
Towards runtime support for norm change from a
monitoring perspective?

Ignasi Gómez-Sebastià, Sergio Álvarez Napagao, Javier Vázquez Salceda and
Luis Oliva Felipe

Universitat Politècnica de Catalunya
Software Department (LSI)

c/Jordi Girona 1-3, E08034, Barcelona, Spain
{igomez, salvarez, jvazquez, loliva}@lsi.upc.edu

Abstract. Nowadays electronic specifications of norms are one of the mech-
anisms that can be applied to define and enforce acceptable behaviour within
distributed electronic systems which should comply with some (human) regula-
tions. As in human legal systems, it is easy to foresee that some of these elec-
tronic normative environments will not be static. They should be able to evolve
through time as regulations change, effectively adapting to new situations and be-
haviours. In this paper we present an extension of a formal normative monitoring
framework capable of updating normative contexts at runtime without stopping
the monitoring process.

Keywords: normative systems; normative monitoring; runtime support

1 Introduction

Electronic specifications of norms can be applied to define and enforce acceptable be-
haviour within distributed electronic systems, especially those that should comply with
some regulations. Some of these electronic normative systems will not be static, will
evolve through time as regulations change, adapting to new situations and behaviours.

One of the requirements to effectively implement Normative Systems is to be able
to assess, at runtime, the state of the normative environment. Some existing lines of
research (e.g., [3] and [13]) have already tried to tackle this issue on some simple sce-
narios. However, more complex scenarios may appear, for instance, scenarios where the
normative context that defines the normative environment is not static, but it expands
and contracts as new norms are added to the institution and removed from it respec-
tively. Under these conditions, a monitoring system must be able to continue comput-
ing the state of the normative environment at runtime, as often we can not afford to
perform the changes on the normative context off-line. Furthermore, it must be guar-
anteed the monitoring system can keep producing states of the normative environment
that are consistent with the changes performed on the normative context. For instance,
if a norm has been removed from the normative context, it makes no sense any more to
compute normative states where the norm has been violated.

? AT2012, 15-16 October 2012, Dubrovnik, Croatia. Copyright held by the author(s).



In this paper we present an approach for extending the normative monitoring frame-
work presented in [3] allowing it to support normative expansion and contraction op-
erations at runtime, without having to stop computing the normative state and, at the
same time, computing states that are consistent with the expansion and contraction op-
erations performed. The framework focuses on norm monitoring from an institutional
perspective (e.g., detecting violations of norms, so institutional agents can enforce sanc-
tions and repair actions) without neglecting agent’s ability to query the normative state,
effectively allowing agents to make sure they comply with the norms in the institution.

We illustrate our approach via a scenario that models a simplified version of the
2005 Spanish smoking law that has been amended in 2011. Basically, the 2005 law
obliges bars and restaurants with a size bigger than 100m2 to provide an isolated area
for smoking customers. They will incur in a violation if they do not fulfil this obliga-
tion and the violation is considered as repaired once the bar habilitates an area for their
smoking customers. The amended 2011 law forbids bars and restaurants to have any
smoking area. They will incur in a violation if they have a smoking area and the viola-
tion will be considered as repaired once the bar removes the smoking area. We will use
this scenario for providing examples along this paper.

The rest of this paper is structured as follows: in Section 2 we summarise the mon-
itoring formalism presented in [3] which we extend in this work. Then in Section 3 we
formalise the operations to be supported in order to allow for normative context ex-
pansion and contraction. We also extend the formal framework providing support for a
more expressive norm life cycle. Next, in Section 4 we provide formal algorithms for
implementing the expansion and contraction operations on the existing framework. Sec-
tion 5 puts our proposal in contrast with existing approaches. Finally Section 6 presents
our conclusions and outlines future lines of research.

2 Monitoring Formalism

In this section we summarise the formalism for monitoring normative systems which
we will use in the rest of the paper. For more details on this formalism, please refer to
[3].

We assume the use of a predicate based propositional logic language LO with pred-
icates and constants taken from an ontology O, and the logical connectives {¬,∨,∧}.
The set of all possible well-formed formulas of LO is denoted as wff(LO) and we
assume that each formula from wff(LO) is normalised in Disjunctive Normal Form
(DNF). Formulas in wff(LO) can be partially grounded, if they use at least one free
variable, or fully grounded if they use no free variables.

