
Collaborative mashup development in Enterprise 2.0

Devis Bianchini, Valeria De Antonellis, Michele Melchiori

Università degli Studi di Brescia – Dip. di Ing. dell‟Informazione

Via Branze 38

25123 Brescia, Italy

{bianchin|deantone|melchior}@ing.unibs.it

Abstract. Modern organizations support and promote internal collaboration to

improve performances of their processes. In this paper, we focus on collabora-

tion in software development processes where the process activities are simpli-

fied by discovering and exploiting specific knowledge available inside the or-

ganization. Specifically, we consider the mashup application development. Ma-

shup has been recently introduced as a development approach for situational

fast-to-implement Web-oriented applications. A mashup integrates software

components, called Web APIs that can provide access to complex functionali-

ties and rich data sources. Collaboration can simplify and make more effective

the mashup development process, in terms of time and quality, by exploiting the

knowledge of the developers operating inside the organization. To this aim, we

propose a model as part of the Enterprise 2.0 paradigm that has been recently

introduced as specialization of the Web 2.0 concepts and technologies to the en-

terprise. In the discussed model, a mashup developer is supported in searching

for assistance from developers owning specific knowledge, according to typical

collaboration patterns.

1 Introduction

Modern organizations support and promote internal collaboration to improve perfor-

mances of their processes. In this software development, mashup has been recently

introduced as a development method inside organizations for situational fast-to-

implement applications. Enterprise 2.0 [1] is the specialization of Web 2.0 concepts

and technologies to the enterprise with the aim of boosting the collaboration both

inside and outside the enterprise. In this context, a number of collaboration platforms

is currently appearing [2,3,4] to provide enterprises with tools that allow for social

linking and tagging of resources, that support the user feedback/opinions, and user-

produced content management platforms (blogs and Wikis). For example, the

YAMMER Web platform
1
 allows an enterprise to create a private social network

implementing collaborative workspaces for project team members and external se-

lected partners. Another recent trend in enterprises is mashup [5] that has been intro-

duced as development approach for quick-to-build applications which are created to

1 https://www.yammer.com/

satisfy situational short term business needs by combining more Web APIs into a

single lightweight Web application.

Mashup design and implementation may leverage on collaboration to discover, un-

derstand and integrate Web APIs. In fact, collaboration supported by the Enterprise

2.0 tools can simplify and make more effective the development process, in terms of

required time and quality improvement, by exploiting the specialized knowledge of

developers operating inside the organization. On the one hand, developers can exploit

a large and always growing collection of Web APIs made available inside enterprises

by means of searchable catalogs (e.g., IBM Mashup Center Catalog
2
). Beside technic-

al documentation, Web registries provide also information about how APIs are used

in mashups and feedback from the user community. On the other hand, mashup de-

velopment is hindered by the heterogeneity of Web APIs and related documentation.

Generally, the steps in mashup development that can be supported by collaboration

are: i) searching and identifying the most suitable API functionalities to build a new

application; ii) understanding functional and nonfunctional features of the selected

APIs with the purpose to compose them according to the requirements. Accordingly,

research has been done to define search tools based on semantic/functional/non func-

tional characterization of APIs [6], on their social characterization/tagging [7,8], on

past use/collective knowledge of APIs [9], on techniques that mix social and func-

tional features [10].

The proposal described in this paper focuses on collaborative development in the

Enterprise 2.0 contexts. To this purpose we propose a model that includes: i) descrip-

tion of Web APIs as typically found on sharing Web sites, ii) information about de-

velopers based on a specialization of FOAF

 ontology and, iii) relationships among

developers and Web APIs.

Specifically, the cited search tools focus on recommending Web APIs to the devel-

oper. Our proposal is complementary to these approaches and comes as a successive

phase by recommending to the developer those colleagues inside the enterprise that

have specific knowledge about the Web APIs she/he has selected. To this purpose, we

have identified typical collaboration patterns: i) search for collaboration on the use of

specific Web APIs; ii) search for collaboration on specific Web API technologies; iii)

search for competencies in developing specific types of mashups.

The paper is organized in the following way. A simple example to illustrate the

considered scenario is given in the following of the Sect. 1. In the Sect. 2, we intro-

duce the model for mashup development based on collaboration. The collaboration

patterns that exploit this model are defined in the Sect. 3. A different way to make

explicit and representing the skills of the enterprise developers according to different

perspectives is discussed in the Sect. 4. Conclusions and some possible extensions of

the work presented in this paper are given in the Sect. 5.

