
Towards a benchmark of the ODE API methods for
accessing ontologies In the WebODE platform

Oscar Corcho, Raúl García-Castro, Asunción Gómez-Pérez
(Ontology Group, Departamento de Inteligencia Artificial, Facultad de Informática,

Universidad Politécnica de Madrid, Spain
{ocorcho@fi.upm.es, rgarcia@delicias.dia.fi.upm.es, asun@fi.upm.es})

Abstract: Ontology editors and ontology engineering platforms allow creating and maintaining
ontologies and using them in a wide range of applications, but there are neither specific
benchmark for evaluating ontology platforms nor for evaluating their ontology access services.
In this paper we present how we have designed and structured a benchmark for the ontology
access services of the WebODE platform. We also present some results and analysis of the
benchmark suite execution.

1 Introduction

In recent years, the use of ontology editors and ontology engineering platforms is
spreading and the size of the ontologies they store is growing. Benchmarking is a
process of continuously measuring and comparing a system’s components against
other systems components to gain information which will help the organization take
action to improve its performance [Alstete, 1992]. There are plenty of benchmarking
studies in other fields like database or compilers. However, there aren’t specific
benchmarks studies or tools for evaluating ontology editors and platforms.

As presented in [Bull et al., 2000], a benchmark suite must be representative
(reflecting all the types of functions used in the tool), simple (being clear what is
being tested and with understandable results), robust (being non-sensitive to external
factors), portable (running on a wide variety of environments), and standardised
(having a public common structure).

In this paper we present how we have carried out the benchmark of the public
ontology management methods used by the WebODE platform [Arpírez et al., 03] for
accessing their ontologies. As these functions are present in most of the ontology
editors and platforms, this benchmark suite can be considered as a first approach to
the design of a benchmark suite for ontology tools. Besides, we show the results and
the conclusions obtained from the analysis of these results.

The paper is structured as follows. Section 2 presents the main goals of the
benchmark suite and explains the four parameters that will be analysed. Section 3
describes the tests designed: how the test groups are structured, and their initial states.
In section 4 we present the main results of running all these tests. Section 5 concludes
with the analysis of the previous results. Finally, section 6 presents future work.

2 Goals of the benchmark suite design and execution

WebODE is a scalable workbench for ontological engineering that eases the design,
development and management of ontologies and includes middleware services to aid

in the integration of ontologies into real-world applications. WebODE presents an
ideal framework to integrate new ontology-oriented tools and services, where
developers only worry about the new logic they want to provide on top of the
knowledge stored in their ontologies. In this platform the ODE API is a crucial piece
of code that contains all the public methods of the WebODE ontology access service.
The majority of the services provided by the platform use the ODE API methods for
accessing the ontologies. So, it is obvious that a benchmark of the ODE API is a must
before benchmarking more advanced and complex services. In order to achieve
portability, we have developed the benchmark suite in Java, using standard methods
and no graphic components.

The ODE API includes for the time being 72 public methods mainly related to the
update, removal and insert of content into the ontologies. In this paper we present the
results of benchmarking the performance of the public methods of the ODE API.
Other public methods used for exporting, importing, merging, evaluating and
reasoning with the ontologies will be benchmarked in further papers.

According to the different possible input parameter values that these methods can
have, we have defined a number of tests. For instance, for the method that allows
inserting concepts in an ontology: void insertConcept (String ontology, String term,
String description) we have defined two tests named:

B1_1_08: Inserts concepts into the same ontology.
B1_1_09: Inserts concepts into different ontologies.

As a consequence, we have defined 128 different tests for the 72 public methods
of the ODE API.

With regard to the performance metrics used, we have decided only to measure

on the initial stages of the benchmark the wall clock time of each public method in the
following situations:
• Running in a high load state. These results will allow analysing the performance

of the public methods in a high load condition.
• Running several times over the same load state. This analysis will provide clues

about the public method’s performance over the time.
• Running on different increasing load states. These results are useful to know

the method’s sensitiveness to the load states under which it is run.
• Running with different input parameters. This analysis will show the

sensitiveness of each method’s performance with regards to its input parameters.

3 Description of the benchmark suite
Once we have analysed the requirements for our benchmark suite and the
performance metrics that we will use for it, we present how we have grouped the
existing methods on the ODE APIs and the initial load state for all the tests.

3.1 Structure of the tests

The tests included are classified into six groups with the aim of having a
representative and interpretable set of tests in our benchmark suite [Williams et al,

2002]. The test groups were identified just looking similarities on the functionality of
the methods provided by the ODE API, and they are:
• Inserts. Includes tests whose methods insert new ontologies or new content in an

ontology. This group contains 37 tests, related to 19 methods.
• Updates. Includes tests whose methods update information of ontologies or

content in an ontology. This group contains 18 tests, related to 9 methods.
• Removals. Includes tests whose methods remove the whole ontologies or some

content of the ontology. This group contains 21 tests, related to 11 methods.
• Selects. Deals with tests whose methods select ontologies or ontology content.

This group contains 47 tests, related to 30 methods.
• Non basics. Groups tests whose methods use other methods from the ODE API.

This group contains 5 tests, related to 3 methods.
• Complex. Groups tests for benchmarking methods and services that are not

included in the ODE API. Such tests are associated to methods that perform
complex operations in the platform, and are mainly related to ontology import
and export, inferences, ODEClean evaluation, merge, etc. This group contains 17
tests, related to 15 methods.

On a first step, we are only dealing with the first five groups of tests, and we have
postponed the last group for further benchmarkings.

3.2 Initial states

As we mentioned before, robustness is an important feature identified in Bull and
colleagues’s work. To achieve a higher level of robustness, all the tests must be
compared according to similar situations. Because of that, we have defined clearly the
initial state of the computer where the tests are executed and the initial load state of
the whole benchmark suite. Both of them are minimal and common for all the tests.