We define the state of the world st as the set of predicates holding at a specific times-
tamp t, where st ⊆ O, and we denote S as the set of all possible states of the world,
where S = P(O). We call expansion F (s) of a state of the world s as the minimal sub-
set of wff(LO) that uses the predicates in s in combination of the logical connectives
{¬,∨,∧}. We define a substitution instance Θ = {x1 ← t1, x2 ← t2, ..., xi ← ti}
as the substitution of the terms t1, t2, ..., ti for variables x1, x2, ..., xi in a formula f ∈
wff(LO). Thus, Θ(f(x1, x2, ..., xi)) ≡ f(t1, t2, ..., ti). We denote as ϑ(wff(LO),S)



the set of all possible substitution instances containing the variables in wff(LO) and
the terms in S.

Definition 1. (Norm) A ’norm’ n is a tuple n = 〈fA, fM , fD, fw, w〉, where

– fA, fM , fD, fw ∈ wff(LO), w ∈ O,
– fA, fM , fD respectively represent the activation, maintenance, and deactivation

conditions of the norm.
– fw is the explicit representation of the target of the norm, and w is the subject of

the norm (role or agent).

A norm is defined in an abstract manner, affecting all possible participants enacting
a given role. Whenever a norm is active, we will say that there is a norm instance
ni = 〈n, θ〉 for a particular norm n and a substitution instance Θ.

We can formalise the norms of Definition 1 as the equivalent deontic expression
(using the inference rules formalism in [7]):

Property 1. A norm is considered fulfilled if, and only if:

fA → [Ow(Ewfw ≤ ¬fM )U fD]

where Ow(Eap) means that agent a has the obligation to see to it that (stit) p be-
comes true and U is the CTL∗ until operator.

Intuitively, Property 1 states that after the norm activation, the subject is obliged to
see to it that the target becomes true before the maintenance condition is negated (either
the deadline is reached or some other condition is broken) until the norm is deactivated
(which is either when the norm is fulfilled or has otherwise expired).

Definition 2. (Violation handling norm1) A norm n′ = 〈f ′A, f ′M , f ′D, f ′w, w′〉 is a vi-
olation handling norm of n = 〈fA, fM , fD, fw, w〉, denoted as n ; n′ iff fA ∧
¬(fMUfD) ` f ′A

Violation handling norms are special in the sense that they are only activated once
another norm is violated. Please notice we consider a norm is not violated if the mainte-
nance condition is kept until the deactivation condition holds, and is violated otherwise.
Violation handling norms are used as sanctioning norms, if they are to be fulfilled by
the norm violating actor (e.g., the obligation to pay a fine if the driver broke a traffic
sign), or as reparation norms, if they are to be fulfilled by an institutional actor (e.g.,
the obligation of the authorities to fix the broken traffic sign).

One common problem for the monitoring of normative states is the need for an
interpretation of brute events as institutional facts, also called constitution of social
reality[11]. The use of counts-as rules helps solving this problem. Counts-as rules are
multi-modal statements of the form [c](γ1 → γ2), read as “in context c, γ1 counts-as
γ2”. In our proposal, we consider a context as a set of predicates:

Definition 3. (Counts-as rule) A counts-as rule is a tuple c = 〈γ1, γ2, s〉, where γ1, γ2 ∈
wff(LO), and s ⊆ O.

1 Informally: the unfulfillment of the obligation of norm n entails the activation of norm n′.



A set of counts-as rules is denoted as C. Although the definition of counts-as in [11]
assumes that both γ1 and γ2 can be any possible formula, in our work we limit γ2 to a
conjunction of predicates. This will ensure every well-formed-formula is on a standard
Disjunctive Normal Form. Knowing before hand all well-formed-formula are on the
same format, effectively simplifies the process of detecting information dependencies
between well-formed formulas.

Definition 4. (Institution) Following the definitions above, we define an institution as
a tuple of norms, roles, participants, counts-as rules, and an ontology:

I = 〈N,R, P,C,O〉 where: N,R, P,C is a set of norms, roles, participants and
counts-as rules respectively and O is an Ontology.

