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Abstract. In previous work, we presented an approach for link predic-
tion using a probabilistic description logic, named crALC. Inference in
crALC, considering all the social network individuals, was used for sug-
gesting or not a link. Despite the preliminary experiments have shown
the potential of the approach, it seems unsuitable for real world scenar-
ios, since in the presence of a social network with many individuals and
evidences about them, the inference was unfeasible. Therefore, we ex-
tended our approach through the consideration of graph-based features
to reduce the space of individuals used in inference. In this paper, we
evaluate empirically this modification comparing it with standard pro-
posals. It was possible to verify that this strategy does not decrease the
quality of the results and makes the approach scalable.

1 Introduction

Many social, biological, and information systems can be well described by net-
works, where nodes represent objects (individuals), and links denote the relations
or interactions between nodes. Predicting a possible link in a network is an in-
teresting issue that has gained attention, due to the growing interest in social
networks. For instance, one may be interested on finding potential friendship
between two persons in a social network, or a potential collaboration between
two researchers. Thus link prediction [13] aims at predicting whether two nodes
(i.e. people) should be connected given that we know previous information about
their relationships or interests.

In [13] a survey with some representative link prediction methods, catego-
rized in three groups, was presented. In the first group, feature-based methods
construct pair-wise features to use in a classification task. The majority of the
features are extracted from the graph topology computing the similarity based on
the neighborhood of the pair of nodes or based on ensembles of paths between
the pair of nodes [10]. Recently, semantic informations have also being used
as features [21, 17]. The second group includes probabilistic approaches which



model the joint-probability among the entities in a network by Bayesian graphi-
cal models [20]. And, finally the third group concerns linear algebraic approaches
which computes the similarity between the nodes in a network by rank-reduced
similarity matrices [9].

In [15] we presented an approach that uses a Bayesian graphical model to-
gether with semantic-based features for semantic link prediction. Therefore, our
proposal lies on the first two categories described previously. To model the do-
main and thus consider semantic-based features, the proposal adopted a proba-
bilistic description logic called Credal ALC (crALC) [5], that extends the pop-
ular logic ALC [3] with probabilistic inclusions. These are sentences, such as
P (Professor|Researcher) = 0.4, indicating the probability that an element of the
domain is a Professor given that it is a Researcher. Exact and approximate in-
ference algorithms have been proposed [5], using ideas inherited from the theory
of Relational Bayesian Networks (RBN) [8]. In [14], we extended our proposal
to also consider graph-based approaches in order to scale for large social net-
work. In this paper we conduct some experimental analisis in order to verify the
benefits of our proposal.

The paper is organized as follows. Section 2.1 reviews basic concepts of prob-
abilistic description logics, crALC and our proposal for a scalable semantic link
prediction approach. Section 3 describes the experiments we conducted bringing
some discussions. Section 4 concludes the paper.

2 Background

In this section, probabilistic description logic crALC and our former proposal
for semantic link prediction are reviewed.

2.1 Probabilistic Description Logics and crALC

Description logics (DLs) form a family of representation languages that are typ-
ically decidable fragments of first order logic (FOL) [3]. Knowledge is expressed
in terms of individuals, concepts, and roles. The semantics of a description is
given by a domain D (a set) and an interpretation ·I (a functor). Individuals
represent objects through names from a set NI = {a, b, . . .}. Each concept in the
set NC = {C,D, . . .} is interpreted as a subset of a domain D. Each role in the
set NR = {r, s, . . .} is interpreted as a binary relation on the domain.

Several probabilistic descriptions logics have appeared in the literature [11].
Heinsohn [7] and Sebastiani [18] consider probabilistic inclusion axioms such
as PD(Professor) = α, meaning that a randomly selected object is a Professor
with probability α. This characterizes a domain-based semantics: probabilities
are assigned to subsets of the domain D. Sebastiani also allows inclusions such as
P (Professor(John)) = α, specifying probabilities over the interpretations them-
selves. For example, one interprets P (Professor(John)) = 0.001 as assigning 0.001
to be the probability of the set of interpretations where John is a Professor. This
characterizes an interpretation-based semantic.



The probabilistic description logic crALC is a probabilistic extension of the
DL ALC that adopts an interpretation-based semantics. It keeps all construc-
tors of ALC, but only allows concept names on the left hand side of inclu-
sions/definitions. Additionally, in crALC one can have probabilistic inclusions
such as P (C|D) = α or P (r) = β for concepts C and D, and for role r. If the
interpretation of D is the whole domain, then we simply write P (C) = α. The
semantics of these inclusions is roughly (a formal definition can be found in [5])
given by:

∀x ∈ D : P (C(x)|D(x)) = α,

∀x ∈ D, y ∈ D : P (r(x, y)) = β.

