
Automatized Generating of GUIs for
Domain-Specific Languages

Michaela Bač́ıková, Dominik Lakatoš, and Milan Nosá̌l

Technical University of Košice, Letná 9, 04200 Košice, Slovakia,
(michaela.bacikova, dominik.lakatos, milan.nosal)@tuke.sk,

Abstract. Domain-specific languages (DSLs) promise many advantages
over general purpose languages (GPLs) and their usage is on the rise.
That is one of the reasons for us at our university to teach the subject
called Modelling and Generating of Software Architectures (MaGSA),
where the students learn how to work with DSLs and their parsers. Our
students often have problems understanding a new DSL, even if it is very
simple, because they never have worked with a DSL before. Therefore we
decided to find a way to help them with the learning process by providing
a DSL-specific editor. This editor will be automatically generated based
on a language specification and the generator will be integrated into the
existing infrastructure of the MaGSA project, which the students use on
the subject. In this paper we present various techniques to reach the goal
of generating graphical editors for DSLs and we introduce a prototype
which is able to automatically generate a user interface for an external
DSL.

Keywords: domain-specific languages, graphical user interface, gener-
ative programming, metamodelling

1 Introduction

DSLs [1] promise advantages over GPLs. As mentioned by Brooks [2], program-
mers tend to produce statements at the same rate whatever language they use,
so high-level languages are more productive. Still, only a few programmers go
to the trouble of creating a new language as it comes with a plenty of problems
lengthening the development process. It is hard to get it right at the first time
without the proper knowledge: it is a new syntax to learn and maintenance can
be expensive [3]. This usually leads to systems written in GPLs which, however,
do not support domain-specific abstractions very well. A programmer ordinarily
ends up with a code containing a lot of computer-specific programming noise and
a lot less of the written code is really useful for solutions of domain problems.

At our university we teach a subject called Modelling and Generating of
Software Architectures (MaGSA) which tries to show our students how to use
model-based [4, 5] and generative programming [6, 7] for creating software sys-
tems. On this subjects’ exercises the students use a pre-prepared project and
tutorials, all constructed in a way enabling them to understand both the com-
plexity of developing a rather simple language parser with several application

generators and the simplicity of using a DSL to configure the desired application.
It shows the possibilities of such an application generator tool to create different
software applications by just changing the input file and running the imple-
mented parsers and generators. We call the DSL used on the exercises the entity
language. Metamodel of this DSL is defined by Java classes and its grammar is
defined by an internal DSL (i.e. annotations) in the project and the YAJCo (Yet
Another Java Compiler Compiler) parser generator generates a language pro-
cessor for this DSL. YAJCo tool and it’s advantages were completely described
by Porubän [8, 9].

In our exercises we deal with problems related to incorrect understanding
of the subjects’ curriculum by our students. The primary problem is that the
students do not get the picture of the syntax and the semantics of the entity
language defined in our project i.e. they use it incorrectly and it takes some time
for them to fully understand it and learn to work with it. Since no specific editor
for the entity language was created yet, the students work with free text editors
such as Notepad or Notepad++ which do not provide any syntax highlighting
for our DSL and it has no code completion. So they do not give the students
any hint for writing the code in the entity language. Therefore an idea arises to
create a specific editor for the entity language, to be able to help the students
learning a new language and to write code in it easily.

There is however still one important feature, namely the possibility of chang-
ing the DSL specification by changing the classes and annotations in the project
- if it is because of changes in the subject curriculum or simply because of lan-
guage evolution [10]. If the generator should be generally usable we can not give
the students a one-off tool for a single DSL, which can not be changed. Moreover,
the entity language specification really changes during the development process
on the exercises. Therefore we decided to perform an experiment of generating a
specific editor for the entity language. The main idea of the solution is similar to
the idea of language workbenches described by Fowler [1, 11]. However the main
difference in our approach is that the desired output is not a classical editor
allowing the common integrated development environments like automatic code
completion or syntax highlighting. It is rather a graphical interface with a sup-
port for creating new language constructions similar to CRUD (Create Retrieve
Update Delete) interfaces.