In order to track the normative state of an institution at any given point of time, the
state of each of the norms inside the context should be tracked. In order to ease this task,
we define three sets: an instantiation set IS, a fulfillment set FS, a violation set V S, and
a repairment set RS. Each of them contains norm instances {〈ni, Θj〉, ..., 〈ni′ , Θj′〉}.
In order to define the states a norm may be in, we adapt the semantics for normative
states from [13]:

Definition 5. (Norm Life-cycle) Let ni = 〈n,Θ〉 be a norm instance, such that n =
〈fA, fM , fD, w〉, and s be a state of the world with an expansion F (s). Then we define
the life-cycle for a norm instance ni by the following normative state predicates:

activated(ni)⇔ ∃f ∈ F (s), Θ(fA) ≡ f
maintained(ni)⇔ ∃Θ′,∃f ∈ F (s), Θ′(fM ) ≡ f ∧Θ′ ⊆ Θ
deactivated(ni)⇔ ∃Θ′,∃f ∈ F (s), Θ′(fD) ≡ f ∧Θ′ ⊆ Θ
instantiated(ni)⇔ ni ∈ IS
violated(ni)⇔ ni ∈ V S
fulfilled(ni)⇔ ni ∈ FS
repaired(ni, ni′)⇔ 〈ni, ni′〉 ∈ RS
Where IS is the instantiation set, FS is the fulfilment set, V S is the violation set,

and RS is the set of those norm instances ni′ that have repaired a norm instance ni.

Definition 6. (Event) An event e is a tuple e = 〈α, t, p〉, where

– α ∈ O, an actor of the system,
– t is the timestamp of the reception of the event, and
– given a fully grounded subset of the set of states of the world p′ ∈ S : p = p′ ∨ p =
¬p′

We define E as the set of all possible events, E = P(P × t × S) where t is a
timestamp. From these definition we can formalise the concept of Normative Monitor
and the concept of Labelled Transition System for a Normative Monitor as follows:

Definition 7. (Normative Monitor) A Normative Monitor MN for a set of norms N is
a tuple MN = 〈N,S, IS, V S, FS,E〉.

Where: S = P(O)∧ IS = P(N ×S×Dom(S))∧ V S = P(N ×S×Dom(S))∧
FS = P(N × S ×Dom(S))∧ E is the set of all possible events as defined before.



Ex Tunc Ex Nunc

Context expansion
Retroactive
Promulgation

Prospective
Promulgation

Context
contraction

Annulment Abrogation

Fig. 1. Possible operations on norms

Fig. 2. Extending the norm life-cycle

ΓMN
is the set of all possible configurations of a Normative Monitor MN .

Definition 8. (Labelled Transition System) The Labelled Transition System LTSMN

for a Normative Monitor MN is defined by LTSMN
= 〈ΓMN

, L,�〉 where

– L = {ep, nii, niv, nif, nir} is a set of labels, respectively representing event pro-
cessed, norm instantiation, norm instance violation, norm instance fulfilled, and
norm instance violation repaired, and

– � is a transition relation such that � ⊆ ΓMN
× L× ΓMN

This formalism has been reduced to the semantics of general production systems
and an implementation in DROOLS is already available.

3 A formal framework for norm change

This section defines the operations required for supporting expansion and contraction of
normative contexts. It also depicts the norm life-cycle extension required for supporting
these operations.

According to legal literature, one can specify two types of change operations on a
normative context, context expansion (adding norms) and context contraction (remov-
ing norms; norm updates can be seen as norm removal followed by a norm addition).
Each of these operations comes in two forms: Ex Tunc(i.e., from the outset) and Ex
Nunc (i.e., from now on). Both terms are Latin legal terms which are common in law
literature. An Ex Tunc norm is a norm that retroactively changes the normative conse-
quences (or status) of actions committed prior to the existence of the norm, whereas an



Ex Nunc norm affects only actions committed after the existence of the norm. To sum-
marize, two operations with two forms, means one can apply four distinct operations to
normative contexts, as depicted on Figure 1. We can provide a more formal definition
of the four operations:

– Prospective promulgation: Introduces a new norm on the normative context. Events
happening on the context can instantiate the norm as soon as it has been promul-
gated. The norm will not check for violations caused by past events, but it can be
activated by past events. This is because if a given fact has been made true in the
past we assume it to be true until we have proof of the contrary. For instance, if
we received the event bornAt(Spain, Manolete) in the past we can assume the fact
Manolete is born in Spain still holds in the present. Thus, if a norm applies to (i.e.,
is activated by) individuals born in Spain, it should apply to the individual Manolete
even if he was born before the norm promulgation.

