
OntoPlay – a flexible user-interface for
ontology-based systems?

Micha l Drozdowicz1, Maria Ganzha1, Marcin Paprzycki1, Pawe l Szmeja1,
Katarzyna Wasielewska1

Systems Research Institute Polish Academy of Science, Warsaw, Poland
(name.surname)@ibspan.waw.pl

Abstract. One of the important issues when designing systems that
are to use ontologies and semantic data processing is, how to build the
interface between the user and the system. The aim of this paper is to
discuss technical details of OntoPlay, a flexible interface for ontology-
based systems. OntoPlay allows creation of dynamical interfaces that
allow ontology-illiterate users to select a class or an individual on the
basis of the ontology of the system. Furthermore, the OntoPlay is ontol-
ogy agnostic and allows for ontology modification without the need for
modification of the code of the user-interface.

1 Introduction

In computer science, concepts of ontology and semantic data processing have
been around at least since the 1960’s. Furthermore, since the introduction of the
Semantic Web (2001; [10]) the research in this field has intensified, resulting,
among others, in promises of ontologies being a “silver bullet” for “vampires” of
heterogeneous data processing [3]. However, the uptake of ontology-based sys-
tems (and of the Semantic Web) is not matching promises found in seminal
publications (e.g. [3, 9]). Thus far, successful applications of semantic technolo-
gies exist only in specialized areas (e.g. in biology and medicine [6,11,13]). In our
opinion, one of the important causes of this situation is the fact that, much too
often, in order to use them, semantic systems require (sometimes quite deep)
knowledge about semantic technologies. Here, we introduce a web component
enabling users to work with OWL 2.01 demarcated data, without understanding
of ontologies and semantic data processing. In this way, semantic data processing
may be hidden from the user in the same way as HTML and XML-demarcated
content is invisible to users of standard browsers.

Let us make it clear that what we have in mind is not a semantic portal, un-
derstood as a system, where ontologically demarcated data is stored (or accessed
from the Web) while a semantic browser is used in the same way as a search
engine is used for HTML/XML demarcated data. We are interested in somewhat
different use cases. Let us, therefore, start our considerations by describing two

? AT2012, 15-16 October 2012, Dubrovnik, Croatia. Copyright held by the author(s).
1 http://www.w3.org/TR/owl2-overview

scenarios, a simple generic one, and a more complex, domain specific, one that
we will focus on in the remaining parts of this paper.

1.1 Use case scenarios

The first, simplistic, scenario illustrates the problem (and its proposed solution)
on the basis of a well-known sample ontology. Let us assume that a system based
on semantic data processing is to be created for a pizza-delivery outlet. This sys-
tem will use the standard Pizza Ontology2 to internally represent the data ([2]).
Obviously, this system has to have an interface for the client, who designs and
orders her favorite pizza. To do this, she should be able, for instance, to specify
the pizza base and select toppings from the available ones (defined in the on-
tology). From the user perspective, the result should be: great pizza. From the
technical perspective, the result should be an OWL individual of class Pizza,
which is a result of reaching an agreement / understanding between the user
who does not “speak ontologies” and the system that “speaks ontologies only.”

It is possible to develop the user interface by hiding the system behind a
“standard browser” and build an “HTML-based” front-end that could trans-
form HTML QueryStrings into SPARQL queries and execute them on the Jena-
wrapped database3. On the “way back,” the resulting individuals, would be
translated to be displayed within the browser (see [7,8], for an extended discus-
sion of this approach). In this case, one of the problems is: how to deal with
ontology changes (for example, how to update the interface when a new type of
pizza topping, e.g. potatoes in yogurt, has been added to the available ingredi-
ents?). Furthermore, what happens if the pizza outlet starts selling pizzas with
a cream-based sauce and a garlic-based sauce, in addition to the tomato-based
one, and a new property (in this case hasSauce) has to be added to the ontology?

