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ABSTRACT
In this paper, we describe the ICSI/Berkeley video location
estimation system presented at the MediaEval 2012 Placing
Task. We describe the graphical model based framework
that poses the geo-tagging problem as inference over the
graph. Our algorithm jointly estimates the geo-locations of
all the test videos, which helps obtain performance improve-
ments over existing algorithms in the literature that process
each query video independently. Our modeling provides a
generic theoretical framework that can be used to incorpo-
rate any other available textual, visual or audio features.

1. INTRODUCTION
The Placing Task [5] is to automatically estimate the geo-

location of each query video using any or all of metadata,
visual/audio content, and/or social information. For a de-
tailed explanation of the task, please refer to the Placing
Task overview paper [5].

2. SYSTEM DESCRIPTION
2.1 Baseline approach using textual metadata

From all available textual metadata, we utilized the user-
annotated tags, and title. We ignored the descriptions as
their usage degraded our performance. One reason of this
could be the noiseness of words used in description. This
also applies to the graphical model based approach. The
intuition for using tags to find the geolocation of a video is
the following: If the spatial distribution of a tag based on
the anchors in the development data set is concentrated in
a very small area, the tag is likely a toponym. If the spatial
variance of the distribution is high, the tag is likely some-
thing else but a toponym. For a detailed description of our
algorithm, see [3]. This approach was used as a baseline to
evaluate the performance of the graphical model based algo-
rithm. We used Yahoo! Maps Web Services [1] in permitted
runs to obtain the geo-location from the uploader’s locality
information.

2.2 Graphical model based approach
Graphical models provide an efficient representation of

dependencies amongst different random variables and have
been extensively studied in the statistical learning theory
community [6]. The random variables in our setup are the
geo-locations of the query videos that need to be estimated.
We treat the textual tags as observed random variables that
are probabilistically related to the geo-location of that video.
The goal is to obtain the best estimate of the unobserved
random variables (locations of the query videos) given all
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the observed variables. We use graphical models to charac-
terize the dependencies amongst the different random vari-
ables and use efficient message-passing algorithms to obtain
the desired estimates.

An undirected graphical model or a Markov Random Field
(MRF) G(V,E) consists of a vertex set V and an edge set E.
The vertices (nodes) of the graph represent random variables
{xv}v∈V and the edges capture the conditional independen-
cies amongst the random variables through graph separation
[6]. The joint probability distribution for a N -node pairwise
MRF can be written as follows [6],

p(x1, ...., xN ) =
∏
i∈V

ψ(xi)
∏

(i,j)∈E

ψ(xi, xj). (1)

ψ(.)’s are known as potential functions that depend on the
probability distribution of the random variables.

We use the sum-product algorithm to find approximate
maginals. In the sum-product algorithm, messages are passed
between nodes that take the following form:

mj→i(xi) ∝
∫
xj

ψ(xi, xj)ψ(xj)
∏

k∈N(j)/i

mk→j(xj)dxj ,

(2)

In order to obtain a graphical model representation for
our problem setup, we need to model the joint distribution
of the query video locations given the observed data. We
use a simplistic conditional dependency model for the ran-
dom variables as described below. Each node in our graph-
ical model corresponds to a query video and the associated
random variable is the geo-location of that query video. In-
tuitively, if two images are nearby, then they should be con-
nected by an edge since their locations are highly correlated.
The problem is that we do not know the geo-locations a pri-
ori. However, given that textual tags are strongly correlated
to the geo-locations, a common textual tag between two im-
ages is a good indication of the proximity of geo-locations.
Hence, we will build the graphical model by having an edge
between two nodes if and only if the two query videos have
at least one common textual tag. Note that this textual
tag need not appear in the training set. The model could be
further improved using the audio and visual features as well.

Let xi be the geo-location of the ith video and {tki }ni
k=1 be

the set of ni tags associated with this video. Based on our
model, under a pairwise MRF assumption, the joint proba-
bility distribution factorizes as follows:

p(x1, ...., xN |{tk1}, ....., {tkN}) ∝
∏
i∈V

ψ(xi|{tki })∏
(i,j)∈E

ψ(xi, xj |{tki }, {tkj }).

Given the potential functions, one could use the sum-product



iterates (2), to estimate p(xi|{tk1}, ....., {tkN}).