– Retroactive promulgation: Introduces a new norm on the normative context. Events
happening on the context can instantiate the norm as soon as it is promulgated. The
norm will check for norm instance activations or violations caused by past events.
Retroactive promulgation can lead to a massive amount of norm instances being
violated (especially if the number of past events is high). Few scenarios should
require this operation for normative context modification. In fact, most real-world
normative contexts forbid this operation (e.g., most countries forbid retrospective
law promulgation on their constitutions and bills of rights).

– Annulment: Removes a norm from the normative context. All the instances of the
norm are removed as well, including violated ones. This implies removing sanc-
tions and repair actions that are yet to be enacted. Repair actions already enacted
must be de-enacted, so the agents responsible of enacting repair actions (e.g., in-
stitutional agents managing the institution) must be aware of the annulment. As an
example, if someone is imprisoned for violating an annulled norm, he/she should
be set free.

– Abrogation: Tags a norm from the normative context as being In transition. There-
fore, the norm can not be instantiated any more. Instances of the norm remain in the
normative context as long as they are not in a terminal state (that is, either fulfilled
or repaired). Once all norm’s instances have reached a terminal state, the norm is
removed from the system along with its instances. As an example, if someone is
imprisoned for violating an abrogated norm, he/she should remain imprisoned un-
til the violation has been repaired (i.e. the offender has spent a given amount of
time imprisoned). However, once set free, he/she should be able to violate the norm
again without any legal consequences.

We have introduced some extra norm states when defining the expansion and con-
traction operations. Therefore, in order to effectively support these operations we have
to extend our norm life-cycle, as depicted in Figure 2, adding the following states:

– In force: Once a norm has been promulgated (either in a prospective or retroactive
form) it achieves an In force state. From this point, the norm can be effectively
activated if its activation condition is met. In some scenarios, norms introduced in
the system off-line (i.e., they are already there when the system starts its execution)



are by default in this state. In other scenarios they can lack this state (i.e., be in
Deleted stated instead) and are moved to it by institutional agents in case they
consider they are beneficial for the overall goals of the system. This will effectively
provide agents with a pool of norms that can be promulgated (either in a prospective
or retroactive form) if required. A mixture of both approaches is also possible,
where system designers put some important norms In force since the beginning of
system’s execution, leaving a second set of norms in the pool of norms that can be
put into force by institutional agents.

– In transition: Abrogated norms go into this state. It means the norm can not be
instantiated any more. However, instances of the norm that have been already in-
stantiated (i.e., they are in active or violated state) remain in the system. Once
these instances change to Fulfilled or Repaired states the norm in transition can
effectively move on to Deleted state.

– Deleted: As stated before, abrogated norms with no active instances are moved to
this state. Annulled norms are also moved to this state, no matter if they contain
active instances or not. Therefore, active instances of annulled norms are removed
from the system. Mechanisms based on the already available violation handling can
be defined to compensate for violated instances of annulled norms that have been
repaired (e.g., if an agent pays a fine for violating a norm, and then the norm is
annulled, return the amount paid to the agent). Deleted norms can be promulgated
again either via prospective or retroactive promulgation.

Two lines of research have already tackled this issue, Aucher et al. [5] and Gover-
natori et al. [10]. The first one defines both expansion and contraction operations, but
only supports ex tunc operations. The second line of research supports both ex tunc and
ex nunc operations but it focuses on context expansion. Our approach can be seen as an
attempt to mix the expressivity of both proposals, defining at the same a richer norm
life-cycle able to cope with normative context modification operations.

Figure 3 shows examples of some operations on a normative context. Specifically it
shows how the norm (N1) and the amendment (N2) are activated, fulfilled, violated or
repaired depending on the events happening on the environment.

Basically N1 is activated as soon as bar instances with more than 100m2 are detected
on the environment. Notice how both prospective and retroactive norm promulgation
check for past events. In this case, it is because if in the past a bar instance had more
than 100m2 we assume this fact to be still true if we have not proof of the contrary.
Once promulgated, the norm goes to fulfilled state if the bar has an isolated area for
smoking customers, and to violated state if it does not. If the norm is violated, violation
can be repaired by creating an isolated area for smokers. This action will take the norm
to repaired state.