The second use case involves contract negotiations and a more complex ontol-
ogy. Here, the OntoPlay front-end guides the users through the available (valid)
choices and makes it possible for them to interact with the system, even if they
do not know the structure and vocabulary of the underlying ontology. The sce-
nario comes from the “Agents in Grid” (AiG) project (see, [14] and referenced to
earlier work found there), where an agent-based system is developed to facilitate
resource management in the Grid. In the AiG system, all data is ontologically de-
marcated and information is semantically processed. The AiG ontology (see, [4])
is much larger and more complex than the pizza ontology, as it consists of ap-
proximately 150 classes, and about 150 properties, and is likely to be further
extended. One of the scenarios in the AiG project involves the user searching
for Grid resources to execute a computational job. To do so, the user must first
define criteria, based on which the Grid nodes of interest will be selected.

As can be seen, both use case scenarios lead to the same problems. How to
allow the user, who is not a specialist in semantic data processing, to: (i) interact
with a “semantic system,” (ii) formulate queries without knowledge of ontologies

2 http://www.co-ode.org/ontologies/pizza/pizza.owl
3 Jena – A Semantic Framework for Java. http://jena.sourceforge.net

and semantic query languages, and (iii) make the queries precise – matching the
ontology, rather than performing natural language → ontology translation. Fur-
thermore, it is very important to avoid building a specialized “static” front-end,
which would be difficult to adapt to the changes in the ontology.

To address these problems we have developed an ontology-driven interface,
that is generated incrementally and dynamically from the ontology by a special
plugin. In other words, an interface that allows the user to “browse” the ontol-
ogy used in the system, by providing information as to what is available, based
on earlier selections. The result of this process is selection of an individual or
a class used in semantic information processing inside the system (completely
hidden from the user). In what follows we describe how the needed plugin was
designed and implemented, and illustrate how it simplifies the use of semantic
technologies.

2 Related work

Let us start from an interesting general observation. The Google query for a “se-
mantic browser” leads to the page: http://semanticweb.org/wiki/Category:
Semantic_browser, where 12 Semantic Web Tools are listed. However, all of
them have a slightly different focus. For instance, they allow extraction of se-
mantic data from web pages, visual browsing of linked data, building ontologies,
visually representing ontologies and/or relations between concepts, etc. In other
words, they support the needs of well-trained semantic data processing profes-
sionals. Of course, it may be the case that, upon in-depth studies, it would be
possible to apply one of them to our use cases. However, an immediate support
for the needed functionalities is not obvious. Finally, observe that only 3 of these
12 projects have been updated within the last 2 years.

Now, let us look more in depth into other applicable tools and technologies.
They can be split into three groups: ontology workbenches, faceted browsers and
SPARQL query editors. What follows is a discussion on representative tools of
each of these categories, focusing on what we found missing for our application.

2.1 Ontology workbenches

Tools such as Protégé4 or TopBraid Composer5 allow creation and management
of ontologies. Similarly, WebProtege 6 offers similar capabilities using a web in-
terface. However, none of them can be used as an editor of OWL individuals or
class expressions pluggable into a web site – they are targeted at the task of de-
veloping ontologies (rather than their use, in the context of the above scenarios).

4 http://protege.stanford.edu
5 http://www.topquadrant.com/products/TB_Composer.html
6 http://webprotege-beta.stanford.edu

2.2 Faceted browsers

Faceted browsers let the user browse the data contained in an ontology by filter-
ing the information on subsequent properties or dimensions. Here, the options
the user has for defining the filters, are based on the previous user actions.
In this aspect, these tools could be used, in the above mentioned scenarios, as
search query editors, replacing the class expression editor feature of OntoPlay.
Examples of such tools are: Flamenco7, Information Workbench8, SlashFacet9,
jOWL10. However, in contrast to our solution, these tools enable the user only to
specify values of properties describing the root class. Therefore, it is not possible
to nest conditions and restrict properties of classes other than the root class.
Finally, the mSpace project11 allows creation of queries also on values of prop-
erties, thus enabling one level of nesting, but only using text queries; it is not
possible to use the same user-friendly interface as for the top level of properties.

2.3 Query editors

Finally, let us consider the SPARQL query editors, such as SPARQLer12 or the
tool provided by the OpenLink Virtuoso server13. They provide a text area into
which the user can input a SPARQL query that is executed on the server and
the result set is displayed. Some of these tools provide the user with a set of
sample queries, others (e.g. the Virtuoso) present also a visual representation of
the query, but they require that the user understands SPARQL and is able to
hand-craft valid queries.

