
Interoperability of Software Engineering
Metamodel: Lessons Learned

Muhammad Atif Qureshi

School of Software, Faculty of Engineering and IT, University of Technology, Sydney,
Australia

Abstract. Use of models and modelling languages in software engineer-
ing is very common nowadays. To formalize these modelling languages,
many metamodels have been proposed in the software engineering lit-
erature as well as by standard organizations. Interoperability of these
metamodels has emerged as a key concern for their practical usage. We
have developed a framework for facilitating metamodel interoperability
based on schema matching and ontology matching techniques. In this
paper we discuss not the techniques used but rather we focus on the
lessons we have learned by applying the framework on several pairs of
metamodels for finding similarities between them. We have highlighted
some areas where these techniques can be beneficial and also pointed out
some limitations of these techniques in this domain.

1 Problem Description and Motivation

Many metamodels have been proposed in different domains of software engineer-
ing such as process [1], product [2], metrics [3] and programming [4]. Most of
these metamodels have been developed independently of each other with shared
concepts being only accidental. These metamodels are evolving continuously and
many versions of these metamodels have been introduced over the years. This
evolution has extended not only the scope but their size [5] and complexity
as well. The need to formulate a way in which these metamodels can be used
in an interoperable fashion has emerged as a key issue in the practical usage
of these metamodels. There are several benefits of such interoperability includ-
ing: reduced joint complexity, ease of understanding and use for newcomers,
portability of models across modelling tools and better communication between
researchers [6]. This overall need is also emphasized by the software engineering
community [7] and further endorsed by the rise of industry interest as well as
various conferences and workshops on the topic [8]. To have interoperability be-
tween any pair of metamodels, similarities between the elements of metamodels
need to be identified. This is undertaken by a matching technique as yet lit-
tle utilized for metamodels although widely used in ontology engineering. Close
similarity between metamodels and ontologies [7],[9],[10] suggests that it should
be efficacious to adopt ontology matching techniques for facilitating meta-model
interoperability with a first step of linguistic matching. Indeed, ontologies are
also helpful in reducing semantic ambiguity [9], helping not only to improve the



semantics of a metamodel [10] but also providing a potential way in which these
meta-models can be bridged with each other to be interoperable. A framework
[11] for facilitating interoperability of metamodels has been developed based on
the ontology merging and schema matching techniques. The frame-work was ap-
plied to several pairs of metamodels including OSM [12], BPMN [13], SPEM
[1] and some multi agent systems (MAS) metamodels. In this paper we discuss
the lessons learned by applying the framework on these metamodels. We have
highlighted the areas of metamodel interoperability that can be assisted by using
these techniques as well as discussing some of their limitations. In Section 2 we
briefly present our framework for metamodel interoperability. Section 3 presents
the lessons learned during the application of this framework to several meta-
models, followed by a conclusion and summary of likely future work (Section
4).

2 Proposed Solution

Fig. 1. Metamodel Interoperability Framework [11]

The framework for metamodel interoperability is depicted in Fig. 1 as a
BPMN diagram. The framework has two major activities: Linguistic Analysis
and Ontological Analysis. These are further divided into subactivities, as rep-
resented in the digram. While trying to make metamodels interoperable using
this framework, we assume that there exists some commonality between a pair
of metamodels. It is necessary to identify the potential common concepts (con-
ceptual elements) that can be shared between two metamodels. The detailed
discussion on this framework is not our focus in this paper but can be found
in [11]. The overall similarity of any pair of elements is based on the three dif-
ferent types of similarities among them: syntactic, semantic and structural. In
applying the framework to a variety of metamodels, several thousand different



permutations were computed for the comparison of the metamodel elements. The
following sections elaborate our experience of using this framework and discuss
the lessons we have learned during the experiment.