For each individual test we have defined its initial load state. For instance, when
executing the test B1_2_11 (“update synonyms in a concept”) with respect to a load
factor X, the system must have one ontology with one concept with X synonyms.

The initial load state of the benchmark suite is the union of the initial load states
of each individual test. So, the composed initial state of the benchmark suite is: one
ontology with X references; X constants; X formulas; one concept with X class
attributes and X instance attributes; X concepts with one class attribute and one
instance attribute, etc.; and X ontologies with one reference, one constant, one
formula, two concepts with one class attribute and one instance attribute, etc.

4 Execution of the benchmark suite

To execute the tests, we have taken into account the following two parameters:
• Load factor. This parameter sets the load factor X for each test’s initial state, as

described in the previous section. We have used factors from 10 to 5000.
• Number of iterations. This parameter sets the number of consecutive executions

of the test. We have used iterations from 10 to 5000 to detect different possible
behaviours in the execution.
In order to retrieve and store the data to be used for the subsequent analysis, we

have executed each test with all the different load factors and number of iterations.

5 Analysis of results of the execution
After executing the tests, the results were analysed using common statistical analysis
parameters such as medians, variances, etc., and common hypothesis tests.

We have to bear in mind that the results of executing a benchmark suite are
usually temporary limited [Gray, 1993]. As the methods in the ODE API will undergo
changes, the results of the current benchmark just inform us about WebODE current
performance. So, if changes happen on the ODE API, the current results are not valid
any more and the re-execution of this benchmark suite will be necessary again.

The following figures are samples of the different types of results obtained
through the execution of the tests. Figure 1 presents the execution time evolution for
all the insert tests with the highest load, and Figure 2 shows the execution times
evolution for the test B1_1_18 (“add value to a instance attribute”) with different
loads. These figures show the results in milliseconds.

Figure 1. Execution times for the
insert tests

Figure 2. Execution times evolution
for the test B1_1_18

The goal of analysing the results of running tests with a high load state is to
detect the slowest and fastest methods of the ODE API, so that we can decide which
ones to optimise in order to improve the WebODE performance. Here, we have
considered the median of the test execution time with the highest load state (X=5000).
In general, regarding the ODE API methods, the slower methods are those which
manage attribute values and instances.

To analyse the results of running tests several times over the same load state,
we have used the highest load (X=5000), and the highest number of iterations
(N=5000) in order to have more complete results. For each function, we have
analysed how its execution times evolve over time when it is called several times
consecutively. A general comment for these tests is that the execution time is usually
constant, no matter how many times the test is performed. There are some situations
where the previous statement is not true, as in the case of some insertions: when the
number of elements in the system increases the execution time also increases. In the
case of some removals, the opposite effect can be observed. Figure 1 shows the
results of all the tests of the insert group described above.

In order to analyse what happens when running tests on different load states,
we also use the medians of the execution times of each function according to each
load state with which we have performed the tests. Then we try to approximate them
to linear or quadratic functions. The overall results of these tests are that all of them
can be linearly estimated. The slope of the functions varies according to the execution
time of each test: the slower a method, the greater the slope of its function. In figure 2

we show the function obtained for the test B1_1_18 (“insert values in an instance
attribute”) which can be easily approximated to a linear function: Y = 30 + 0.136X.

The aim of analysing the results of running tests with different parameters is
to show the sensitiveness of each function to the modification of its input parameters.
In general, changing a method’s parameters doesn’t affect significantly to the
performance in the ODE API except in some cases where different behaviour can be
detected when a function’s input parameters are different.

6 Future Work

The analysis performed in this work is just based on a single performance metric: the
execution time of each public method of the ODE API. As part of our future work we
will aim at the creation of better performance metrics that allow assessing mo re easily
the overall performance of the ODE API and more complex services built on top of it.

Although this analysis has proven useful to detect bottlenecks in the system
another extension to this benchmark consists of synthetically studying the
performance of the applications using these ontology services.

Running the benchmark suite and analysing its results is highly time consuming.
Because of this, another future step consists on modifying the benchmark suite so that
it just focuses on certain relevant issues considered critical.

Finally, this benchmark suite has been designed specifically for the WebODE
ontology engineering workbench. We plan to extend our benchmark suite to other
platforms, either by finding commonalities between the ontology access APIs of the
different platforms or by forcing all these platforms to share a common API such as
OKBC [Chaudhri et al., 1997].

Acknowledgements

This work is partially supported by a FPU grant from the Spanish Ministry of
Education (AP2002-3828), and by the IST project Esperonto (IST-2001-34373).

References

[Alstete, 1992] Alstete, J. W. Competitive Benchmarking Course. Technical Report, 1992
http://www.iona.edu/faculty/jalstete/MNG992/documents.htm

[Arpírez et al., 2003] Arpírez JC, Corcho O, Fernández-López M, Gómez-Pérez A. WebODE in
a nutshell. AI Magazine. To appear in Fall 2003.

[Bull et al., 2000] Bull JM, Smith LA, Westhead MD, Henty DS, Davey RA. A Benchmark
Suite for High Performance Java. Concurrency: Practice and Experience (12):375-388, 2000.

[Chaudhri et al., 1997] Chaudhri V. K.; Farquhar A.; Fikes R.; Karp P. D.; Rice J. P. The
Generic Frame Protocol 2.0. Technical Report, Stanford University.1997.

[Gray, 1993] Gray, J. The Benchmark Handbook for Database and Transaction Systems (2nd
Edition). Morgan Kaufmann 1993

[Williams et al, 2002] Williams, LG., Smith, CU. Five Steps to Solving Software Performance
Problems. http://www.perfeng.com 2002