In summary, there exists a large body of work concerning web-based user
interfaces to semantically demarcated information. However, we have not found
any that could serve as a lightweight front-end allowing creation of nested de-
scriptions of OWL individuals and class expressions in a manner usable by users
with limited experience with semantic technologies. Therefore, let us now de-
scribe our approach to developing the interface to semantic systems.

3 OntoPlay – front-end requirements

Let us now consider the software requirements of the front-end. Recall that we
assumed that users of the ontology-driven system can be “ontology-illiterate.”
Therefore, the interface should be straightforward and hide from them the very
fact that they use ontologies and semantic data processing. In other words, the
front-end should guide the user through defining the classes and/or individuals,

7 http://flamenco.berkeley.edu
8 http://iwb.fluidops.com
9 http://slashfacet.semanticweb.org

10 http://jowl.ontologyonline.org
11 http://www.mspace.fm
12 http://sparql.org/query.html
13 http://virtuoso.openlinksw.com

even at the expense of expressiveness. For instance, the system should allow the
user to select the possible pizza individual on the basis of pizzas available in
the pizza ontology. Similarly, in the AiG system, the front-end should support
configuration of needed software and hardware, on the basis of the information
found in the Grid Ontology (part of the AiG ontology, see [16]). Furthermore,
observe that the “world changes rapidly” and, therefore, the system should be
flexible and allow easy modification of the underlying ontologies. In other words,
modifications of the vocabulary should cause as few as possible updates in other
parts of the system. Ideally, the front end should be agnostic to the actual terms
of the ontology, and depend only on some generic properties of the ontology
structure. Let us now describe how such front-end can be built.

4 Condition builder

Considering the use cases and the requirements for the front-end component, the
key challenge was a user friendly mechanism for creating OWL class expressions
and individuals. This mechanism should allow selection of “properties of inter-
est” from these found in the ontology. For example, it should display available
pizzas (ontology classes, e.g. vegetarian pizzas), or allow their creation (selec-
tion of an instance, based on properties defined in the ontology, e.g. chicken and
anchovies pizza with a yogurt sauce).

To describe the way that the OntoPlay plugin works, we start with an
overview of its core – the Condition Builder. The process of establishing what the
user is seeking, consists of defining conditions on different properties of the root
class. The user can select the property she wishes to restrict, choose an appropri-
ate operator and type in, or select, the value for that property. These steps can
be applied to multiple properties of the same class. Let us look at some examples.

In the “pizza use case,” let us assume that the user would like to order a
thin crust pizza with mozzarella cheese and prawns. Specifically, we would like
to build a condition that the pizza should have thin and crispy base and two
toppings – mozzarella and prawns. Let us look at how this is specified in Onto-
Play, using the actual classes and properties from the ontology. The root class
is Pizza and the user would start by defining the value of the hasBase property
to be an instance of the ThinAndCrispyBase class. She does so by first selecting
the hasBase from the property list, then by selecting the “is described with”
operator, and choosing the ThinAndCrispyBase from the class list. Both the
property list and the class list are presented to her in a human-understandable
way (see Figure 1). Note that the property list contains only these properties
that have the Pizza class in their domain, and that the classes in the class list
originate from the range of the hasBase property. This would make it much eas-
ier for the user to navigate even more complex ontologies. Afterwards, the user
clicks the “and” link to add a new property restriction and completes analogous
steps for the hasTopping property with a value from the MozzarellaTopping

class (and once more for the same property, but from the PrawnsTopping class).
These steps are available from a set of menus, while the “possibilities” that can

be selected originate from the ontology itself. If required, the user can also link
the conditions using the “or” operator.

Fig. 1. Example of a definition of an individual

An example of how the “ontological actions” are displayed to the user has
been shown in Figure 1. Here, we present how the desired effect can be achieved
by clicking on appropriate elements of the display. These elements are generated
from the ontology through the selection process. The resulting OWL definition
of the new pizza individual is shown in the following listing.