3 Lessons Learned: Limitations and Opportunities

3.1 Syntactic Matching

Opportunities: Syntactic matching between a pair of metamodels is based on a
comparison between the names of the conceptual elements within those meta-
models. Different techniques in the literature are available that can be used
for such comparison. One such technique is known as string-edit distance of
simply edit distance (ED) [14], which counts the number of token insertions,
deletions and substitutions needed to transform one lexical string S1 to another
S2, viewing each string as a list of tokens. For example the value of ED for two
strings Brian and Brain is 2. Various other techniques for string comparison are
used in different domains e.g. N-gram, Morphological Analysis (Stemming), and
Stop-Word Elimination. ED can be used then to calculate the syntactic similar-
ity (SSM) between a pair of elements [15]. Lessons Learned: These techniques
can be useful in comparing the elements with-in the same domain e.g. domain
ontologies; where elements with the same name have (most of the times) the
same meaning. The problem with these techniques in the context of metamod-
els is that they are not effective when applied standalone. Our experience with
metamodel matching shows that considering only syntactic similarity measures,
isolated from their semantics, creates misunderstanding by expressing the same
meanings in different terms. For example confirmation and notification has ap-
proximately 60

3.2 Matching the Semantics

Metamodels are generally treated as a model of a modelling language [16],
[17],[18][19]. These modelling languages are designed (mostly) for specific do-
mains. Therefore, we believe that to compare the semantic similarity of meta-
model elements, it is important to consider both perspectives: linguistic and
ontological. The linguistic semantics involves checking the semantics of the meta-
model elements from that modelling languages perspective e.g. their properties
(attributes), types of attributes and to some extent their behaviour as well. On
the other hand, on-tological semantics means finding the elements that have the
same meaning but may have been presented with different names. Opportuni-
ties: Techniques for comparing class diagrams e.g. [20],[21] can be utilized to find
the similarities between metamodel elements, especially for the metamodels that
are represented using object-oriented classes (meta-classes) e.g. OMGs family of
meta-models. Different approaches in the area of computational linguistics and
natural language processing can be used to find ontological semantic similarity
e.g. finding the synonyms of a given conceptual element of one metamodel and



looking for those synonyms in the second metamodel. Synonyms can be found
using any lexical data-base e.g. a dictionary. WordNet [21] is one lexical database
that can be used for finding synonyms and word senses. WordNet is a registered
trademark for Princeton University and contains more than 118,000 word forms
and 90,000 different word senses. Lessons Learned: We have observed that find-
ing ontological semantic similarity is very important as there are so many such
conceptual elements in metamodels presented with different names. For exam-
ple, Person in OSM [12] can be semantically matched with the Human Performer
in BPMN [13]; although both have low syntactic similarity. Beside synonyms,
hyponyms (sub-name, e.g. sugar-maple and maple), hypernyms (supername, e.g.
step and footstep) can also be used to find semantic relevant elements, but none
of these are considered so far in any technique. Similarly, meronyms (part-name,
e.g. ship and fleet) and holonyms (whole-name, e.g. face and eye) can also be
useful to find these similarities. Another problem is how to combine both linguis-
tic and ontological semantic similarity for a pair of conceptual elements. Which
one of them is more important and how much weight should be assigned to each
of them is still unaddressed.

3.3 Comparing the Structures

Besides their level of abstraction, a metamodel is treated as a (conceptual) model
of a language [22]. For a good similarity comparison between any pair of con-
ceptual models, not only their syntax and semantics but also their structure
should be compared. Opportunities: Different techniques have been proposed in
the literature for structural similarity of conceptual models. Some of these [22],
[14] compare the structure of business process models, whilst others [23],[24] are
for matching the structure of conceptual models based on graph theory. An al-
ternative to a graph matching technique is the schema matching techniques [24],
[25][26][27][28]. In this technique, the structural similarity of two conceptual ele-
ments C1 and C2 is calculated based on their structural neighbours - ancestors,
siblings, immediateChilds, and leafs. These partial similarities are then calcu-
lated by mean values of all the neighbouring concepts. Lessons Learned: The
techniques used to compare the structure of business process models (e.g. [22],
[14]) cannot be generalized for metamodels as business process models are be-
havioural models while metamodels represents the structural aspect. Converting
the conceptual models to graphs [23], [24] and then applying graph matching
algorithms to find the structural similarity between them is not a trivial task.
To apply such a graph matching technique, we have to be very careful in the con-
version of a class diagram into a graph. True replacement of relationships among
classes (e.g. association, generalization, aggregation, composition) into relation-
ships among nodes of a graph (e.g. directed/undirected, weighted/unweighted)
is not straightforward. Another barrier for the application of such techniques is
that most of the metamodels in the software engineering literature are specified
using diagrams, tables and textual explanation. Having a single class diagram
for such a huge metamodel is not easy. Techniques based on the planar graph



