; a Web site listing hotel recommendations may allow for the
hotels to be ranked by ratings, but may not display the actual ratings;
there might be many different ways of accessing the information
of a given source (different ranking criteria, different limits on the
number of items per page, etc.) that all expose different pieces of
information, making the choice of the optimal rewriting with respect
to a query non-trivial.

As another example, consider the tedious process of looking for an
apartment. To be effective, this typically involves a search through
multiple real-estate owners, sorting through different criteria such
as price and location, and going through many options until finding
the most relevant ones. Recency of data is an important issue in
this case, since only recent real-estate ads are typically relevant.
Furthermore, because the search for an apartment is a repetitive
process, we only want to access each day or each week the new
offers for the day or week. How is one to know whether an offer is
more recent than another, if only the month is displayed in a posting,
i.e., the granularity of the attribute is not the same as expected? How
can we make use of the results of the query from last week to better
answer that from this week? If we are looking for an apartment that
is both recent and cheap on one given Web site, should we ask for a
ranking by date (but then, obtaining the price of each posting may
require another service call) or one by price (but then, we may hit
the limit of the number of ads we are allowed to retrieve per query
without getting all the most recent ones)? Consider also that the
precise ranking functions used in these services may be uncertain,
since we do not have access to the exact definition of the services.

We envision a declarative framework for querying the Deep Web,
which will encompass all these peculiarities. The idea is that queries
would be written in a simple, SQL-like language, which would
also serve to formally describe Web services, including access con-
straints, ranking mechanisms, granularity mismatches, paging limits,
the total number of results returned, etc. The goal of the envisioned



framework would then be to find a “query plan,” i.e., a way to
compose queries to the Web services along with “local” data ma-
nipulations (selections, reordering, etc.), so as to realize the user
query. This query plan should ideally be optimal in some sense
(with respect to either the actual number of network requests or
amount of data exchanged, or an estimation of this).

2. FEATURES OF THE DEEP WEB
In this section, we describe the main components and features

that we envision for a query answering system for the Deep Web.
The primary goal of such a system is to unveil the data that are

not directly accessible as Web pages, but that rather lie behind
Web forms. To this end, one must at least be able to represent
Web sources in the same way as they are actually implemented,
where selection conditions may be applied on the data, along with
projections on fields of interest. In more complex scenarios, forms
may even use basic join or union operations for combining different
Web sources, or simply different relations of a given source. These
serve to define services as views but obviously the same features
are expected of the query language. Therefore, a view and query
language for the Deep Web must include selection (including in
particular inequality predicates), projection, and, possibly, join
and union. On the other hand, other features such as negation or
recursion are more infrequently used in in the context of Deep Web
sources and may be left out.

Web forms are typically presented as a collection of input fields,
checkboxes, drop-down lists, and other selection elements, some of
which may be mandatory. They act as an interface that specifies all
possible access patterns to the underlying data, and protects them
from unwanted access. An access pattern is basically a specifica-
tion of an access mode for every data field, i.e., it indicates which
fields are used as input and which ones are used as output. Query an-
swering under access patterns is more complex than in the classical
case and requires special care.

Accessing data in the Deep Web is costly, due, e.g., to latency in
network access. Worse, data access is hindered by a number of other
limitations than commonly occur and may make querying even more
expensive. Some data sources only provide their records in batches
of fixed size (pages). Some only grant access to the top-n records,
according to some ranking function, and hide the remaining ones.
In some other cases (typically, for Web services with an API), only
a limited amount of accesses per time period (say, hour or day)
is allowed. In addition to sometimes affecting the possible query
rewritings, all these aspects require planning an execution strategy
that minimizes the incurred cost (or keeps it within an available
budget) while satisfying the user’s requirements.

Some sources may even give incomplete information, e.g., by
presenting only a subset of the underlying fields (some of which are
then dismissed via projection) or by delivering data at a different
level of granularity than what is required by other sources (e.g.,
months vs. exact dates).

When users pose a query to a Web source, they typically have in
mind a criterion for ordering the results. This may or may not be
compatible with the order in which results are stored in the source
and collected from it. Often, users are only interested in the best
results that satisfy their query, as is the case in the field of top-k
queries. In such cases, a query answering system should devise
strategies for efficiently retrieving the best results according to the
users’s criterion and avoiding access to data that are not needed to
compute the top results.