We now need to model the node and edge potential func-
tions. Given the training data, we fit a Gaussian Mixture
Model (GMM) for the distribution of the location given a
particular tag t, i.e., p(x|t). The intuition is that tags usually
correspond to one or more specific locations and the distri-
bution is multi-modal (e.g., the tag “washington” can refer
to the State of Washington or Washinton D.C among other
locations). To estimate the parameters of the GMM, we
use an algorithm based on Expectation Maximization that
adaptively chooses the number of components for different
tags using a likelihood criterion. Although distribution of
the locations given multiple tags is not independent, for this
experiment, we start with a naive assumption that different
tags are conditionally independent. We take the node po-
tential as follows, ψ(xi) ∝

∏ni
k=1 p(xi|t

k
i ). For the potential

functions, ψ(xi, xj |{tki }, {tkj }), we use a very simple model.
Intuitively, if the common tag between two query videos i
and j occurs too frequently either in the test set or the train-
ing set, that tag is most likely a common word like“video”or
“photo” which does not really encode any information about
the geographic closeness of the two videos. In this case,
we assume that the edge potential is zero (drop edge (i, j))
whenever the number of occurrences of the tag is above a
threshold. When the occurrence of the common tag is less
frequent, then it is most likely that the geographic locations
are very close to each other and we model the potential func-
tion as an indicator function,

ψ(xi, xj |{tki }, {tkj }) =

{
1 if xi = xj ,
0 otherwise. (3)

This model is a hard-threshold model and we can clearly
use a soft-version wherein the weights on the edges for the
potential functions are appropriately chosen.

Further, we propose the following simplification, which
leads to analytically tractable expressions for the potential
functions and message updates. Given that for many of the
tags, the GMM will have one strong mixture component,
the distribution ψ(xi), can be approximated by a Gaussian
distribution with the mean (µ̃i) and variance (σ̃2

i ) given by,

(µ̃i, σ̃
2
i ) =


ni∑
k=1

1

σk2i
µki

ni∑
k=1

1

σk2i

,
1

ni∑
k=1

1

σk2i

 , (4)

where µki and σk2i are the mean and variance of the mix-
ture component with the largest weight of the distribution
p(xi|tki ). Under this assumption, the iterations of the sum-
product algorithm take on the following simplistic form.
Node i at iteration m, updates its location estimate (µ̂i(m))
and variance (σ̂2

i (m)) as follows,

µ̂i(m) =

1
σ̃2
i
µ̃i +

∑
j∈N(i)

1

σ̂2
j (m− 1)

µ̂j(m− 1)

1
σ̃2
i

+
∑

j∈N(i)

1

σ̂2
j (m− 1)

, (5)

σ̂2
i (m) =

1

1
σ̃2
i

+
∑

j∈N(i)

1

σ̂2
j (m− 1)

. (6)

The location estimate for the ith query video x̂i is taken to
be µ̂i(m) at the end of m iterations, or when the algorithm
has converged. The variance σ̂2

i (m) provides a confidence
metric on the location estimate.

2.3 Utilizing visual cues
We ran a K-nearest neighbor search using extracted Gist

feature on the reference data set to find the video frame or a
photo that is most similar. Detailed description is in ICSI’s
2011 system working note [3].

3. RESULTS AND DISCUSSION

1km 10km 100km 1000km 10000km

run1 17.4 23.8 31.6 46.7 88.9
run2 16.3 31.5 47.0 58.5 85.6
run3 17.6 24.9 33.4 47.1 89.2
run4 0 0.1 0.6 10.0 75.6

Table 1: Percentage of test videos (out of 4182
videos) correctly estimated under distances in the
top row from the groundtruth location. run1 -
baseline approach without using gazetteeer, run2
- graphical model based approach with gazetteer,
run3 - baseline approach with gazetteer, run4 - k-
NN with gist visual feature

Table 1 shows our results of the four submitted runs. Each
column shows the percentages test videos that were placed
within 1km, 10km, 100km, 1000km, and 10000m from the
ground truth location. Although the graphical model ap-
proach with gazetteer (run2) performed slightly worse than
the baseline approach in locating videos within 1km from
the true location, it outperformed baseline approaches (run1
and run3) in other range by a large margin.

In the real world, only 5 percent of Internet videos are
geo-tagged [4], and hence the training set is much smaller
than the test set, contrary to what is assumed otherwise in
the literature. Also, the training data is biased toward cer-
tain regions such as those with dense population or touristy
spots. The analysis of a data-driven algorithm in different
regions with varying data densities show that grids with a
denser population of training data perform significantly bet-
ter than those with lesser training data [2]. Thus, an estima-
tion model is needed to handle the sparsity. The graphical
model approach handles the sparsity in the training data
by intelligently processing the test videos in such a way that
each additional test (query) video not only is placed but also
improves the quality of the existing training data.
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