theory like [24] are also not feasible for meta-models because of the basic prin-
ciple of planar graphs (having no cross edges). Meta-models with a rich set of
constructs (classes) like UML can easily violate this rule as it is very difficult to
convert class diagrams of these metamodels to graphs without any cross edges.
The complexity of these graph matching techniques, as also mentioned by some
authors [14], is another barrier to their application in the domain of metamod-
els, hence making it difficult to apply in practice. Based on the experience of
applying these techniques to metamodels, we recommend that we dont need to
compare the leaves of any conceptual element in a meta-model. Comparing leaf
classes of a given class (conceptual element) only results in low similarity. Also,
we think that rather than comparing all the ancestors of a conceptual element,
it is better to compare only parent classes of that element.

3.4 Automation

Considering the size and complexity of metamodels [5], it is very convenient to
have tool support for matching the similarity of metamodels. Hence, our experi-
ence with the matching of metamodels shows that, beside partial tool support,
complete automated metamodel matching is not possible. Opportunities: Au-
tomation in syntactic matching of metamodels elements can be achieved by
implementing ED (Edit Distance) and SSM (Syntactic Similarity Measure) al-
gorithms using available online calculators for ED and APIs. The ontological
semantics of metamodel elements can be matched automatically using lexical
databases like WordNet, MS Office Thesaurus and other APIs available. Lessons
Learned: Complete automation for metamodel similarity matching, especially for
structural similarity, requires well formed formal definitions of metamodels that
can be used as an input for any automated tool. Unfortunately, besides XML def-
initions for some of the metamodels (OMG metamodels with XMI definitions),
metamodels lacks a formal specification and are mostly specified using a com-
bination of textual descriptions, tables and class diagrams. Another important
barrier in the complete automation is that coefficients in the equations we used
do not have any fixed values and have to have value assigned by the domain
expert at the time of the matching. Also, the ontological semantic similarity
analysis requires the experts intellectual input to decide whether two conceptual
elements are equal or not.

3.5 Refactoring

Lessons Learned: Most of the metamodels have two orthogonal forms of con-
ceptual elements: linguistic and ontological (as also highlighted by [17]). The
former represent the language definition while the latter describe what concepts
exist in a certain domain and what properties they have. These two types of
elements are mingled with each other in most of the metamodels and there is no
explicit boundary between them. An important consideration regarding meta-
model matching is to separate these two types of elements; we call it refactoring.



Metamodels need to be first refactored before matching can occur. This refac-
toring is required to remove the conceptual elements in metamodels that are not
related to the domain of interest. Rather, most of these elements are linguistic
and are present in order to maintain (glue) the structure of metamodels. For
example, Resource Parameter Binding and Parallel Gateway in BPMN [13] are
the concepts that are related to the language definition of BPMN and are not
worth matching with any other metamodel of the same domain since every meta-
model has its own language definitional elements. Rather, it is better to match
the conceptual elements that are related to the domain of interest e.g. matching
Activity in BPMN [13] with Activity in SPEM [1], which are more related to
the common domain of interest: Workflows and Processes.

3.6 Ontology Oriented Metamodels

Lessons Learned: Our experience of matching metamodels showed that there
is a high heterogenity between the ontological elements of metamodels. How-
ever, it has been observed that a major reason for that heterogeneity is the
lack of a common ontology or taxonomy. Much better results in interoperability
of metamodels can be achieved if metamodels share some common ontology or
taxonomy of the domain of interest; as also highlighted by [8]. The use of a
common ontology for designing/redesigning metamodels can result in better in-
teroperability. For example, the use of the UFO (Unified Foundation Ontology)
to redesign UML [29]. Metamodels based on a common ontology will reduce
the differences of similarity matchings, especially in syntactic and ontological
semantics matching.

4 Conclusion

In this paper we have discussed some of the limitations and opportunities in
the field of metamodel interoperability. These recommendations are based on
the application of a framework that we have developed and applied on several
metamodels to find their similarities. We have come to conclude that, for better
similarity findings, not only the syntax but also the semantics and structure
of metamodel elements should be matched. Metamodels needs to be refactored
to separate out the ontological elements before matching for more pragmatic
results. To avoid the problems of syntactic and semantic ambiguities between
the elements, we recommend that metamodels should be based (or at least uti-
lize) upon some common domain ontology. Also we have shown that complete
automation of matching metamodel elements is not possible and does require
substantial human intervention.