2 http://www-10.lotus.com/ldd/mashupswiki.nsf/dx/Introduction__Mashup_Center_2.0.0.2

1.1 A motivating example

Let us consider an enterprise with various branches and departments in which operate

expert users and developers that need sometime to implement situational applications.

For example, consider also a webmaster working for the marketing department of this

enterprise that has to build an application to visualize on an interactive map, informa-

tion about the customers, about sales and demographic data. The webmaster finds the

APIs (developed internally, as part of the ERP, and published on the Web) that she/he

needs implementing the single functional blocks. However, she/he can face difficul-

ties in: i) using a specific API, because of a not clear API semantics or because not

familiar with the I/O parameters data format; ii) integrating the selected APIs, because

of heterogeneity of documentation and used languages/technologies. In fact, in spite

the availability of commercial and research tools the task of integrating Web APIs

requires yet specialized skills.

2 A model for collaborative mashup development

In this section we propose a model for collaborative developing in enterprises includ-

ing social and usage contexts of Web APIs. Without loss of generality, we can assume

that this model maintains at least:

 Web APIs descriptions at the same level of detail of public registries like Pro-

grammableWeb

-name

-description

-added

-author

-URL

-evaluation

Mashup

-name

Tag

*

1..*

-name

-category

-added

-author

-API URI

-evaluation

-Signup Requirements

-Authentication Model

-SSL Support

-How To ULR

-Comments

-License

Web API

1..*

*

*

1..*

Provider

-name

-URL

-Description

Technology

*

1..*

*

*

Programming Language Protocol Messaging Format
-ID

-givenName

-familyName

-title

-homepage

-email

-phone

-skypeID

-img

-interest

-currentProjects

-pastProjects

-gender

-bio

Internal Developer External Developer

Internal Provider

1..*

*

-name

-homepage

Developer

-homepage

-company

External Provider

-name

Deparment/Office

-name

-address

-city

-country

Branch

*

1..*

*

1..*

*

1..*

* 1 *

1

-Knows*

*

Composed by

Tagged by

Tagged by

D
e

v
e

lo
p

e
d

 b
y

Has knoledge

Works for

P
u

b
lis

h
e

d
 b

y

UsesUsesUses

Fig. 1. UML model for supporting mashup development collaboration

 Social information about developers based on a specialization of FOAF
3
.

ProgrammableWeb has been chosen because it is the most complete public registry of

Web APIs and mashups. The choice of FOAF is due to the fact that it is a well known

and standard proposal of ontology for conceptualization of people and social relation-

ships. The model, shown in Fig. 1, includes that information that satisfies the re-

quirements for the collaboration scenario considered in the following section. Note

that the Person class of FOAF has been here specialized in the class Internal Develop-

er. An Internal Developer can have knowledge about technologies used by Web API.

The classes External Provider and External Developer allow keeping supplementary

information about providers and developer of public Web APIs and mashups.

In this model we focus specifically on the classes Internal Developer, Mashup,

Web API. We associate each object of these classes with a set of descriptors. A de-

scriptor Desp(oi) for an object oi according to a perspective p is defined as:

 DesP(oi) ={tpi} (1)

where tpi are terms extracted from the object descriptions, specifically from class at-

tribute values and relationships involving the class of oi. In Table 1 is shown the ap-

plicability of perspectives (columns) to each considered class (rows).

Perspectives

Organizational Web API Mashup Technologies Developer SocialConnectivity

Developer x x x x X

Web API x x x

Mashup x x

Table 1. Applicability of perspectives

A developer is described by an organizational perspective (office/department, current

projects, past mashup projects), the Web APIs she/he has used/developed, the devel-

oped mashups, the technologies on which she/he has expertise and her/his social con-

nections (developers that she/he knows, developers belonging to the same office, that

have worked on the same project or on the same mashup). A Web API is described by

the mashups in which it has been used, the technologies (programming languages,

protocols, messaging formats), the developers that used or provided it. Finally, a ma-

shup is specified by the Web APIs that it includes and the developer/s that developed

it.

3 Collaboration patterns

Descriptors associated with developers, mashups and Web APIs enables the defini-

tion of collaboration patterns. A collaboration pattern is identified by a type of re-

3 http://www.foaf-project.org/

quest. We define in a general way a request R for collaboration submitted by a devel-

oper DR as follows.

 R=< TR, DR, MR, WR> (2)

where TR is the type of request, MR={W
Ri

} is a set of Web APIs W
Ri

, possibly empty,

selected for implementing a mashup. For simplicity we can refer to this set as the

mashup MR. WR is a Web API optionally specified.

With reference to the motivating example above described, we distinguish three

different collaboration scenarios in which DR can be involved.