There are many existing language workbenches that could help with graph-
ical environment, code completion, syntax highlighting or refactoring features,
for instance Eclipse Modeling Framework [14] and Eclipse Graphical Modeling
Project [15], Spoofax [13], MetaEdit+ [16] or the Generic Modeling Environment
[17]. The main reason for us to decide not to use them and go for the way of
generating our own editor with a CRUD interface is simplicity and understand-
ability. The students would learn to create new sentences in the language and
they also would learn the relations that the user interface represents. The sec-
ond reason is that these workbenches have integrated generators and language
parsers, which are not compatible with the project used on our exercises and
we want our students to create their own application generators which is the

goal of the subject. The advantage is that once the editor generator is included
in the MaGSA project, the students will have a chance to take a look into the
techniques of generating simple editors for DSLs which they can further use in
the subject. We present this paper as another solution to an existing problem
of DSL learnability and we think that graphical user interfaces (GUIs) for DSLs
represent a good first step for motivating students to use DSLs.

1.1 Tasks and goals

In this paper we try to introduce a first step on a way to the solution of auto-
matic generating of GUIs for external DSLs. The possibility of derivating the
user interface specific for a DSL based on its specification was already proved.
We, however, try to present a different way of solving this problem which would
shorten learning time of DSLs in the first phases of learning. Our general goal is
to implement a prototype which will be able to generate graphical user interface
based on a language specification. Based on different types of statements in the
language specification it will be able to generate different basic graphical com-
ponents. We will introduce various partial techniques to creating this solution
and also different techniques to reach the general goal. The partial techniques
will be illustrated by examples.

The goal of this paper is to design a method and to implement a prototype
enabling automatic generating of a user interface for DSL based on language
metamodel. The main goal is a definition of a solution, that will guide solvers to
the right direction to the realization of a project. The most important property
of our solution is simplicity and learnability.

2 The MaGSA Project

The prototype is based on an existing project, which is currently in the teaching
process of the MaGSA subject on the Technical University of Koice, Faculty of
Electrotechnical Engineering and Informatics for teaching metamodelling, DSLs
and generative approach to software development. For the purpose of simplifi-
cation, in the rest of the paper we will refer to this project as to the ’MaGSA
project’. The MaGSA project used by our students is a pre-prepared project
implemented in the Java language and it uses the standard MDA architecture.
The exercises are realized in a form of a tutorial, which provide the description
of the project and introductory source codes, with which the students work. We
kindly ask the readers to check the official website in English [12] for further
information about the MaGSA project and the tutorials.

Two basic entities are defined in the model of MaGSA project: Employee and
Department. The model of the MaGSA project is written in the entity language
and its metamodel can be described by a grammar as follows:

Model ::= ((Entity (Entity)*) (Reference)*)

Reference ::= (<reference> <NAME> <NAME>)

Entity ::= (<entity> <NAME> (<{> (Property (Property)*) <}>))

Property ::= (<NAME> (<:> Type) ((Constraint ((<,> Constraint))*))?)

Type ::= (<INTEGER> | <REAL> | <STRING>)

Constraint ::= (Regex | Required | Range | Length | Contains)

Regex ::= (<regex> <STRING_VALUE>)

Required ::= <required>

Range ::= (<range> <INT_VALUE> <INT_VALUE>)

Length ::= (<length> <INT_VALUE> <INT_VALUE>)

Contains ::= (<contains> <STRING_VALUE>)

Terminals are noted in brackets 〈 〉.
The basic entities of the metamodel and the relations between them are

defined by the class implementation. The concrete syntax is defined by means
of annotations in the individual classes. Based on these classes and annotations
the YAJCo tool generates the grammar along with the language processor for
the DSL.

2.1 Entity Language

As we mentioned earlier, the model of the generated application, is defined by
an external DSL called the entity language, usage of which can be seen on an
example file written in the entity language below.

Department

entity Department {

name : string required, length 5 30

code : string required, length 1 4

level : real

}

Employee

entity Employee {

name : string required, length 2 30

surname : string required, length 2 30

age : integer

}

reference Employee Department

On the MaGSA subject the students work with these two entities, but it
is possible to define any number of entities and references between them and
we encourage students to do so. As we mentioned earlier, they have problems
grasping the basic idea, therefore only a very small amount of students do so
without any help.