References

1. OMG: Software and systems process engineering meta-model specification (2008)
2. OMG: Unified modeling language (2009)



3. OMG: Architecture-driven modernization (adm): Software metrics meta-model
(smm) (2009)

4. Azaiez, S., Huget, M.P., Oquendo, F.: An approach for multi-agent metamodelling.
Multiagent and Grid Systems 2(4) (2006) 435–454

5. Henderson-Sellers, B., Qureshi, M.A., Gonzalez-Perez, C.: Towards an interop-
erable metamodel suite: Size assessment as one input. International Journal of
Software and Informatics 6 (2)(2) (2012)

6. Beydoun, G., Low, G., Henderson-Sellers, B., Mouratidis, H., Gomez-Sanz, J.J.,
Pavon, J., Gonzalez-Perez, C.: Faml: A generic metamodel for mas development.
IEEE Trans. Softw. Eng. 35(6) (2009) 841–863

7. Henderson-Sellers, B.: Bridging metamodels and ontologies in software engineering.
Software and Systems 84(2) (2011) in press

8. Bézivin, J., Soley, R.M., Vallecillo, A.: Proceedings of the first international work-
shop on model-driven interoperability (2010)

9. Tran, Q.N.N., Low, G.: Mobmas: A methodology for ontology-based multi-agent
systems development. Inf. Software Technol 50(7-8) (2008) 697–722

10. Devedzić, V.: Understanding ontological engineering. Communications of the ACM
45(4) (2002) 136–144

11. Qureshi, M.A.: Interoperability of software engineering metamodels (2012)

12. OMG: Organization structure metamodel (osm) 3rd initial submission (2009)

13. OMG: Business process model and notation (bpmn) ftf beta 1 for version 2.0
(2009)

14. Dumas, M., Garca-Banuelos, L., Dijkman, R.: Similarity search of business process
models. IEEE Data Eng. Bull 32(3) (2009) 23–28

15. Maedche, S.: Comparing ontologies - similarity measures and a comparison study.
Technical report, Institute AIFB, University of Karlsruhe, Internal Report (2001)

16. Henderson-Sellers, B., Gonzalez-Perez, C.: An investigation of the validity of strict
metamodelling in software engineering. submitted to IEEE Trans. Software Eng.
(2011)

17. Atkinson, C., Kuhne, t.: Model-driven development: A metamodeling foundation.
IEEE Software 20(5) (2003) 36–41

18. Gašević, D., Kaviani, N., Hatala, M. In: On Metamodeling in Megamodels. Volume
4735/2007. Speinger (2007) 91–105

19. Kuhne, T.: Matters of metamodelling. Software and System Modeling 5(4) (2006)
395–401

20. Girschick, M.: Difference detection and visualization in uml class diagrams. tech-
nical report. Technical report (2006)

21. Miller, G.A.: Wordnet: A lexical database for english. Communications of the
ACM 38(11) (1995) 39–41

22. Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between semantic
business process models (2007) 1274465 71-80.

23. Voigt, K., Heinze, T.: Metamodel matching based on planar graph edit distance
(2010) 1875866 245-259.

24. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile graph
matching algorithm and its application to schema matching (2002 2002)

25. Bernstein, P.A.: Applying model management to classical meta data problems
(2003)

26. Chukmol, U., Rifaieh, R., Benharkat, N.A.: Exsmal: Edi/xml semi-automatic
schema matching algorithm (2005)



27. Filipe, J., Cordeiro, J., Sousa, J., Lopes, D., Claro, D.B., Abdelouahab, Z. In:
A Step Forward in Semi-automatic Metamodel Matching: Algorithms and Tool.
Volume 24 of Lecture Notes in Business Information Processing. Springer Berlin
Heidelberg (2009) 137–148

28. Lopes, D., Hammoudi, S., de Souza, J., Bontempo, A.: Metamodel matching:
Experiments and comparison (Oct. 2006 2006)

29. Guizzardi, G., Wagner, G. In: Using the Unified Foundational Ontology (UFO) as
a Foundation for General Conceptual Modeling Languages. Springer-Verlag (2010)