Then, norm N1 is abrogated and N2 promulgated. Once promulgated N2 instanti-
ates as soon as bar instances are detected, no size constraints are to be met. The norm is
fulfilled if the bar has no smoking area, and violated if it does. If the norm is violated,
violation can be repaired by removing the isolated smoking area from the bar. As norm
N1 has been abrogated, Bars that are on violated state on instances of N1 have to per-
form their repair actions in order to move to repaired state even if N1 has been already
abrogated and N2 promulgated. It would not be the case if norm N1 was annulled in-



Fig. 3. Example of the execution of norms N1 and N2

stead of abrogated as annulment would force norm violations to be removed from the
system, even if such violations have not been repaired.

This simple scenario allows us to reinforce the idea system designers need to be very
careful when using norm abrogation. Bars that have spent money in creating areas for
smokers due to the promulgation of N1, have to spend money again for removing these
areas once norm N2 is promulgated. Otherwise they would be violating N2. Therefore,
in order to achieve a fair norm promulgation, system designers should include a reward
for bars that fulfilled norm N1 by creating areas for smokers when promulgating norm
N2. The situation is even worse for bars with more than 100m2 that do not have an iso-
lated area for smokers. Once norm N1 is abrogated and N2 promulgated, these bars have
to create an isolated area for smokers, effectively repairing the violation of N1. But once
this area is created, they are violating N2, and have to disable the area in order to repair
the violation of N2. This would have been avoided if norm N1 was annulled instead of
abrogated. This fact reinforces the idea norm design has to be carefully analysed when
expanding and contracting the normative context, in order to bring the system closer
to its overall (multiple and sometimes even conflicting) goals. In particular, it depicts
how norm designers have to carefully balance the benefits of norm abrogation and an-
nulment, choosing the correct operation for contracting the normative context on every
situation.



4 Implementing Norm change support

In this section we show how the monitoring formalism presented in [3] can be extended
to support normative context modifications at run-time. We also depict the different
normative context operations that our monitoring system supports and the pseudo-code
algorithms required for fulfilling each normative context operation form a monitor com-
ponent perspective.

If norms are represented as rules, then rule change can be represented as non-
monotonic inference. According to [9], changing a normative system would amount to
adding new rules or removing the existing ones. The formalism presented in [3], based
on rule creation from normative specifications, allows us to define the operationalisa-
tion of norm change, in its four forms, as extensions of the main monitoring process.
By using all or some of the labels described in Definition 8, we can constrain the exact
normative-related actions that the monitor will be able to carry out, and thus we can
define and create, at runtime, diverse monitoring contexts.

The ability to create a different monitoring context is due to the fact that some norm
changes can be retroactive. Thus the only way to generate a normative state compliant
with the one we had before the norm change is to analyse the full stream of events
generated since the beginning of the monitoring process. Such a monitoring context
can be created at runtime by using two constructs from the monitoring formalism: the
normative monitor and the labels of its labelled transition system. With the first one
we can create a new monitor, specific to a set of norms (the ones to be added), and
by constraining the labels we can control the level of retro-activity of the norm change
type.

How these constructs have to be used depends on each type of norm change, as
defined in Section 3. As seen on Figure 1 there are a total of four possible operations on
a normative context, formalised by the following Algorithms:

– Prospective Promulgation Algorithm 1 Figure 4: The norm is inserted into the
normative monitor. A secondary monitor computes the instantiations of the norm
caused by past events. Once computed, the instantiations are inserted on the nor-
mative monitor.

– Retrospective Promulgation Algorithm 2 Figure 5: The norm is inserted into
the normative monitor. A secondary monitor computes the following norm states
caused by past events: norm instantiation, norm fulfilment, norm violation and
norm repair. Once computed, the states are inserted on the normative monitor.

– Annulment Algorithm 3 Figure 6: Instances of the norm in instantiated, repaired,
violated or fulfilled state are removed from the normative monitor. In the case of
instances in repaired state, the institutional agents are notified in case an action
to undo the reparation is required. Then, the norm is removed from the normative
monitor.

– Abrogation Algorithm 4 Figure 7: Instances of the norm in fulfilled or repair state
are removed. Then, the norm goes to transition state. Therefore, the norm can not
be instantiated any more. It is checked periodically if the norm contains instances
in instantiated or violated state. If it does not, instances of the norm on fulfilled or
repair state are removed. Then, the norm is removed from the system. If the norm



contains instances in instantiated or violated state, the process waits a given amount
of time before checking again for instances in instantiated or violated state.