As illustrated by the running example, recency is often an impor-
tant criterion in delivering relevant results to user queries. When the
output of Web services comes with temporal information, we can

treat recency similarly to other ranking criteria (modulo the granu-
larity issue mentioned above). However, it may often be the case
that data items are sorted with respect to a temporal order, but no
explicit temporal information is provided in the results. In this case,
determining recent items may still be possible, but requires some
inference (e.g., a comparison with cached results from previous calls
to the Web service).

When users specify their ranking criteria through a scoring func-
tion, this induces a total order over the query results. However, if the
scores are uncertain, due to, e.g., uncertainty in the data or in the
scoring function, the resulting order is only partial, and the semantics
of a top-k query becomes unclear. Uncertainties of different kinds
may occur. Membership uncertainty is when a record is present
with a given probability originating from, e.g., the reliability of the
data source in data integration environments, or similarity measures
in approximate-matching. Uncertainty in data correctness refers
to the probability that the whole tuple gives correct information.
Value uncertainty represents attributes as probability distributions
on continuous or discrete domains of possible values.

Services of the Deep Web have dependencies (functional, inclu-
sion, exclusion) on each other, especially when one particular source
is accessible through different services. They need to be taken into
account in query planning and optimization.

Typically, users wish to browse through results that not only
meet their preferences but are also diverse. Readability of results
also requires that different entries that refer to the same entity be
merged. Therefore diversification and deduplication of results
are significant aspects of query answering in the Deep Web. In
addition, users might be interested in the provenance of results
of their queries, e.g., with an indication of the sources they came
from, but they might also wish to have an explanation for the result
set. For example, a query might return an empty answer either by
contingency of the underlying data instance, or by necessity, due
to a misconception of the user about the data sources. In the latter
case, the user should be informed. Explanation can also serve other
purposes, in particular explaining why certain answers were given
as results; this is especially crucial in the presence of uncertainty.

3. MODEL AND LANGUAGE
We envision a framework where users can write queries on Deep

Web data in some declarative language, which is then compiled into
a query plan that essentially composes accesses to Web services and
manipulations of retrieved data. We next describe some desiderata
of such a declarative language, then exemplify how queries in such
a language would look.

3.1 Desiderata
We identify the following as desiderata of a query language and a

supporting framework for it, in this context.

1. The query language should be declarative, i.e. users should
specify the result they are interested in, independently of
the concrete way in which it will be retrieved (referred to as
“query plans”).

2. In addition to the user specification of desired results, the
query language should allow one to express the available Web
services along with their access patterns.

3. The query language should be accompanied with some cost
model, to distinguish between different query plans. This also
calls for the development of a query optimizer, finding and
executing optimal plans w.r.t. the cost model.



4. Last, we believe that incremental maintenance of results
should be at the core of such a framework. In particular,
results of previous queries can be used as the input to further
queries, interpreted as “virtual” services.

We next exemplify how these desiderata could be accomplished
in a query language, using some simple syntax.

3.2 Example Syntax and (partial) Semantics
We exemplify the principles of the proposed approach using a

simple SQL-like syntax, with some special adornments. These per-
tain to the different properties of access patterns (sorting, restriction
to k results, granularity, access restrictions), as well as the cost asso-
ciated with each access. This syntax allows us to uniformly specify
both the Web services and the user queries

EXAMPLE 1. Consider a Web Service of an online travel agency,
allowing users to view hotels in the city of their choice, ordered by
their user ratings. In an SQL-like syntax, the service functionality
can be expressed as follows:

CREATE VIEW HotelsService1($c,$o) AS
SELECT name, city, price, AvailableRooms,

rating, DAY(LastUpdate)
FROM Hotels1
WHERE city=$c
ORDER BY rating DESC
LIMIT $o,10

c and o are parameters of the service (called HotelsService1). c
intuitively stands for the city chosen by the user and o stands for the
number of results to appear in a single request to the service.