I nd i v i dua l : NewPizza
Types : Pizza
Facts :

hasTopping : MozzarellaTopping ,
hasTopping : PrawnsTopping ,
hasBase : ThinAndCrispyBase

An important aspect of the condition builder is the possibility to further
specify values of properties using anonymous nested individuals. Let us assume
that the user would like to build a pizza with a mild meat topping, without spec-
ifying the exact topping class (he is not sure what he would like and what are
the possibilities, so he is looking for suggestions). To do so, he would select (by
clicking on the appropriate display elements) the hasTopping class, choose the
MeatTopping class and from the nested property list, select the hasSpiciness

property and restrict it to the Mild class. This condition is presented in Figure 2.
For the Agents in Grid use case, let us define requirements for a Grid re-

source, assuming that the job requires an Intel 64 processor with the first level
cache greater than 3 MB. In this case, the user has to build a class representing

Fig. 2. Example of a nested individual

all individuals that satisfy these conditions. They can be defined in the appli-
cation as presented in Figure 3. The user first specifies the need for a worker
node, by setting the value of the hasWN to an instance of the WorkerNode class.
Subsequently, she selects the hasArchitecture property equal to the individ-
ual Intel64. Next, the worker node should have the value of the hasCPU class
constrained to an individual of the CPU class. Finally, she would restrict the
property hasL1Cache of the CPU class to “greater than” 3000 KB. The result of
such specification, translated into OWL, is shown in the following listing.

Class : TeamCondition
EquivalentTo : ComputingElement that hasWN some

(WorkerNode that hasArch i t ec ture I n t e l 6 4 and hasCPU some
(CPU that hasL1Cache some i n t e g e r [> 3000]))

Fig. 3. Example of a class constraint

Observe a subtle difference between defining individual and class expression.
When defining the individual, for the datatype properties (e.g. the hasClock-

Speed), the only operator would be “is equal to.” However, when defining a class
expression operators such as “is greater than” or “is less than” can be used. Ob-
viously, the available operators depend on the range of the property (e.g. for
a string property the “greater than” operator would not be applicable). Note
also that, shown in the example, the condition builder enables for a number of
nesting levels of conditions, while being able to chain the conditions on any level,
allowing for arbitrarily complex specifications.

Fig. 4. List of classes before changing ontology

Another important feature of the OntoPlay, is that the only fixed dependence
of a term from the ontology is the root class used in the condition builder.
The remaining ontological data is inferred automatically and is not affected by
changes in the ontology. To demonstrate this, let us show how the interface of the
“pizza example” is changed after adding a new topping class. Before the change,
the only available classes were DeepPanBase and ThinAndCrispyBase. Figure 4
shows these as options for the constraint on the hasBase property. After adding
the GreenPestoBase to the ontology, and restarting the application, the user will
be immediately able to select also the new class (see Figure 5). The change did
not require any changes in the application code or configuration of the front-end.

Fig. 5. List of classes after changing ontology

5 Front-end architecture

Let us now look into details of the architecture of the plugin, starting from the
front-end. The user-accessible part of the system has been split into three com-
ponents. Two of them are generic and always present, while the third is required
only if the OntoPlay should be integrated with the JADE 14 agent framework
(see, [4, 15]).

1. Client – provides HTML views and JavaScript logic for dynamic interaction.
2. Server – a web application acting as a controller and responsible for parsing

and generating ontological data.
3. Gateway – an optional proxy subsystem, responsible for communication

between the web application and the JADE agents.

5.1 Client

Thus far we have approached defining an OWL individual and/or a class from
the user’s perspective. Now, let us describe how this is achieved. First, let us
recall that semantic processing is performed by the server while the client only
receives what it needs. For example, the list of properties of a Pizza is sent
from the server only when a user selects the Pizza class. Similarly, the list of
individuals that can be set as a value of an object property is not retrieved until
the user selects the property and an operator. For instance, in the AiG use case,
if the user wants to specify the vendor of the CPU, the list of individuals of
the CPUVendor class is sent to the Client component when the user selected the
hasVendor property and the “is equal to individual” operator. More generally,
actions undertaken by the user in the Client component generate a request to
the Server component, the result of which is extending the user interface with
elements that can be used to continue the specification process.