Algorithm 1 Prospective Promulgation of PPNorm
Require: PPNorm = 〈fA, fM , fD, fw, w〉
Require: MN = 〈N,S, IS, V S, FS,RS,E〉
Require: PPNorm 6∈ N
MN′ = 〈∅, ∅, ∅, ∅, ∅, N ∪ {PPNorm}, E〉
LTSMN′ = {Γ, {nii}, .}
engine.create(LTSMn′ )
it = E.iterator
while it.hasNext
engine.insert(it.next)
engine.infer

MN .IS =MN .IS ∪MN′ .IS

Fig. 4. Diagram of the prospective promulgation of PPNorm

5 Related work

There is currently an important amount of work being done in context change manage-
ment, we have identified four main trends.

Governatori [10] proposes an extension of his logics for normative monitoring that
enables capturing the different temporal aspects of abrogation and annulment. The ex-
tension increases the expressive power of his logics allowing it to represent meta-norms
describing norm modifications. Meta-norms refer to a variety of possible time-lines
through which conclusions, rules and derivations can persist over time. In particular,
the extension defines temporal constraints that permit either allowing for or blocking
persistency with respect to specific time lines. The idea behind Governatori’s approach
is blocking of derivations across repositories (i.e., time-lines). When a modification is
applied to the normative context, it is split into two repositories: where the modification
occurs and where it does not. For instance, if a norm is abrogated, norm’s conclusions



Fig. 5. Diagram of the retrospective promulgation of RPNorm

Algorithm 2 Retrospective Promulgation of RPNorm
Require: RPNorm = 〈fA, fM , fD, fw, w〉
Require: MN = 〈N,S, IS, V S, FS,RS,E〉
Require: RPNorm 6∈ N
MN′ = 〈∅, ∅, ∅, ∅, ∅, N ∪ {RPNorm}, E〉
LTSMN′ = {Γ, {nii, niv, nif, nir}, .}
engine.create(LTSMn′ )
it = E.iterator
while it.hasNext
engine.insert(it.next)
engine.infer

MN .IS =MN .IS ∪MN′ .IS
MN .V S =MN .V S ∪MN′ .V S
MN .FS =MN .FS ∪MN′ .FS
MN .RS =MN .RS ∪MN′ .RS

Algorithm 3 Annulment of AnNorm
Require: AnNorm = 〈fA, fM , fD, fw, w〉
Require: MN = 〈N,S, IS, V S, FS,RS,E〉
Require: AnNorm ∈ N

for all ni ∈ IS
if ni.norm == AnNorm then IS = IS − ni

for all ni ∈ V S
if ni.norm == AnNorm then V S = V S − ni

for all ni ∈ FS
if ni.norm == AnNorm then FS = FS − ni

for all 〈ni, ni′〉 ∈ RS
if ni.norm == AnNorm then
RS = RS − 〈ni, ni′〉
notifyManager(reparationToRollback, ni′)

N = N −AnNorm



Fig. 6. Diagram of the annulment of ANNorm

Fig. 7. Diagram of the abrogation of ABNorm

Algorithm 4 Abrogation of AbNorm
Require: AbNorm = 〈fA, fM , fD, fw, w〉
Require: MN = 〈N,S, IS, V S, FS,RS,E〉
Require: AbNorm ∈ N

for all ni ∈ FS
if ni.norm == AbNorm then FS = FS − ni

for all 〈ni, ni′〉 ∈ RS
if ni.norm == AbNorm then RS = RS − 〈ni, ni′〉

{At this point, AbNorm becomes InTransition}
while AbNorm ∈ N
deleteNorm = true
for all ni ∈ IS

if ni.norm == AbNorm then deleteNorm = false
for all ni ∈ V S

if ni.norm == AbNorm then deleteNorm = false
if deleteNorm then

for all ni ∈ FS
if ni.norm == AbNorm then FS = FS − ni

for all 〈ni, ni′〉 ∈ RS
if ni.norm == AbNorm then RS = RS − 〈ni, ni′〉

N = N −AbNorm
sleep(sometime)



are derived only in the repositories where the rule has not been abrogated. When com-
pared to our approach, Governatori’s has the following drawbacks: 1) Norm annulment
presents a problem under this approach, conclusions of annulled norms might remain
on the repository after the norm has been annulled, and the solution proposed to re-
move the conclusion seems quite ad-hoc. 2) Governatori’s solution provides no explicit
support for retroactive promulgation. 3) Governatori’s approach is not able to update
the deontic part of the context (i.e., obligations and permissions), in fact Governatori
states that an explicit differentiation between norms, obligations and permissions has to
be made. 4) Governatori’s approach does not provide support for constitutive rules (i.e.,
counts-as).

