
Verifiable composition of language extensions

Ted Kaminski

Department of Computer Science and Engineering
University of Minnesota, Minneapolis, MN, USA

tedinski@cs.umn.edu

Abstract. Domain-specific languages offer a variety of advantages, but
their implementation techniques have disadvantages that sometimes pre-
vent their use in practice. Language extension offers a potential solution
to some of these problems, but remains essentially unused in practice. It
is our contention that the main obstacle to adoption is the lack of any
assurance that the compiler composed of multiple independent language
extensions will work without the need for additional modifications, or at
all. We propose to solve this problem by requiring extensions to indepen-
dently pass a composition test that will ensure that any such extensions
can be safely composed without “glue code,” and we propose to demon-
strate that interesting extensions are still possible that satisfy such a
test.

1 Introduction

Domain-specific languages (DSLs) come with a variety of reasonably well-known
advantages and disadvantages [3]. Some of these disadvantages do not seem to
be inherent to DSLs in general, but are a consequence of the way they are imple-
mented. In particular, many implementation techniques lack or poorly support
composition, meaning multiple DSLs cannot easily be used together to solve a
problem.

To be more precise about what we mean by language composition, we will
use some of the classification and notation of Erdweg, Giarrusso, and Rendel [5].
The notation H / E represents a host language H composed with a language
extension E, specifically crafted for H. Another composition operator L1 ]g L2

denotes the composition of two distinct languages with “glue code” g. To permit
only the / form of language composition (“language extension”) is not sufficient.
With H, H /E1, and H /E2, we are left with no option for composing all three,
without modifying one of the extensions to have the form (H /E1) /E2 (or vice
versa.) However, the ]g form of language composition (“language unification”)
is also insufficient for our purposes. The problem with this form of composition
is that the “glue code” g necessary to perform this composition is essentially an
admission that the composition is broken and must be repaired. (Though it is
still interesting that the composition can be repaired.)

What we seek is a composition method L1]∅L2, that is, language unification
without needing any glue code (g = ∅.) This may seem impossible in general,



but there is hope in special cases, such as when both languages are extensions
to a common host: (H /E1)]∅ (H /E2). Here we are tasked with resolving only
conflicts between E1 and E2, while the host language H is shared. We will say
that a DSL implementation technique supports composable language extension
if it is capable of composition of the form H/(E1]∅E2). We further require that
the technique provides some assurance that the resulting composed language will
work as intended, and is not simply broken.

The goal of this work is to build a DSL implementation tool and demonstrate
that it satisfies the following criteria:

– Supports composable language extension, as defined above.
– Permits introduction of new syntax.
– Permits introduction of new static analysis on existing syntax.
– Capable of generating good, domain-specific error messages.
– Capable of complex translation, such as domain-specific optimizations.

In Section 2 we provide some background on the tools we will be making
use of in pursuit of this goal. In Section 2.1 we survey some of the other tools
for implementing domain-specific languages. In Section 3 we propose the work
we plan for this thesis. In Section 3.1 we outline work beyond the scope of this
thesis.

2 Background

The first major obstacle to supporting composable language extension is to al-
low composition of syntax extensions. Although context-free grammars are easily
composed, the resulting composition may no longer be deterministic, or other-
wise amenable to parser generation. Copper [15, 20] is an LR(1) parser generator
that supports syntax composition of the form H / (E1 ]∅ E2) so long as each
H / E individually satisfy some conditions of its modular determinism analy-
sis. Assuming we require extensions to satisfy this analysis, Copper offers one
solution to the syntax side of the problem of supporting composable language
extension.

Attribute grammars [13] are a formalism for describing computations over
trees. Trees formed from an underlying context-free grammar are attributed with
synthesized and inherited attributes, allowing information to flow, respectively,
up and down the tree. Each production in the grammar specifies equations that
define the synthesized attributes on its corresponding nodes in the tree, as well as
the inherited attributes on the children of those nodes. These equations defining
the value of an attribute on a node may depend on the values of other attributes
on itself and its children. Attribute grammars trivially support both the “lan-
guage extension” and “language unification” modes of language composition, by
simply aggregating declarations of nonterminals, productions, attributes, and
semantic equations.

There is a natural conflict between introducing new syntax and static analy-
sis, referred to as the “expression problem1.” Although normally formulated in

1 http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt



terms of data types, it applies equally well to abstract syntax trees, and thus
has consequences for language extension. If one language extension introduces
new syntax, and another a new analysis, the combination of the two extensions
would be missing the implementation of this analysis for this syntax. Either the
composition is then broken, glue code must be written to bridge this conflict,
or there must be some mechanism to accurately and automatically generate this
glue code.