1. Search for collaboration on the specific Web API WR: DR is looking for collabo-

ration from developers that have experience with a specific Web API WR she/he has

chosen and needs to use in the mashup.

2. Search for collaboration on the technology used by WR: DR is looking for de-

velopers that have experience with specific technologies of the Web API WR. For

example, this case is invoked, as second option, if the result of application of the pre-

vious case Search for collaboration on a specific Web API is empty. As a conse-

quence, the developer shifts the request to collaboration on the WR technologies.

3. Search for collaboration on the mashup MR: DR is looking for collaboration

with developers that have experience in mashups built with the same set of Web APIs

of MR or at least with a subset of it.

3.1 Definition of collaboration patterns

The illustrated scenarios are implemented by collaboration patterns that provide the

functionalities to satisfy the request expressed in each scenario. Formally, a collabo-

ration pattern is defined as a 4-uple:

 CPᴫ =< Rᴫ, mᴫ, δᴫ ,  ᴫ, > (3)

where ᴫ is the goal of the collaboration pattern. The output of the application of a

collaboration pattern is to suggest a ranked list of developers satisfying the request Rᴫ.

The metrics mᴫ are used to evaluate the degree of matching between a developer and

the request R, on the basis of the specified goal. The threshold δᴫ is used to filter out

developers with low relevance with respect to Rᴫ. A developer Dj is proposed to the

mashup designer if mᴫ(Rᴫ,Dj) > δᴫ. Finally,  ᴫ is a ranking function to present the

developers relevant for Rᴫ. In particular, Di  ᴫ Dj, that is Di precedes Dj in the rank-

ing, if mᴫ(Rᴫ,Dj) ≥ mᴫ(Rᴫ,Dj). Collaboration pattern metrics mᴫ are based on a notion

of similarity between descriptors. The similarity between pairs of descriptors is de-

fined according to the classical Dice‟s formula for similarity over sets.

Table 2 reports how the elements of generic collaboration pattern are defined to fulfill

the three considered scenarios. Specifically, each scenario is associated with a goal

and specifies a kind of request, a metrics and the perspectives considered in the evalu-

ation of the collaboration.

In the following, for each pattern we provide the motivations for the metrics de-

fined in the table.

Scenario TR Request Rᴫ Metrics mᴫ Perspectives

1. Search for

collaboration on

a specific Web

API WR

R=

<wApi, DR, , WR >

with  +   [0..1] and ,0

P1=‘Web API’,

P2=‘Organizational’,

P3=‘SocialConnectivity’

2. Search for

collaboration on

the technology

used by WR

R=

<tech, DR, , WR >

with  +  +   [0..1] and ,, 0

P1=‘Technologies’,

P2=‘Organizational’,

P3=‘SocialConnectivity’

3. Search for

collaboration on

the mashup MR

R=

<mash, DR, MR >

with  +  +   [0..1] and ,, 0

P1=‘Web API’,

P2=‘Organizational’,

P3=‘SocialConnectivity’

Table 2. Definition of collaboration patterns for the scenarios

- Pattern 1. If the developer Dj has experience with WR then her/his evaluation is not

zero and is based on a weighted sum of two terms: i) similarity of Dj and DR with

respect the Organizational perspective, ii) similarity of Dj and DR with respect to the

SocialConnectivity perspective. So, developers that have more social/organizational

connections with DR receive a higher degree because it is supposed to be easier to

contact and involve them.

- Pattern 2. if the developer Dj has experience with the technologies of WR then

her/his evaluation is not zero and is based on a weighted sum of three terms: i) simi-

larity between technologies on which Dj has expertise and the technologies used by

WR, ii) similarity of Dj and DR with respect the Organizational perspective, iii) simi-

larity of Dj and DR with respect to the SocialConnectivity perspective.

- Pattern 3. In this case, DesP1(Dj) includes the Web APIs used in the mashups devel-

oped by Dj. That is, if the developer Dj has used (at least one of) the Web APIs in MR

then her/his evaluation is not zero and is based on a weighted sum of three terms: i)

her/his similarity with MR with respect the Web API perspective, that is high similari-

ty if Dj has developed mashups using the APIs in MR, ii) similarity of Dj and DR with

respect the Organizational perspective, iii) similarity of Dj and DR with respect to the

SocialConnectivity perspective. Note that DesP1(Dj) and MR are both sets of Web

APIs so it is meaningful to evaluate their similarity.

For the metrics mᴫ of each of these patterns, the parameters ,, are initially set to

the same value. During a training phase with the involvement of developers, the val-

ues are iteratively adjusted to obtain desired rankings.