Aucher’s proposal [5] is similar to ours, in the sense both are event-based, it does not
make distinctions between deontic statements and norms and has full support for con-
stitutive rules. However, neither context expansion or contraction provides support for
ex tunc operations. In fact, only one expansion and one contraction operations are intro-
duced on his approach; both operations seem to (implicitly) be of ex nunc type. Means
for ensuring that the normative context is consistent (after the expansion/contraction
operation) are included on Aucher’s approach, whereas we have not taken care of such
issues.

Campos’ approach [6] raises from the need of turning Electronic Institutions (EI
from now on) into Situated Electronic Institutions (SEI from now on). EI are static and
self-contained, agent actions are filtered so norm violations will never occur. SEI control
over external agents is not tight, therefore violations can occur, and SERI can adapt
themselves to changes in the dynamic existing social systems. Campos’ approach uses
a Bridge for communicating the SEI with the environment. The Bridge is similar to the
event-bus we use on our approach, but contains an API tightly coupled with the domain
the environment refers to, while our event-bus is domain independent. Besides this,
Campos’ approach does not support constitutive rules. However, Campos’ approach
allows for SEI to automatically adapt the normative context in order to perform better in
new environments. Re-configuration is achieved via transition functions (TF) that define
some basic updates on the normative context of the SEI. For instance, if violating the
norm N implies the payment of a fine, and the system detects the number of violations
of N is higher than the expected value, a TF can increase the value of the fine. Thus,
TF define very simple modifications to the normative context, without support for norm
promulgation, abrogation and annulment.

Tinnemeier et al. [14] propose a framework based on the syntax and the operational
semantics of generic programming constructs for norm modification. Using their frame-
work, programmers can modify norms and norm instances via rule-based constructs. On
the framework proposed by Tinnemeier et al. norms take the form of conditional obli-
gations and prohibitions. The rule-based constructs for changing norms come in two
flavours, norm instance change rules and norm scheme change rules (ic-rules and sc-
rules respectively). Ic-rules and sc-rules are of the form β ⇒ [ni0, ..., nin][ni

′
0, ..., ni

′
n]

with the intuitive reading that under circumstances β the set of norm instances or norm
schemes [ni0, ..., nin] are to be removed and the set of norm instances or norm schemes
[ni′0, ..., ni

′
n] are to be added. Regarding sc-rules, in some cases it is desirable that the

instantiated norm instances remain unaffected, whereas in other cases the associated



norm instances should be changed accordingly. For covering both cases Tinnemeier
et al. defines instance-preserving sc-rules that leave the instantiated norm-instances
unaltered and instance-revising sc-rules that revise the associated norm-instances ac-
cordingly. Tinnemeier et al.’s approach is similar to ours in the sense it provides the
syntax and operational semantics for performing norm-change at run-time. However,
Tinnemeier et al.’s approach subjects norm change to a pre-existing condition (i.e. β)
and does not support retroactive norm promulgation. What’s more, in Tinnemeier et
al.’s approach norm-change is restricted by a set of norm change rules specified by the
normative framework, whereas in our approach it is open.

6 Conclusions and future work

In this paper we have introduced a formal method for monitoring electronic normative
environments able to evolve through time as regulations change to adapt to new situ-
ations and behaviours. We have started by introducing the four operations supported
for updating normative contexts. The operations mix the expressivity of two previous
approaches [5] [10] effectively supporting both prospective and retroactive context ex-
pansion and contraction. Then we have proposed a formal extension of the base norma-
tive monitoring framework that will allow it to support normative context modifications
at run-time. That is, the normative environment can be expanded and contracted with-
out having to stop the monitoring process. Furthermore, all expansions and contractions
performed leave the normative context in a consistent state (e.g., if a norm was violated,
it will remain violated, unless an Ex Tunc contraction of the norm has been performed).
The extension is outlined by providing algorithms for supporting the four operations for
updating normative contexts.

The proposed framework has room for improvement. The interaction between the
support for runtime change of constitutive rules that is already available [1] and the
support we present in this paper has to be analysed. We also have to analyse the inter-
action between the extension proposed in this paper and another extension for scaling
the framework via distributed monitors [8] that has been developed previously. We also
plan using the formalisation presented in this paper to extend the available prototype
implementing support for runtime norm change. The implementation will effectively
allow for testing the framework on use-case scenarios, making an assessment on the
framework’s efficiency. We have already explored scenarios based on adaptable AIs for
video-games [4]. Finally, we plan to include measures [15] to ensure normative-context
modifications result in a consistent and non-redundant model.