Attribute grammars are capable of solving the expression problem by man-
ually providing “glue code” that provides for evaluating new attributes on new
productions. However, the expression problem can also be automatically resolved
without glue code for attribute grammars that include forwarding [19]. An ex-
tension production that forwards to a “semantically equivalent” tree in the host
language can evaluate new attributes introduced in other extensions via that
host language tree, where the attribute will have defining semantic equations.

Although forwarding removes the need for the “glue code” necessary to
resolve the expression problem, there are other ways in which a composition
of attribute grammars may cause conflicts. Attribute grammars have a “well-
definedness” property that, roughly speaking, ensures each attribute can actu-
ally be evaluated. However, although H, H /E1 and H /E2 may be well-defined,
there is no guarantee that H/(E1]∅E2) will also be well-defined. As part of this
thesis, we have developed a modular well-definedness analysis [11] that provides
this guarantee. This analysis checks each H / E individually, and ensures that
the composition H / (E1 ]∅ E2) will be well-defined.

2.1 Related work

Domain-specific languages are traditionally implemented as an “external” DSL,
and therefore incapable of composition with each other. Internal (or Embedded
DSLs) are those implemented as a “mere” library in a suitable host language [9].
Internal DSLs are interesting in part because they permit the kind of composition
we are interested in. However, they come with many drawbacks. For one, not
all languages are practical choices for internal DSLs, including many that are in
popular use, because the range of possible syntax is seriously limited by the host
language. Further, in their simplest form, internal DSLs cannot easily perform
domain-specific analysis, or complex translation.

One way of making internal DSLs capable of domain-specific analysis is to
take advantage of complex embeddings into the host language’s type system.
AspectAG [21] and Ur/Web [2] are internal DSLs that take this approach to
enforcing certain properties. The drawback to these approaches is the error mes-
sages: they are reported as type errors in the host language’s interpretation of
the types. In the worst case, understanding these error messages requires not
just a deep understanding of the property being checked, but also the particular
implementation and embedding of that property into the host language’s type
system.

One way to improve the ability of internal DSLs to generate code is to take
advantage of meta-programming facilities in the language, like LISP macros, or



C++ templates. Racket [17] offers sophisticated forms of macros to enable this
kind of translation. However, the static analysis capabilities of these macros are
quite limited, though they are able to generate surprisingly good error messages
for a macro system. (Especially surprising for those used to C++ template error
messages.)

There are several systems for specifying languages that enable language ex-
tension and unification, as described in the introduction. JastAdd [7, 4], Kiama [16],
and UUAG [1] are such systems based upon attribute grammars. SugarJ [6] is
a recent system built upon SDF [8] and Stratego [22]. Rascal [12] is a meta-
programming language with numerous high-level constructs for analyzing and
manipulating programs. Helvetia [14] is a dynamic language based upon Smalltalk
with language extension capabilities. However each of these systems requires that
the composition of multiple language extensions may need to be repaired with
glue code, and they otherwise provide little guarantee the composition will work.
As a result, they do not support composable language extension, in our sense.

MPS [23] is a meta-programming environment that leans heavily on an
object-oriented view of abstract syntax, and consequently struggles with expres-
sion problem in its support for composition. Consequently, the host language
limits the possible analyses over syntax that are possible. Many useful language
extensions do not necessarily need new analysis over the host language, however,
as macro systems for dynamic languages already demonstrate.

3 Proposal

One component of this thesis has already been mentioned: our modular well-
definedness analysis for attribute grammars [11]. This work is fully described
elsewhere, but we will summarize it here. We say that an attribute grammar is
effectively complete if, during attribute evaluation, no attribute is ever demanded
that lacks a defining semantic equation. This analysis operates on each H / E
individually, and provides an assurances that the resulting H/(E1]∅E2) will also
have this property, without the need to explicitly check this composed language.
To do this, the analysis is necessarily conservative about what extensions pass.
Roughly speaking, extensions must satisfy the following requirements:

– Extensions must not alter the flow types of host language synthesized at-
tributes. That is, they cannot require new (extension) inherited attributes be
supplied in order to evaluate existing (host language) synthesized attributes.

– New productions introduced in extensions must forward.
– The flow types for new attributes introduced by an extension must account

for the potential need to evaluate forward equations before they can be
evaluated.