Fig. 2a. Example of Similarity tree

Fig. 2b. Clustering of developers by perspective „Technology‟

4 Multi-perspective organization and clustering of developers

Developer descriptions can also be organized according to the different perspectives

introduced in Sect. 2. In fact, the information provided by the model in Fig. 1 and the

similarity between developers descriptors can be used jointly to build representations

of the enterprise developers according to the different perspectives. These organiza-

tions can be browsed by a developer to know about the available skills (technologies,

Web APIs, mashups) of the other developers inside the enterprise.

In particular, by mean of a hierarchical agglomerative clustering procedure, the de-

velopers can be partitioned in groups, where each group includes the developers own-

ing similar features according to a considered perspective. The resulting representa-

tion is a mapping group-to-skills.

In order to illustrate the main steps required, let us consider specifically the pers-

pective „Technologies‟. The hierarchical clustering procedure is applied to the set of

the developers. In the procedure, the similarity metrics for each pair of developer

descriptors DesP(Dij) and DesP(Dik), the value of Sim(DesP(Dij), DesP(Dik)) normalized

in the range [0,1]. The output of the procedure is a similarity tree, as the one illu-

strated in Fig. 2a, where the leaves represent the descriptors and the arcs connect pairs

of clusters recognized as the most similar at a specific step. Setting a given minimum

similarity threshold defines the clusters in the similarity tree. For example, the thre-

shold is set to 0.6 in the Fig. 2b. The skills according to the perspective „Technology‟

for each group of developer cluster are shown as the intersection of the DesP(Dik)

={tpik} for each Dik in the cluster. Note, that the {tpik} are values available in the ob-

ject descriptions according to the collaboration model.

5 Conclusions

In this paper, we have introduced a collaboration model for mashup development in

the context of Enterprise 2.0. Specifically, the model permits to define collaboration

patterns to support automatically the mashup developer in the task of discovering

potential collaboration with other developers. Future work includes the development

of a software prototype to be integrated in an Enterprise 2.0 platform and extension of

the model by considering additional information, like tags, Web APIs categories and

feedback on the collaboration. Moreover, the model has to be enriched with mechan-

isms for ranking and evaluating the skills and the experience of developers.

6 References

1. A. P. Mcafee, “Enterprise 2.0: The Dawn of Emergent Collaboration” MIT Sloan Man-

agement Review, vol. 47, no. 3, 2006.

2. IBM, “IBM Connections.” http://www-01.ibm.com/software/lotus/products/connections.

3. TELLIGENT, “TELLIGENT Enterprise.” http://telligent.com/social-enterprise-software.

4. J. Soriano, D. Lizcano, M. A. Cañas, M. Reyes, and J. J. Hierro, “Fostering Innovation in a Mashup-

oriented Enterprise 2.0 Collaboration Environment,” System and Information Sciences Notes, no. 1,

pp. 62–68, 2007.

5. V. Hoyer and M. Fischer, “Market overview of enterprise mashup tools”. In Proc. of the 6th Interna-

tional Conference on Service Oriented Computing (ICSOC’08), 2008, pp. 708-721.

6. Gomadam, K., Ranabahu, A., Nagarajan, M., Sheth, A. P. and Verma, K. (2008) A Faceted Classifica-

tion Based Approach to Search and Rank Web APIs,Proc. of 6th IEEE Int. Conference on Web Ser-

vices (ICWS'08).

7. K. Goarany, G. Kulczycki, and M. B. Blake, “Mining Social Tags to Predict Mashup Patterns,” Pro-

ceedings of the 2nd International Workshop on Search and Mining User-generated Contents (SMUC

2010), October 30, 2010, Toronto. Canada. Copyright 2010 ACM., pp. 71-77, 2010.

8. D. Bianchini, V. De Antonellis, and M. Melchiori, “Semantic Collaborative Tagging for Web APIs

Sharing and Reuse,” in Proceedings of the 12th Int. Conference on Web Engineering (ICWE’12),

2012, vol. LNCS, no. 7387, pp. 76-90.

9. O. Greenshpan, T. Milo, and N. Polyzotis, “Autocompletion for Mashups,” in Proc. of the 35th Int.

Conference on Very Large DataBases (VLDB’09), 2009, pp. 538-549.

10. B. Tapia, R. Torres, and H. Astudillo. "Simplifying mashup component selection with a combined si-

milarity- and social-based technique". In Proceedings of the 5th International Workshop on Web APIs

and Service Mashups (Mashups '11), Agnes Koschmider, Erik Wilde, and Christian Zirpins (Eds.).

ACM, New York, NY, USA, 2011.