This service definition (using the CREATE VIEW operator) exem-
plifies several quirks of the Web service. First, the number of results
is naturally limited. Second, the results are ordered by rating. This
means that if users are interested in hotels in particular location
(and willing to get results with low rating), many accesses to this
service may be required. However, there is some implicit cost model
associating an additive cost with each result returned by the service
(in a more realistic scenario, it should be possible to define more
explicit cost functions associated with a service, via language ex-
tensions). Third, recency is an important issue: rooms availability
varies quickly and only recent updates can be used for that. Fourth,
the dates of updates are in granularity of days – if users are inter-
ested in availability updates of greater granularity (e.g. hours), this
may require the use of a different service.

In general, we may have many services providing relevant data.
For instance, a different service (say, HotelsService2) may be ex-
pressed as a different query, allowing one to sort results by price etc.
Finally, we may also have an available map service, allowing users
to look for hotels in a particular area (represented as a single point
on the map and allowed distance from this point):

CREATE VIEW MapService($locX,$locY,$radius, $o) AS
SELECT name, HotelLocX,HotelLocY,
square(HotelLocX-$locX) + square(HotelLocY-$locY) As SqrDist
FROM GeoDB
WHERE SqrDist < square($radius)
ORDER BY SqrDist ASC
LIMIT $o,10

Now, consider conference organizers looking for two good hotels
that are located at most 1000 meters from each other in Istanbul.
The following query can express this:

SELECT Hotels1.name, Hotels2.name
FROM (HotelsService1+HotelsService2+MapService) As Hotels1,
(HoteslService1+HotelsService2+MapService) As Hotels2
WHERE Hotels1.city= "Istanbul" AND Hotels2.city="Istanbul"

AND Hotels1.rating > 4
AND Hotels2.rating > 4
AND square(Hotels1.HotelLocX-Hotels2.HotelLocX) +

square(Hotels1.HotelLocY-Hotels2.HotelLocY)
< 1000

Note the use of the novel “+” syntax for combining the 3 Web
services in the above query. The obtained expression is then treated
in the query as a regular relation, and in particular we perform a
join over two instances of it. The intuition is that, in order to realize
these relations, concrete query plans may perform any combination
of accesses to the three services, e.g., by matching attributes by
name as in a natural join (and choosing appropriate values for the
parameters, decided as part of the plan). The query optimizer needs
to compute an optimal (e.g., w.r.t. the number of requests) plan of
requests to the three services in order to realize the user query.

4. PROBLEMS TO STUDY
To give a flavor of the proposed research directions, we next

describe a few fundamental problems that are of interest in this
context. Naturally, as the research advances, further interesting
problems are likely to arise.

The first challenge in this respect is the design of a formal lan-
guage for specifying the possible evaluation plans. Such a language
should allow one to express:

• accesses to available Web services, along with the correspond-
ing bindings, and access strategy with respect to paging;

• local computations, such as projection, reordering of results,
limits, etc.;

• ordering and combination of services.
Given a query in our language, the most basic question of interest

is whether or not the query is realizable given the available services
and the access patterns associated with them, and if so, to return (all)
such plans. For instance, consider our running example of looking
for two hotels that are close to each other and have room availability.
Realizing this query given two Web services, one for hotels and the
other a mapping service, may be non-trivial. Here, one possible
plan involves searching, using the map service, for pairs of hotels
that satisfy the distance criterion. Then, we may look for the hotel
availability and rating to see which of the pairs of hotels constitute
a match.

The existence of a query plan may be of interest by itself. How-
ever, in presence of multiple plausible plans, users may be interested
in finding (top-k) best plans according to the cost of the involved
services, in addition to “standard” database criteria such as selec-
tivity. For instance, in our example another plausible solution is to
start with hotels that satisfy the availability and rating criteria, and
then look for them on the map. This may be a better solution based,
e.g., on the expected selectivity.

We further note that this optimization may either be performed
in a static manner (each plan is assigned a cost when constructed,
depending on the services and operators used), or in a dynamic one
based on partial execution and constant reevaluation of cost.