Every definition of a class expression or of an individual starts with a condi-
tion box bound to a class from the ontology. The condition box allows the user
to choose a property that she wishes to restrict. The user can also add a new
condition box tied to the same class by pressing the “and” link. When the user
chooses the property, an appropriate property box is retrieved from the server.
By default, the property box contains only a list of operators applicable to the
current context (class expression, or individual) and the property type. Select-
ing an operator loads a property value box, which can contain different elements
depending on the type of the property and of the operator. For simple datatype
properties the user can type in the value. For object properties, the user can
either select an individual (as a value of the property), or choose to describe the
value as an anonymous, nested subclass or individual. Picking the latter option
results in adding a new condition box, same as the root one, with the exception
that the user needs to choose the class the condition is bound to. This is useful,
for example, because it lets the user restrict the value of some property (e.g.

14 http://jade.tilab.com/

hasMemory) to a subclass of the class defined in the range of the property (e.g.
PhysicalMemory instead of Memory as in the range of the hasMemory property).

To implement the Client component, and to provide the user with a guided
point and click interface, more than template-generated HTML is required. We
decided to employ JavaScript and the jQuery library 15. Specifically, the initial
rendering of the client-side HTML and the JavaScript code contains only the
condition box and a drop-down list with class properties. When the user makes
a selection, an XMLHttpRequest is executed, to download a fragment of code
that, in most cases, represents the operator list. As a result, the user interface
is expanded. In the same way, when the user selects an operator, the code frag-
ment defining the property value input is retrieved. After the user confirms her
description by clicking the Submit button, the values from the user interface are
parsed into an internal condition representation. This is accomplished by using
the queryBuilder.js script that traverses the elements containing the selected
classes, properties and values, and generates a class condition structure contain-
ing the class URI and, possibly, a list of property conditions. Each property con-
dition might, in turn, contain a class expression, thus forming a tree. The condi-
tion object is then serialized into the JSON format, sent to the server, deserialized,
and converted to an OWL ontology fragment. The following listing shows the
result for the Pizza example from Section 1.1 (namespaces removed for brevity).

{ ” c l a s sU r i ” : ”Pizza ” ,
” propertyCondit ions ” : [

{ ” propertyUr i ” : ”hasBase” ,
” operator ” : ” descr ibedWith ” ,
” c l a s sCons t ra in tVa lue ” :{

” c l a s sU r i ” : ”ThinAndCrispyBase” ,
” propertyCondit ions ” : [] } } ,

{ ” propertyUr i ” : ”hasTopping” ,
” operator ” : ” descr ibedWith ” ,
” c l a s sCons t ra in tVa lue ” :{

” c l a s sU r i ” : ”Mozzarel laTopping ” ,
” propertyCondit ions ” : [] } } ,

{ ” propertyUr i ” : ”hasTopping” ,
” operator ” : ” descr ibedWith ” ,
” c l a s sCons t ra in tVa lue ” :{

” c l a s sU r i ” : ”PrawnsTopping” ,
” propertyCondit ions ” : [] } }] }

5.2 Server

In the server, the condition builder logic is handled by a controller class Con-

straints, and two sets of classes serving different parts of the user interface:

– Subclasses of the PropertyConditionRenderer class – responsible for ren-
dering the property boxes for different property types

– Implementations of the PropertyValueRenderer interface – rendering the
property value elements depending on selected operator

Having discussed bidirectional interactions between the Client and the Server
components, let us look at interactions between the Server component and the

15 http://www.jquery.com

ontology (provisioning of information from the ontology). The entry point to
this subsystem is the OntologyReader class responsible of retrieving:

– information about an OWL class, including properties that can have it in
their domain,

– OWL classes in the range of a given property,
– OWL individuals of classes in the range of a given property.

The OntologyReader uses a simplified, internal representation of the onto-
logical information. This means that while the structure does not provide the
flexibility of the OWL itself, it greatly simplifies the remaining parts of the
plugin. The elements of the language that are modeled in this way are:

– OwlElement – base interface acting as a base for all other classes, defining
getters for the URI and the local name.

– OntoClass – represents an OWL class and contains a list of properties that
can describe it.

– OwlIndividual – view of the OWL individual with properties describing it.
– OwlDatatypeProperty – base class for classes representing different datatype

properties, such as IntegerProperty, StringProperty, etc.
– OwlObjectProperty – class representing an object property.