We assume that every terminology is acyclic; no concept uses itself. This as-
sumption allows one to represent any terminology T through a directed acyclic
graph. Such a graph, denoted by G(T ), has each concept name and role name
as a node, and if a concept C directly uses concept D, that is if C and D appear
respectively in the left and right hand sides of an inclusion/definition, then D
is a parent of C in G(T ). Each existential restriction ∃r.C and value restriction
∀r.C is added to the graph G(T ) as nodes, with an edge from r and C to each
restriction directly using it. Each restriction node is a deterministic node in that
its value is completely determined by its parents. The graph G(T ) is a Relational
Bayesian Network (RBN) [8].

Example 1. Consider a terminology T1 with concepts A,B,C,D. Suppose
P (A) = 0.9,B v A,C v B t ∃r.D, P (B|A) = 0.45, P (C|B t ∃r.D) = 0.5, and
P (D|∀r.A) = 0.6. The last three assessments specify beliefs about partial overlap
among concepts. Suppose also P (D|¬∀r.A) = ε ≈ 0 (conveying the existence of
exceptions to the inclusion of D in ∀r.A). Figure 1 in the left depicts G(T ), while
the graph in the right illustrates the grounding of G(T ) for a domain with two
individuals (D = {a, b}).

Fig. 1. G(T ) for terminology T in Example 1 and its grounding for domainD = {a, b}.

The semantics of crALC is based on probability measures over the space of
interpretations, for a fixed domain. Inferences, such as P (Ao(a0)|A) for an ABox
A, can be computed by propositionalization, generating a grounding RBN, where
one slice is built for each individual. Therefore, not always exact probabilistic in-



ference is possible. In [5], a first order loopy propagation algorithm was proposed
for approximate calculations.

2.2 Link Prediction with crALC

Given a social network N , where nodes are entities (represented by letters
a, b, c, . . .), one is interested in defining whether a link between a and b is suit-
able given that there is no link between these nodes in N . In [15], interests, i.e.,
semantics between the nodes were modeled through a probabilistic ontology rep-
resented by the probabilistic description logic crALC. In addition, in [14] graph
path information was used to improve probabilistic inference. In summary, the
semantic link prediction task proposed in [15] (and improved in [14]) can be
described as:

Given:
• a network N defining relationship between objects;
• an ontology O in crALC describing the domain of the objects;
• the ontology concept C that defines the semantics of the network objects;
• the ontology role r( , ) that defines the semantics of the relationship

between network objects;
Find:
• a revised network Nf with new relationship between objects.

The proposed algorithm for link prediction receives a network of a spe-
cific domain. For instance, in a co-authorship network the nodes repre-
sent researchers and the relationship can have the semantics ”has a pub-
lication with” or ”is advised by”. Therefore, the ontology represented by
crALC describes the domain of publications between researchers, hav-
ing concepts like Researcher and Publication and roles like hasPublication,
hasSameInstitution and sharePublication. This ontology can be learned automati-
cally through a learning algorithm as the ones proposed in [16]. Thus, the nodes
represent instances of one of the concepts described in the probabilistic descrip-
tion logic crALC and the semantics of the links is described by one of the roles
in the probabilistic description logic crALC. These concept and role must be
informed as inputs to the proposed algorithm. The link prediction algorithm is
described in Algorithm 1.

The algorithm starts looking for all pairs of instances of the concept C defined
as the concept that provides the semantics for the network nodes — this is a
general setting, as a rule the set of possible pairs is restricted. For each pair, it
checks whether a link between the corresponding nodes exist in the network. If
not the probability of the link is calculated through the probability of the de-
fined role conditioned on evidences (step 5). The evidences are provided by the
instances of the ontology. The number of instances in an ontology has a great
impact in inference. Usually one considers that more instances better inference.
However, evidences for different individuals can turn out the inference process
computationally expensive, since in a RBN a slice is created for each individual,



Require: a network N , an ontology O, the role r( , ) representing the semantics of
the network link, the concept C describing the objects of the network and a
threshold.