5. RELATED WORK
Computing answers to queries using materialized views is a clas-

sical problem [10, 15] that consists in finding a rewriting of a query
by using the views. This problem naturally arises in many contexts,
such as data integration, where views are needed to describe the
relationship between the mediator and the data sources, and query
optimization, where the rewriting can yield a more efficient query
plan. Query answering using views lays the basis for addressing
queries over relations with access patterns, and, ultimately, queries
over the Web.



Queries posed over relations with access patterns can be classified
according to their potential to retrieve the query answers. Conjunc-
tive queries (i.e., the select-project-join queries of relational algebra)
can be classified as executable (or well-moded) if they can be ex-
ecuted in the traditional left-to-right reading of the query, feasible
(or orderable) if an executable reordering exists, and stable (also
called feasible by some) if semantically equivalent to an executable
query [6,16,18,22,25]. For all these classes, one can always retrieve
the complete answer to the query as if the relations with access
patterns were ordinary relational tables. However, in general, one
can only find a subset of the actual answers (the so-called reachable
certain answers), obtained by adopting an extraction strategy that
makes use of all the constants known from the query and/or previous
domain knowledge. This query evaluation strategy is expensive, but
can be improved by avoiding accesses that are irrelevant for the com-
putation of the reachable certain answer. This brings forward the
problem of minimization of the accesses used for the the evaluation
of a given query, both static (before execution) [5, 17] and dynamic
(during execution) [1, 2, 4].

A crucial issue in data intensive systems is the ability to address
top-k queries (a.k.a. ranking queries) [8, 13], i.e., to retrieve only
the best answers to a query without computing the entire result set.
Ranking queries usually require an early-out strategy [12, 23] that,
based on a convenient use of thresholds, allows stopping the con-
struction of the results and the inspection of the relations involved
in the query. Early termination is necessary when accessing the
relations is costly, e.g., when data are over the Web.

In this context, much of the recent research on queries over multi-
ple domains where ranking and access restrictions are of primary
importance goes under the banner of search computing [14]. In a
broad sense, its goals include the definition of suitable cost models
and the identification of optimization strategies for query plans in-
volving several sources [3] while preserving the ordering of results
that the user has in mind. Extensions of the model have considered
cases in which user preferences are uncertain and therefore the top-k
answers are also uncertain [24], which requires characterizing a
new semantics, based on the notion of most representative ordering.
The literature on ranking queries typically considers two kinds of
access to data: sorted access (e.g., objects are retrieved by score, in
decreasing order) and random access (given an id, retrieve the corre-
sponding object) [7]. Search computing models covering these cases
have placed special emphasis on the evaluation of joins between
different sources [20, 21]. Another important aspect of search com-
puting concerns the geo-localization of results, typically enabled by
the availability of sorted access by increasing distance from a given
point. In this context, users often wish to enforce proximity [19] or
diversity [9] of results.

6. PERSPECTIVES
We have observed in this work some challenges in querying

Deep Web data, originating from “quirks” in Web services. This
led us to present a list of desiderata of a solution that addresses
these challenges. Of course, we do not claim to be exhaustive, and
there are many additional challenges in the development of such
a system that are beyond the scope of this paper. In particular,
we have assumed that the Web services are readily available, but
a practical solution would additionally involve a mechanism for
service discovery. Moreover, we have assumed a simple relational
model for data, but data on the Web comes in various formats:
linked data, Web services, Web forms, plain tables, or even relation
extraction from text. The exploitation of these different types of
Web data poses further intriguing challenges.

7. REFERENCES
[1] M. Benedikt, P. Bourhis, and C. Ley. Querying schemas with

access restrictions. PVLDB, 5(7), 2012.
[2] M. Benedikt, G. Gottlob, and P. Senellart. Determining

relevance of accesses at runtime. In PODS, 2011.
[3] D. Braga, S. Ceri, F. Daniel, and D. Martinenghi.

Optimization of multi-domain queries on the web. PVLDB,
1(1), 2008.

[4] A. Calı̀, D. Calvanese, and D. Martinenghi. Dynamic query
optimization under access limitations and dependencies. J.
Univer. Comp. Sci., 15(21), 2009.

[5] A. Calı̀ and D. Martinenghi. Querying Data under Access
Limitations. In ICDE, 2008.
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