Having support for dynamic normative contexts opens one main line of research,
adaptive normative contexts, able to insert or remove norms into the system depending
on how the system evolves with respect to its overall objectives. In order to go ahead
with this line of research we have to extend our framework with methods for detecting
when norm change is required from an institutional point of view [2]. Then, we should
provide means to institutional agents to perform this norm change [12].



References

1. H. Aldewereld, S. Álvarez-Napagao, F. Dignum, and J. Vázquez-Salceda. Making norms
concrete. Proc. of 9th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2010), (Toronto, Canada), Nov 2010.

2. H. Aldewereld, F. Dignum, V. Dignum, and L. Penserini. A formal specification for organi-
zational adaptation. In M. P. Gleizes and J. J. Gómez-Sanz, editors, AOSE, volume 6038 of
Lecture Notes in Computer Science, pages 18–31. Springer, 2009.

3. S. Álvarez-Napagao, H. Aldewereld, J. Vázquez-Salceda, and F. Dignum. Normative moni-
toring: semantics and implementation. In Proceedings of the 6th international conference on
Coordination, organizations, institutions, and norms in agent systems, COIN@AAMAS’10,
pages 321–336, Berlin, Heidelberg, 2011. Springer-Verlag.

4. S. Álvarez-Napagao, I. Gómez-Sebastià, J. Vázquez-Salceda, and F. Koch. conciens: Orga-
nizational awareness in real-time strategy games. In R. Alquézar, A. Moreno, and J. Aguilar-
Martin, editors, CCIA, volume 210 of Frontiers in Artificial Intelligence and Applications,
pages 69–78. IOS Press, 2010.

5. G. Aucher, D. Grossi, A. Herzig, and E. Lorini. Dynamic context logic and its application to
norm change. 2010.

6. J. Campos, M. López-Sánchez, J. A. Rodrı́guez-Aguilar, and M. Esteva. Formalising situ-
atedness and adaptation in electronic institutions. Coordination, Organizations, Institutions
and Norms in Agent Systems IV, Lecture Notes in Computer Science, Springer Berlin / Hei-
delberg, 5428:126–139, Jan 2009.

7. F. Dignum, J. Broersen, V. Dignum, and J.-J. C. Meyer. Meeting the deadline: Why, when
and how. In FAABS, pages 30–40, 2004.

8. I. Gómez-Sebastià, S. Álvarez-Napagao, and J. Vázquez-Salceda. A distributed norm com-
pliance model. In C. Fernández, H. Geffner, and F. Manyà, editors, CCIA, volume 232 of
Frontiers in Artificial Intelligence and Applications, pages 110–119. IOS Press, 2011.

9. G. Governatori and A. Rotolo. Changing legal systems: Abrogation and annulment part i:
Revision of defeasible theories. In DEON, pages 3–18, 2008.

10. G. Governatori and A. Rotolo. Changing legal systems: Abrogation and annulment. part ii:
Temporalised defeasible logic. In NORMAS, pages 112–127, 2008.

11. D. Grossi. Designing invisible handcuffs : Formal investigations in institutions and organi-
zations for multi-agent systems. 2007.

12. N. Oren, M. Luck, and S. Miles. A model of normative power. In AAMAS, pages 815–822,
2010.

13. N. Oren, S. Panagiotidi, J. Vázquez-Salceda, S. Modgil, M. Luck, and S. Miles. Towards a
formalisation of electronic contracting environments. In J. Hbner, E. Matson, O. Boissier,
and V. Dignum, editors, Coordination, Organizations, Institutions and Norms in Agent Sys-
tems IV, Lecture Notes in Computer Science, pages 156–171. Springer Berlin / Heidelberg,
2009.

14. N. A. M. Tinnemeier, M. Dastani, and J.-J. C. Meyer. Programming norm change. In 9th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010),
Toronto, Canada, May 10-14, 2010, Volume 1-3, pages 957–964. IFAAMAS, 2010.

15. W. W. Vasconcelos, M. J. Kollingbaum, and T. J. Norman. Normative conflict resolution in
multi-agent systems. Autonomous Agents and Multi-Agent Systems, 19(2):124–152, 2009.