In the current state of the MaGSA project, the input file written in the entity
language is processed by the generated language processor and based on the

information processed the resulting application is generated, which provides a
console interface to be able to work with the concrete departments and employees
saved in the database. The task of the students is to create generators which
generate the console application.

The students work with the entity language only manually which, when work-
ing with a big number of entities, could be tedious and exhausting. The problem
can arise also when the metamodel is changed. In that case manual correction of
each entity in the entity language file is needed. Therefore tool enabling working
with the entity language would be helpful. The tool should enable adding new
entities, their editing and removing. This tool would be generated based on the
metamodels’ grammar specifically for any defined DSL.

3 Problem Analysis

The challenge of our goal is the creation of a new generator of a DSL-specific
GUI which would reflect the relations between the language concepts and thus
support the domain-specific abstractions. The basic idea is best to explain on
the grammar shown in the chapter 2.

The left sides of the rules define the points, which can be expressed by forms
of the user interface. The right sides of the rules define the content of the forms.

In the EBNF we know these tree basic operators:

• sequence,
• alternative,
• repetition 0-* or 1-*,

and two basic types of symbols:

• terminal,
• non-terminal.

A sequence of symbols transforms into a GUI as a list of elements in a
particular form. If the sequence contains terminal symbols, then these symbols
have their type. Based on this type the corresponding component can be derived
as illustrated in Tab. 1.

Table 1. Types of grammar symbols and components derived based on these types

Value type Derived component

<STRING VALUE> text field
<INTEGER VALUE> jspinner or a number field (a text field with a number input)
<NAME> selection with existing named entities

If a given symbol is a nonterminal then after clicking on a particular GUI
element or an item a new dialog for editing this element or item opens.

A reduction of the number of dialogs can be made. If a rule contains only
alternatives and no other elements or operators then it is possible to generate a
dialog with a combo-box on the top and the remaining content will change dy-
namically based on what was selected in the combo-box. The content represents
the particular alternative.

The following example shows two production rules for Property and Con-
straint.

Property ::= (<NAME> (<:> Type) ((Constraint ((<,> Constraint))*))?)

Constraint ::= (Regex | Required | Range | Length | Contains)

Fig. 1 illustrates a GUI for the Constraint and Property rules of our gram-
mar. In the Property dialog new constraints can be added by clicking the ’+’
button. Consequently the dialog with one of the constraint types defined for
the property can be chosen an its content automatically changes based on the
particular alternative representation.

Fig. 1. Illustration of a GUI generated from the Property grammar rule

Based on each type of EBNF operator it is possible to derive different types
of components. Tab. 2 lists the components that can be derived based on a
particular EBNF operator.

We list different types of components for each operator that can be used for
the implementation, because they meet the same purpose. Each of them can be
chosen for the implementation, the only deciding factor is usability.

As can be seen on these examples, the components reflect the relations be-
tween the language concepts. It can be seen instantly that the Property has a
name, a type and a list of constraints. We assume this can help grasping the
idea of DSLs.

Table 2. The types of operators in the grammar and components derived based on
these types

Operator Derived component

Alternatives (the — operator) Combo-box
+ (repeat 1-*) A combo-box or a radio button (with single selection)

+ 3x CRUD button
* (repeat 0-*) A list or check-box buttons (with multiple selection)

4 Prototype Implementation

A prototype was implemented in the Java language into the existing infras-
tructure of the MaGSA project. A new generator was created by extending the
abstract generator provided by the project. The metamodel is defined by the
metamodel classes and annotations for the YAJCo parser generator and a user
interface is generated to enable the model defined by the entity language. It is
possible to add new entities, edit existing entities and to remove entities. Also,
in each entity a further change of all properties defined by the model is possible.
It is possible to add references from one entity to other. The initial screen of
the application is in Fig. 2. It contains a list of all defined entities and a list of
references. It is possible to create new files in the entity language with the *.el
extension, or open existing files.

Fig. 2. Illustration of GUI generated from the grammar

We realize that this prototype is implemented in the specific environment of
our MaGSA project, but the idea is usable also in other areas. We believe it will
help beginners to learn the basic principles behind DSLs.