It is now evident that, indeed, we use a very simplistic view of the OWL
language, but it proved to be specific enough to satisfy the requirements of the
employed user interface model. The current implementation supports the most
common XSD data types, but the system was designed to be easily extendable.
To achieve this, specific property factories (e.g. StringPropertyFactory) are
configured on application start. Each factory contains logic for determining if it
is appropriate for a given property from the ontology, and can create an instance
of the matching property class (implementing the Chain of Responsibility design
pattern [5]).

The last major part within the Server component is the OntologyGenerator

class. Its responsibility is generating the RDF/XML fragments corresponding
to the conditions defined in the Client component. As elsewhere, the logic of
generating the ontology fragments has been split into classes depending on the
condition type. The main classes of the component are:

– OntologyGenerator – the facade of the component, responsible also for ini-
tializing and managing instances of the OWL API 16 classes – OWLData-

Factory and OWLOntologyManager,
– IndividualGenerator – responsible for generating OWL individuals,
– ClassRestrictionGenerator – responsible for generating OWL class ex-

pressions,
– RestrictionFactory and its subclasses, such as ClassValueRestriction-

Factory, IndividualValueRestrictionFactory or EqualToRestriction-
Factory – implements the logic of creating the actual property restrictions

16 http://owlapi.sourceforge.net/

on individuals and class expressions. Here, each subclass corresponds to a
particular type of a property and, as in other cases of the Server architecture,
is centrally registered in the PropertyTypeConfiguration class.

The design of OntoPlay is meant to enable easy extension to include new
property types (such as, for example, the XSD xsd:negativeInteger simple
type). Such extensions should require as little modification of the existing code-
base as possible, thus adhering to the Open Closed Principle [12]. For example,
implementing such new datatype property, would involve only implementation
of a new subclass of the OwlDatatypeProperty and the OwlPropertyFactory

classes (optionally, a new implementation of the PropertyValueRenderer), and
their registration (by modifying the PropertyTypeConfiguration class). No
additional changes in the existing code of the application would be needed.

6 AiG Gateway

Thus far, we have deal with the Client and the Server components and their in-
teractions. For many semantic applications this would be sufficient (e.g. for the
“pizza parlor” from the first use case), however in the AiG we needed the web
controllers to communicate with the JADE agents. In the AiG system, JADE
agents are involved in semantic SLA negotiations [14]. Simple as it may seem,
passing semantic information from the user interface to an agent system posed
some interesting challenges; caused by the differences between the properties of
agent communication and the request-response nature of the Web.

Sending messages to agents is rather simple. It is sufficient that the web
application creates an ACL message and sends it to an appropriate agent using
classes provided by the JADE framework. Specifically, these include the Gateway
class, which can be used statically by controllers or servlets, and which is a proxy
to a GatewayAgent, which is created for the web application and “forwards” the
messages send to it by the Gateway.

On the other hand, tracking responses to messages sent from the web appli-
cation, requires an extension to the existing mechanisms. Controller actions are
stateless by nature, and thus it is not possible to use an event based mechanism
for notifying the user about new messages received by the GatewayAgent (for an
in-depth discussion, see [7]). Instead, we have implemented a solution utilizing a
message queue for storing replies to messages sent from the server. Specifically, all
messages sent through the AiG Gateway are grouped into conversations, started
separately when the user initiates a particular scenario that spans multiple mes-
sages to be exchanged between the user and the agents. The GatewayAgent keeps
track of messages in conversations and through the Gateway proxy enables re-
trieving replies in a particular conversation. In response to the client initiated
(AJAX) request for new messages from a given conversation, the web controller
retrieves the data from the Gateway and sends it back to the client.

For instance, if we assume that our pizza system involves an agent based ne-
gotiation mechanism (e.g. for finding the cheapest restaurant), we could imagine

that specifying the pizza the user wishes to order would initiate a new conversa-
tion with multiple agents. The Gateway would then gather all responses received
from the restaurant agents, and the front-end would present them to the user.

7 Technologies used

The front-end application was developed on top of the Play! Framework17 – a
lightweight web framework with straightforward deployment and a rich plugin
ecosystem. This framework also serves as the technological stack for the Server
component of the ontology builder user interface, which comprises the web con-
trollers as well as modules for reading ontological metadata and generating the
OWL data from the descriptions provided by the user. The browser-side subsys-
tem is implemented as a dynamic JavaScript application using jQuery – one of
the most popular general purpose JavaScript libraries.