This modular well-definedness analysis, together with Copper’s modular de-
terminism analysis, offers a potential path towards composable language exten-
sion. Silver [18, 10] is an attribute grammar-based language with support for
Copper, for which we have implemented our modular well-definedness analysis.



As the remainder of this thesis, we propose to evaluate whether this tool is truly
capable of composable language extension. This is not a given, because the range
of potential language extensions has been restricted:

– Forwarding requires all extensions’ dynamic semantics be expressible in terms
of the host language. We do not anticipate this restriction being a burden, as
the host languages we’re interested in extending are Turing-complete with
rich IO semantics.

– Copper’s analysis places restrictions on the syntax that can be introduced by
extensions, relative to their host language. Again, since the host languages
we are interested in extending often have highly complex concrete syntax
already, we expect these restrictions will be a light burden.

– Silver’s analysis places restrictions on how information can flow around ab-
stract syntax trees. Again, however, this is relative to the host language
implementation, which we expect to offer support for rich kinds of informa-
tion flow already.

In light of these potential restrictions on the kinds of extensions that can be
specified in Silver, we wish to validate each of our goals:

– The analyses themselves accomplish the goal of supporting composable lan-
guage extension.

– We will need to implement at least two new extensions to the syntax.
– We will need to implement at least one new extension to static analysis.
– That static analysis extension should demonstrate the ability to generate

good, domain-specific error messages.
– One of the extensions should involve either complex translation, require

domain-specific optimizations, or have at least stringent efficiency require-
ments, to demonstrate the approach has little to no runtime overhead.

We propose to build a host language specification for C in Silver. C is an
ambitious choice, but choosing a rich, practical language of independent design
is necessary to evaluate whether the analyses’ restrictions are practical, as they
depend on the host language. To this specification of C, we propose to build
language extensions that will meet the above requirements. These should ideally
be language extensions that already exist in the literature, so that the changes to
their design or syntax that are necessary to satisfy the analyses can be evaluated.

From this we hope to learn:

– How to better design extensible host language implementations, to support
the development of interesting extensions. Many of the limitations imposed
by the analyses depend upon the host language implementation more so than
on the host language itself.

– Ways in which Silver itself may need to be extended to help specify the host
language and extensions. For example, proper aggregation of error messages
in the extensions could be ensured with language features specific to error
message aggregation.



– Whether the restrictions still permit interesting and practical language ex-
tensions.

– Informally, whether the resulting extended languages are useful. We intend
for our colleagues to make use of these extended languages, providing some
feedback in this area, though we do not intend to perform an empirical
investigation.

3.1 Future work

Beyond the scope of this thesis, there lie many more problems that must be
solved to bring language extension to practicality.

First, host languages must be developed in Silver before they can be ex-
tended, and extensions can only be composed for a common host language, so
fragmentation must be kept to a minimum to avoid splitting apart the ecosys-
tem. High enough quality implementations of host languages for production use
remains future work.

Second, numerous less daunting engineering issues would also need resolving.
No obstacles to composing language extensions at runtime exist for Silver and
Copper, but the feature has yet to be fully implemented. Further, the build
process for making use of an extended compiler in large software projects must
be worked out.

Third, a variety of other tooling must also be composable. Languages exten-
sions must result not only in composed compilers, but also composed debuggers
and integrated development environments. Abandoning these tools is not an op-
tion for practical use. We do not intend to directly address this problem in this
thesis, though concurrent work for such tools in Silver is ongoing.

Finally, although these analyses ensure conflicts do not arise from the parser
or attribute evaluator, it is possible that conflicts could arise in some other
fashion. Certainly we can imagine blatantly wrong code, like suppressing all
error messages from subtrees. But the formulation of composable proofs of the
compiler’s correctness would complete our understanding the problem posed by
composable language extension.

4 Conclusion

We believe that no existing DSL implementation tool satisfies all five goals listed
in the introduction: support composable language extension, allow extension
to both and static analysis, provide good domain-specific error messages, and
allow complex translation requirements. These goals are motivated by the desire
to ensure that the users of language extensions can be certain they can draw
on whatever high-quality extensions they need, without fear of breaking their
compiler.

We have developed an analysis that ensures Silver meets the goal of support-
ing composable language extension, and we have implemented this analysis. We
intend to develop an extensible specification of a popular and practical language,



C, and we intended to demonstrate that practical language extensions to it are
possible that satisfy this analysis. We believe this will demonstrate that Silver
satisfies all five goals listed in the introduction for an ideal DSL implementation
technique.

References

1. Baars, A., Swierstra, D., Loh, A.: Utrecht University AG system manual,
http://www.cs.uu.nl/wiki/Center/AttributeGrammarSystem.