Ensure: a revised network Nf

1: define Nf as N ;
2: for all pair of instances (a, b) of concept C do
3: if does not exist a link between nodes a and b in the network N then
4: compute evidence based on a, b and nodes in their path;
5: infer probability P (r(a, b)|evidence) using the RBN created through the

ontology O;
6: if P (r(a, b)|evidence) > threshold then
7: add a link between a and b in network Nf ;
8: end if
9: end if

10: end for
Algorithm 1: Algorithm for link prediction through crALC.

and then inference should be done for each slice. In [5], an approximate infer-
ence algorithm was proposed where all slices without evidence are consolidated
in a unique slice, thus making inference feasible in real domains. Therefore, less
individuals with evidence faster inference is. From another perspective we are
interested in predicting a relationship between two individuals, a and b. There-
fore, evidences for these two individuals and other individuals strongly related to
them are more relevant for link prediction than evidences from other individuals
in the network. Thus, in [14] we extended our semantic link prediction approach
in order to consider evidences about a, b and the individuals in their path, which
makes the link prediction problem scalable for large networks. Therefore, in step
4 the nodes (individuals) belonging to the path between a and b are found.
The inference is then performed through crALC lifted variational method on
ontology O. If the probability inferred is greater than a threshold then the cor-
responding link is added to the network. Alternatively, when the threshold to
be considered is not known a priori, a rank of the inferred links based on their
probability is done and the top-k, where k would be a parameter, are chosen.

3 Experiments

In order to evaluate our previously proposed approach for semantic link pre-
diction empirical experiments were performed. To do so, a real world dataset
was used and our algorithm was combined with state-of-the-art measures on a
classification model for link prediction. This section reports on steps involved in
this process.

3.1 Scenario Description

The Lattes Platform is the public repository of Brazilian scientific curriculum
which is comprised by approximately a million of registered researchers. Infor-



mation is given in HTML format, and ranges from personal information such
as name and address to a list of publications, examination board participa-
tions, research areas, research projects and advising/advisor information. There
is implicit relational information in these web pages, for instance collaboration
networks are given by advising/adviser links, shared publications and so on. We
have randomly selected a set of 1100 researchers from engineering and math
backgrounds and based on assertional data about these researchers a probabilis-
tic ontology has been learned. To perform link prediction, this ontology has also
been extended with some probabilistic roles — learning is mainly addressed to
probabilistic inclusions and concepts. Part of the revised ontology is as follows.

P (Publication) = 0.3
P (Board) = 0.33
P (sharePublication) = 0.22
P (wasAdvised) = 0.05
P (hasSameInstitution) = 0.14
P (sameExaminationBoard) = 0.31

ResearcherLattes ≡ Person
u(∃hasPublication.Publication
u∃advises.Person u ∃participate.Board)

P (PublicationCollaborator | Researcher u ∃sharePublication.Researcher) = 0.91
P (SupervisionCollaborator | Researcher u ∃wasAdvised.Researcher) = 0.94
P (SameInstitution | Researcher u ∃hasSameInstitution.Researcher) = 0.92
P (SameBoard | Researcheru

∃sameExaminationBoard.Researcher) = 0.95
P (NearCollaborator | Researcher u ∃sharePublication.∃hasSameInstitution.

∃sharePublication.Researcher) = 0.95
FacultyNearCollaborator ≡ NearCollaborator

u ∃sameExaminationBoard.Researcher

P (NullMobilityResearcher | Researcher u ∃wasAdvised.
∃hasSameInstitution.Researcher) = 0.98

StrongRelatedResearcher ≡ Researcher
u (∃sharePublication.Researcher u
∃wasAdvised.Researcher)

InheritedResearcher ≡ Researcher
u (∃sameExaminationBoard.Researcher u
∃wasAdvised.Researcher)

In this probabilistic ontology concepts and probabilistic inclusions denote
mutual research interests. For instance, a PublicationCollaborator inclusion refers
to Researchers who shares a Publication, thus relates two nodes (instances of con-
cept Researcher) in a collaboration graph. Therefore, the concept Researcher and
the role sharePublication are inputs to the algorithm we proposed in Algorithm
1. Moreover, their instances were used to define a collaboration network, which
was also provided to the algorithm. Topological graph information was computed
accordingly. Figure 2 depicts a subset of collaborations among researchers. To
perform inferences and therefore to obtain link predictions we resort to the lifted
algorithm in crALC.

If we carefully inspect this collaboration graph we could be interested, for
instance, in predicting links among researchers from different groups. Since filling
form is prone to errors, there is uncertainty regarding real collaborations. Thus,
in Figure 2 one could further investigate whether a link between researcher R
(red octagon node) and the researcher B (blue polygon node) is suitable.