5 Conclusion

In this paper we introduced a first step on a way to the solution of automatic
generating of GUIs for external DSLs. We showed a simple way of deriving a
GUI for a DSL specification and of using the GUI to create new files written in
this DSL. The DSL-specific interface is simple to use even for a student and it is
more understandable than a classic textual editor. Reflecting relations between
the domain-specific entities ensures the support of domain-specific abstractions.
We introduced various partial techniques to creating this solution, illustrated
by examples and also different techniques to reach the general goal. We created
a prototype integrated into the existing infrastructure of the MaGSA project
which is able to generate basic graphical elements based on the DSL specification.
This way students will be guided to the right direction to the realization of the
MaGSA project. In the future we plan to perform usability experiments with our
students prototype to be able to improve the prototype further. The tool will
be used by one group of students and another group will work without the tool.
We will measure the learning time, completion time and failure rate. In the end
we will evaluate subjective usability using questionnaires. We will compare the
results between the two groups to determine whether the tool is really helpful.

6 Acknowledgement

This work was supported by VEGA Grant No. 1/0305/11 - Co-evolution of the
artifacts written in DSLs driven by language evolution.

References

[1] Fowler, Martin: Domain-Specific Languages (Addison-Wesley Signature Series).
Addison-Wesley Professional (2010)

[2] Brooks, F.P.: The Mythical Man Month: Essays on Software Engineering. Addison
Wesley Professional Longman Aniversary Ed. (1995).

[3] Freeman, S., Pryce, N.: Evolving an Embedded Domain-Specific Language in Java.
OOBSLA’06 October 22-26, Portland, Oregon, USA (2006).

[4] T. Stahl, M. Voelter: Model-Driven Software Development: Technology, Engineer-
ing, Management. Wiley (2006).

[5] J. Greenfield, K. Short, S. Cook, S. Kent: Software Factories: Assembling Applica-
tions with Patterns, Models, Frameworks, and Tools. Wiley (2004).

[6] Czarnecki, K. Eisenecker, U.: Generative Programming: Methods, Tools, and Ap-
plications. Addison-Wesley Professional (2000).

[7] Chen, J.: Generators. Presentation. USA, University of Colorado, march http :
//wiki.lassy.uni.lu/se2c − bibdownload.php?id = 1117 (accessible 27.5.2009)
(2003).

[8] J. Porubän, M. Sabo, J. Kollár and M. Mernik: Abstract syntax driven language
development: defining language semantics through aspects, in Proceedings of the
International Workshop on Formalization of Modelling Languages, New York, NY,
USA, (2010).

[9] J. Porubän, M. Forgáč, M. Sabo and M. Běhálek: Annotation Based Parser Gener-
ator. Computer Science and Information Systems, vol. 7, no. 2, pp. 291-307, (2010).

[10] Bell, P.: DSL Evolution. Article. December http://www.infoq.com/articles/dsl-
evolution (accessible 20.4.2011) (2009).

[11] Fowler, M.: Language Workbenches: The Killer-App for Domain Specific Lan-
guages? http://www.martinfowler.com/articles/languageWorkbench.html, (acces-
sible 27.5.2009)(2005).

[12] Modelling and Generating of Software Architectures. Student tutorial,
English version. Technical University of Koice, Faculty of Electrical En-
gineering and Informatics, Department of Computers and Informatics
http://hornad.fei.tuke.sk/ bacikova/MaGSA (2010)

[13] The Spoofax Language Workbench http://strategoxt.org/Spoofax (accessible
05.08.2012)(last update 2012)

[14] Eclipse Modeling Framework http://www.eclipse.org/modeling/emf/ (accessible
05.08.2012) (projets’ last update 2009)

[15] Graphical Modeling Project http://www.eclipse.org/modeling/gmp/ (accessible
05.08.2012) (projets’ last update 2010)

[16] Domain-specific Modeling with MetaEdit+ http://www.metacase.com/ (accessi-
ble 05.08.2012) (projets’ last update 2012)

[17] Generic Modeling Environment http://www.isis.vanderbilt.edu/Projects/gme/
(accessible 05.08.2012) (projets’ last update 2008)