To interact with the OWL ontologies, the OWL API library is used as the
base of the OntologyGenerator, enabling creation of ontology snippets. Initial
implementation of the OntologyReader was built on the Jena framework, and
used the Pellet18 reasoner (the only reasoner directly compatible with Jena).
Unfortunately, recently, when testing the solution with a wider set of ontologies
we have found that there are situations where analogous operations of different
reasoners bring inconsistent results. One of the examples involved sub-properties.
Let us consider the Pizza class that has the property hasIngredient and its
sub-property hasBase. The range of hasIngredient is the Food class, while
the range of hasBase is PizzaBase (a subclass of Food). When asked for the
range of hasBase property, Pellet, returns not only the PizzaBase class, but
also Food. We have verified that using other reasoners, such as Fact++ and Her-
miT, an individual that is described by having the value of the hasBase equal
to an individual of class Food but not PizzaBase (such as IceCream) is con-
sidered inconsistent with the ontology. Following this case, we have provided an
alternative OntologyReader implementation, using the OWL API library and the
HermiT reasoner. This implementation didn’t exhibit such behavior.

Another difference between the Pellet and HermiT reasoners is their inter-
pretation of the domain of a property, when the domain is defined as a union
of classes. When Pellet is asked to list classes from a range of such property, it
returns a list of all the conjuncts of the range expression. In contrast, HermiT
provides the closest class that was a super-class of all conjuncts in the expres-
sion. For example, looking at a property – hasMemory – with the range of Phys-
icalMemory OR VirtualMemory, both classes being subclasses of the Memory

class, retrieving the range of the property using Pellet would give us a set of
PhysicalMemory and VirtualMemory, while the HermiT reasoner would instead
only return the Memory class. This happens because HermiT assumes that the
domain must be complete and does not return parts of the domain. In this case, a
result of asking the reasoner for domains could not be PhysicalMemory, because

17 http://www.playframework.org
18 http://clarkparsia.com/pellet

the value of the property might in fact be of type VirtualMemory. The result of
Memory is correct, because, regardless if the value is of type VirtualMemory or
PhysicalMemory it is always of type Memory.

These cases became show that current implementation of the semantic rea-
soners differ in their semantics. These differences originate from differing inter-
pretations / approaches to / vision of ontological reasoning. Since this is not the
right venue to discuss these differences, let us only observe that issues like this
make it impossible to develop reasoner-agnostic applications (i.e. it is impossible
to simply replace one reasoner with another, without code modification). In-
stead, one has to consider the particular behavior of the specific reasoner while
implementing functionality similar to that in the OntologyReader interface. We
hope that, in the near future, this problem will be addressed in a way that will
lead to a common semantics of semantic reasoning.

The remaining, auxiliary, part of the application – the JADE Gateway com-
ponent is created as a standalone Java library, exposing an API for initiating
agent conversations, sending messages and retrieving contents of a specific con-
versation. After some additional testing, the JADE Gateway and the ontology
builder user interface are going to be released as Play! modules, to be easily
integrated into other Play! applications. Furthermore, the JADE Gateway will
be released as a JADE add-on.

It is worth noting that the AJAX functionality for listening on agent’s re-
sponses has been developed as a jQuery plugin, enabling its easy embedding into
any HTML page. Currently, the plugin is implemented using a simple polling
mechanism controlled on the browser-side with a request sent to the Server
component every specific number of seconds. In the future versions of the JADE
Gateway this mechanism will be replaced with a less server-consuming imple-
mentation based on the Comet / Long Polling mechanism [1].

8 Concluding remarks

One of key issues of semantic systems (including systems involving various forms
of semantic negotiations) is their usability among ontology-illiterate users. The
aim of this paper was to present an in-depth discussion of the development of
a front-end application for semantic (and agent-semantic) systems that solves
this problem. The developed OntoPlay plugin allows creation of ontology-driven
user interfaces for any semantic system. These interfaces are generated dynam-
ically on the basis of user selections, from entities featured in the ontology.
Furthermore, OntoPlay is agnostic to the changes in the underlying ontology,
thus simplifying semantic system adaptation (i.e. changes in the ontology auto-
matically materialize in the interface). Finally, OntoPlay can be used to connect
a web-based front-end application to a JADE -based agent system (e.g. facili-
tating autonomous agent negotiations). Code of OntoPlay is available as part
of the AiG project at http: // gridagents. svn. sourceforge. net/ viewvc/

gridagents/ trunk/ AiG/ QueryBuilder/ and we welcome comments and sug-
gestions for its further development.