In order to infer this, the probability of a possible link between R and B is
calculated, P (link(R,B)|E), where E denotes evidence about researchers such as
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Fig. 2. Lattes collaboration network.

publications, institution, examination board participations and so on. Since the
role sharePublication defines the semantics of the links in the graph, it is through
it that we must calculate P (link(R,B)|E). Concept PublicationCollaborator is
defined by the role sharePublication and considering as evidence Researcher(R)u
∃hasSameInstitution.Researcher(B) one can infer P (link(R,B)|E) through:

P (PublicationCollaborator(R) |Researcher(R)
u∃hasSameInstitution.Researcher(B)) = 0.57.

If we took a threshold of 0.60, the link between R and B would not be
included.

One could gain more evidence, such as information about nodes that in-
directly connect these two groups (Figure 2), denoted by I1, I2. The inference
would be

P (PublicationCollaborator(R) |Researcher(R)
u∃sharePublication(I1).∃sharePublication(B)
u∃sharePublication(I2).∃sharePublication(B)) = 0.65.

Because more information was provided the probability inferred was different.
The same threshold now would preserve the link.

In order to compare with existing baseline algorithms, topological and se-
mantic features have also been defined. Further details are given as follows.

3.2 Methodology

In this section we describe our main design choices to run experiments. According
to cross validation principles, our dataset (1100 researchers which give rise to



1400 true co-authoring links) has been divided in training and validation sets. To
avoid skeweness (due to unbalanced classes), every fold is comprised by balanced
negative and positive instances, where positive instances correspond to a link
between two nodes while negative instance means that there is not a link between
these two nodes.

In order to classify possible co-authoring links and therefore to perform com-
parisons with previous approaches we resort to the Logistic regression classifica-
tion algorithm.

In a classification approach for link prediction, features are commonly ex-
tracted from topological graph properties such as neighborhood and paths be-
tween nodes. In addition, numerical features are also computed from joint prob-
ability distributions and semantics.

Two baseline graph-based numerical features have been used in our experi-
ments. First, the Katz measure [10] is a weighted sum of the number of paths
in the graph that connect two nodes, with higher weight for shorter paths. This
leads to the following formula:

Katz(x, y) =

∞∑
i=1

βipi

where pi is the number of paths of length i connecting x and y, while β (≤ 1)
parameter is used to regularize this feature. A small value of β considers only
the shorter paths.

Since computing all paths (∞) is expensive we only consider paths of length
at most four (i ≤ 4).

The second numerical feature is the Adamic-Adar measure [1] which com-
putes the similarity between two nodes in a graph. Let Γ (x) be the set of all
neighbors of node x. Then the similarity between two nodes x, y is given by

Adamic-Adar(x, y) =
∑

z∈Γ (x)∩Γ (y)

1

log |Γ (z)|

The intuition behind the score is that instead of simply counting the number
of neighbors shared by two nodes, we should weight the hub nodes less and
rarer nodes more. In this way, Adamic-Adar weighs the common neighbors with
smaller degree more heavily.

We have also considered semantic features. The degree of semantic similarity
among entities is something that can be useful to predict links that might not be
captured by either topological or frequency-based features [20]. In this work, for
each author a document with the words appearing in the title of his publications
(removing stop words) is considered. Thus, an author is represented as a set of
words, which allow us to compute two features based on semantic similarity:

i The keyword match count between two authors [6].

ii The cosine between the TFIDF features vectors of two authors [20].



To compute (ii), we derive a bag of words representation for each author, weight-
ing each word by its TFIDF (Term Frequency - Inverse Document Frequency)
measure. The TFIDF weighting scheme assigns to term t a weight in document
d given by

TFIDFt,d = TFt,d × IDFt

TFt,d is the term frequency in d, and IDFt denotes the inverse document fre-

quency of t which is given by IDFt = log N
DFt

, where N is the total number of

documents and DFt is the number of documents containing the term.
The standard way of quantifying the similarity between two documents d1

and d2 is to compute the cosine similarity of their vector representations
−→
V (d1)

and
−→
V (d2)

cosine(d1, d2) =

−→
V (d1) · −→V (d2)

|−→V (d1)||−→V (d2)|
where the numerator represents the dot product (also known as the inner prod-

uct) of the vectors
−→
V (d1) and

−→
V (d2), while the denominator is the product of

their Euclidean lengths.
Finally, we also use the probability, P (r(x, y)|evidence), given by our proba-

bilistic description logic model, as a numerical feature in the classification model.
We wish to investigate whether this probabilistic logic measure can improve the
classification approach for link prediction.