2. Chlipala, A.: Ur: statically-typed metaprogramming with type-level record com-
putation. In: PLDI, 2010. pp. 122–133. ACM, New York, NY, USA (2010),
http://doi.acm.org/10.1145/1806596.1806612

3. Deursen, A.v., Klint, P., Visser, J.: Domain-specific languages: An annotated bib-
liography. ACM SIGPLAN Notices 35(6), 26–36 (Jun 2000)

4. Ekman, T., Hedin, G.: Rewritable reference attributed grammars. In: Proc. of
ECOOP ’04 Conf. pp. 144–169 (2004)

5. Erdweg, S., Giarrusso, P., Rendel, T.: Language composition untangled. In: LDTA,
2012 (2012)

6. Erdweg, S., Rendel, T., Kästner, C., Ostermann, K.: Sugarj: library-based syntactic
language extensibility. In: OOPSLA 2011. pp. 391–406. ACM, New York, NY, USA
(2011), http://doi.acm.org/10.1145/2048066.2048099

7. Hedin, G., Magnusson, E.: JastAdd - an aspect oriented compiler construction
system. Science of Computer Programming 47(1), 37–58 (2003)

8. Heering, J., Hendriks, P.R.H., Klint, P., Rekers, J.: The syntax definition formal-
ism sdf. SIGPLAN Not. 24(11), 43–75 (Nov 1989), http://doi.acm.org/10.1145/
71605.71607

9. Hudak, P.: Building domain-specific embedded languages. ACM Computing Sur-
veys 28(4es) (1996)

10. Kaminski, T., Van Wyk, E.: Integrating attribute grammar and functional pro-
gramming language features. In: Proceedings of 4th the International Conference
on Software Language Engineering (SLE 2011). LNCS, vol. 6940, pp. 263–282.
Springer (July 2011)

11. Kaminski, T., Van Wyk, E.: Modular well-definedness analysis for attribute gram-
mars (2012), accepted SLE 2012

12. Klint, P., van der Storm, T., Vinju, J.: Rascal: a domain specific language for
source code analysis and manipulation. In: Proc. of Source Code Analysis and
Manipulation (SCAM 2009) (2009)

13. Knuth, D.E.: Semantics of context-free languages. Mathematical Systems Theory
2(2), 127–145 (1968), corrections in 5(1971) pp. 95–96

14. Renggli, L., Gı̂rba, T., Nierstrasz, O.: Embedding languages without breaking
tools. In: ECOOP 2010. pp. 380–404. Springer (2010)

15. Schwerdfeger, A., Van Wyk, E.: Verifiable composition of deterministic grammars.
In: Proc. of ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). ACM Press (June 2009)

16. Sloane, A.M.: Lightweight language processing in kiama. In: Proc. of the 3rd sum-
mer school on Generative and transformational techniques in software engineering
III (GTTSE 09). pp. 408–425. Springer (2011)

17. Tobin-Hochstadt, S., St-Amour, V., Culpepper, R., Flatt, M., Felleisen, M.: Lan-
guages as libraries. In: PLDI 2011. pp. 132–141. ACM, New York, NY, USA (2011),
http://doi.acm.org/10.1145/1993498.1993514



18. Van Wyk, E., Bodin, D., Krishnan, L., Gao, J.: Silver: an extensible attribute
grammar system. Scinece of Computer Programming (2009), accpeted, In Press

19. Van Wyk, E., de Moor, O., Backhouse, K., Kwiatkowski, P.: Forwarding in at-
tribute grammars for modular language design. In: Proc. 11th Intl. Conf. on Com-
piler Construction. LNCS, vol. 2304, pp. 128–142 (2002)

20. Van Wyk, E., Schwerdfeger, A.: Context-aware scanning for parsing extensible lan-
guages. In: Intl. Conf. on Generative Programming and Component Engineering,
(GPCE). ACM Press (October 2007)

21. Viera, M., Swierstra, S.D., Swierstra, W.: Attribute grammars fly first-class: How
to do aspect oriented programming in haskell. In: Proc. of 2009 International Con-
ference on Functional Programming (ICFP’09) (2009)

22. Visser, E.: Stratego: A language for program transformation based on rewriting
strategies. System description of Stratego 0.5. In: Rewriting Techniques and Ap-
plications (RTA’01). LNCS, vol. 2051, pp. 357–361. Springer-Verlag (2001)

23. Voelter, M.: Language and ide modularization, extension and composition with
mps. In: GTTSE 2011 (2011)