References

1. Comet and Reverse Ajax: The next-generation Ajax 2.0. http://dl.acm.org/

citation.cfm?id=1453096.
2. Protègè documentation: ontology development 101. http://protege.stanford.

edu/publications/ontology_development/ontology101.html.
3. Fensel Dieter. Ontologies: A Silver Bullet for Knowledge Management and Elec-

tronic Commerce. Springer-Verlag, New York, 2003.
4. Micha l Drozdowicz, Katarzyna Wasielewska, Maria Ganzha, Marcin Paprzycki,

Naoual Attaui, Ivan Lirkov, Richard Olejnik, Dana Petcu, and Costin Badica.
Trends in parallel, distributed, grid and cloud computing for engineering. chapter
Ontology for Contract Negotiations in Agent-based Grid Resource Management
System. Saxe-Coburg Publications, Stirlingshire, UK, 2011.

5. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Addison-Wesley, Boston, MA, January 1995.

6. Yong Gao, June Kinoshita, Elizabeth Wu, Eric Miller, Ryan Lee, Andy Seaborne,
Steve Cayzer, and Tim Clark. Swan: A distributed knowledge infrastructure for
alzheimer disease research. Web Semant., 4(3):222–228, September 2006.

7. Maciej Gawinecki, Minor Gordon, Pawe l Kaczmarek, and Marcin Paprzycki. The
problem of agent-client communication on the internet. In Scalable Computing:
Practice and Experience, volume 6(1), pages 111–123, 2005.

8. Minor Gordon, Marcin Paprzycki, and Violetta Galant. Agent-client interaction
in a Web-based E-commerce system. In Dan Grigoras, editor, Proceedings of the
International Symposium on Parallel and Distributed Computing, pages 1–10, Ias,i,
Romania, 2002. University of Ias,i Press.

9. James Hendler. Agents and the semantic web. IEEE Intelligent Systems, 16(2):30–
37.

10. Tim Berners Lee, James Hendler, and Ora Lassila. The semantic web. Scientific
American Magazine, 2001.

11. Phillip Lord, Sean Bechhofer, Mark D. Wilkinson, Gary Schiltz, Damian Gessler,
Duncan Hull, Carole Goble, , Lincoln Stein, Damian Gessler, and Duncan Hull. Ap-
plying semantic web services to bioinformatics experiences gained, lessons learnt,
2004.

12. Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, Inc., Up-
per Saddle River, NJ, USA, 1st edition, 1988.

13. Christian J. Stoeckert and Helen Parkinson. The MGED ontology: A framework for
describing functional genomics experiments. Comprative and Functional Genomics,
4(1):127–132, 2003.

14. Katarzyna Wasielewska, Micha l Drozdowicz, Maria Ganzha, Marcin Paprzycki,
Naoual Attaui, Dana Petcu, Costin Badica, Richard Olejnik, and Ivan Lirkov.
Trends in Parallel, Distributed, Grid and Cloud Computing for engineering. chap-
ter Negotiations in an Agent-based Grid Resource Brokering Systems. Saxe-Coburg
Publications, Stirlingshire, UK, 2011.

15. Katarzyna Wasielewska, Micha l Drozdowicz, Pawe l Szmeja, Maria Ganzha, Marcin
Paprzycki, Ivan Lirkov, Dana Petcu, and Costin Badica. Agents in grid system—
design and implementation. In Large Scale Scientific Computing, volume 7116 of
LNCS, pages 654–661. Springer Germany, 2012.

16. Wei Xing, Marios D. Dikaiakos, Rizos Sakellariou, Salvatore Orlando, and
Domenico Laforenza. Design and Development of a Core Grid Ontology. In Proc.
of the CoreGRID Workshop: Integrated research in Grid Computing, pages 21–31,
2005.