3.3 Results

In order to evaluate suitability of our approach in predicting co-authorships
in the Lattes dataset, three experiments were run. In the first experiment two
baseline scores, Katz and Adamic-Adar, have been used as features in the logistic
regression algorithm. After a ten-fold cross validation process the classification
algorithm yielded results on accuracy which are depicted in Table 1.

Given the Lattes dataset, one can see that the Katz feature yields the best
accuracy (75.49%) when the two topological features are used in isolation. Katz
has been shown to be among the most effective topological measures for the link
prediction task [10]. Furthermore, when we combine the Katz and the Adamic-
Adar features, we improve the accuracy to 76.44%.

Table 1. Classification results on accuracy (%) for baseline features: Adamic-Adar
(Adamic), Katz and a combined one (Adamic+Katz)

Adamic Katz Adamic+Katz

Lattes dataset 72.75 ± 1.87 75.49 ± 2.07 76.44 ± 2.03

In the second experiment, we evalute two features based on semantic simi-
larity and their combination with topological features. Results on accuracy for



these semantic features are depicted in Table 2. The cosine similarity feature
performs better than matching keyword feature and outerperforms the two for-
mer topological features. This feature alone yields 82.45% on accuracy. When
we combine all the four features together, there is an improvement in accuracy
to 85.63%.

Table 2. Classification results on accuracy(%) for semantic similarity features: match-
ing keyword (match) and cosine similarity (cosine) and topological features.

match cosine Adamic+Katz+match+cosine

Lattes dataset 69.42 ± 2.66 82.45 ± 1.37 85.63 ± 1.23

In the third experiment, a probabilistic feature based on our probabilistic
description logic approach was introduced into the model. Results on accuracy
for this feature are depicted in Table 3. The probabilistic description logic feature
performs better than the other features. This feature yields 87.72% on accuracy.
When we combine all the five features together, there is an improvement in
accuracy to 89.48%.

Table 3. Classification results on accuracy(%) for probabilistic description logics and
baseline features: crALC based (cralc) and Adamic-Adar, Katz, match, cosine, crALC
(Adamic+Katz+match+cosine+cralc).

cralc Adamic+Katz+match+cosine+cralc

Lattes dataset 87.72 ± 0.52 89.48 ± 0.96

It is worth noting that the probabilistic logic feature probability outer per-
forms all other features and allow us to improve the classification model for link
prediction on accuracy.

Nothing prevent us to define ad-hoc probabilistic networks to estimate link
probabilities. However, by doing so we are expected to define a large proposition-
alized network (a relational Bayesian network) [15] or estimate local probabilistic
networks [20]. These approaches do not scale well since computing probabilistic
inference for large networks is expensive.

To overcome these performance and scalability issues, we resort to lifted
inference in crALC which is based on variational methods — tunned by evidence
defined according nodes’s neighborhood. Thus, for a ten thousand network, if
evidence is given for 5 nodes, then there is only 6 slices which have messages
interchanged.

In our experiments, the average runtime for inference in crALC (1100 nodes
network) was 135 milliseconds. Table 4 depicts some runtime results for larger
networks which demonstrates the scalability of our approach.



Table 4. Average runtime for inference.

nodes runtime(milliseconds)

1100 135
10000 168
100000 175
1000000 185

On the other hand, a propositionalized relational Bayesian network fails to
run inference due to out of memory issues.

4 Conclusion

In [15, 14] we have presented an approach for predicting links that resorts to
both graph-based and ontological information. Given a collaborative network,
we encode interests and graph features through a crALC probabilistic ontol-
ogy. In order to predict links we resort to probabilistic inference, where only
information about two nodes being analyzed and the nodes in their path are
used as evidence. Thus, making the proposal scalable. In this paper, we evalu-
ated our proposal focused on an academic domain, and we aimed at predicting
links among researchers. The approach was successfully compared with graph-
based and semantic-based features. As future work we intend to consider other
datasets.

Previous combined approaches for link prediction [4, 2] have focused on ma-
chine learning algorithms [12]. In such schemes, numerical graph-based features
and ontology-based features are computed; then both features are input into a
machine learning setting where prediction is performed. Unless from such ap-
proaches, in our work we adopt a generic ontology (instead of a hierarchical ontol-
ogy, expressing only is-a relationships among interests). Therefore, our approach
uses more information about the domain to help the prediction. Moreover, in
[19], a Probabilistic Relational Model is used for link prediction task. This is one
of the approaches more closed to ours, since uses semantic features considering a
probabilistic graphical model. However, inference is done in a propositionalized
network that can not scale for large networks.
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