
How can formalization of SOA help in finding
solutions for IT systems

Zdeněk Skřivánek, Karel Richta

Dept.of Software Engineering, Faculty of Mathematics and Physics
Charles University, Malostranské nám. 25

118 00 Prague 1, Czech Republic
{zdenek.skrivanek, karel.richta}@mff.cuni.cz

How can formalization of SOA help in finding solutions

for IT systems

Zdeněk Skřivánek1, Karel Richta1

1Dept.of Software Engineering, Faculty of Mathematics and Physics
Charles University, Malostranské nám. 25

118 00Prague 1, Czech Republic
mailto:zdenek.skrivanek,karel.richta@mff.cuni.cz

Abstract. Service Oriented Architectures (SOA) are nowadays one of the most
important styles in developing new information systems. SOA is attracting a lot
of attention in industry as credible tool for managing large infrastructures.
These systems divided into divisions have often complex models, which can
contain mistakes or are informal. There are not enough current tools for testing
semantic correctness of included services. Ways in research of solving such
challenges are Model Driven Development (MDD) principles. We introduce the
necessity of formalization of SOA in process of developing new systems and
also integrating the legacy systems. We want to describe the ideas of how to
achieve machine readable specifications using software tools which can then be
used to verify the correctness of using the service along the required rules and
its testing. We want to open two specific areas of research that is formalization
of the transfer process between business and software design models and the
formalization of the methods of integrating existing services.

Keywords standardization, interoperability, design, formal methods

1. Introduction

When dealing with large complex systems it is generally recognized that we need
appropriate abstractions and structuring principles. Modern enterprises need to re-
spond effectively and quickly to opportunities in today’s ever more competitive and
global markets.

Service-oriented architectures (SOA) are the latest approach to deliver better un-
derstanding and improved techniques to master the complexities of the modern enter-
prise architectures. SOA is the main architectural concept in the field of service
oriented computing. SOA differs from past attempts in several fundamental ways.
First, it is language independent and makes no assumption about the underlying pro-
gramming model. Second, communication is no longer based exclusively on request-
respond patterns (RPC/RMI) but the emphasis is on asynchronous events and messag-
es. Third, SOA is complex. SOA sees the development of new applications and ser-

V. Snášel, K. Richta, J. Pokorný (Eds.): Dateso 2013, pp. 70–79, ISBN 978-80-248-2968-5.

How can formalization of SOA help in finding solutions for IT systems 71

vices mainly as the integration and composition of large scale services and applica-
tions rather than as a smaller scale programming problems. These differences arise
from the last two decades of solving solutions for IT systems and represent a signifi-
cant step forward. Definitions of SOA are given by several international bo-
dies/organizations, including the Organization for the Advancement of Structured
Information Standards (OASIS) and the World Wide Web Consortium (W3C). The
current SOA frameworks offer service reusability, consistency, efficiency and integra-
tion. A SOA is a set of components which can be invoked, and whose interface de-
scriptions can be published and discovered. SOA is not only an architecture, rather it
is a relationship between the service provider, broker and user. The main advantage
of this approach is giving the applications a way to integrate various services availa-
ble online within the context of the applications specific domain and using them as
needed instead of implementing the whole solution from scratch.

The rest of article is organized as follows. In Section 2 we introduce SOA as it
progressed through its own history; also we add history of its vital parts. In Section 3,
we explain the most important aspect of SOA, and our main interest, the SOA service.
In Section 4, we discuss how formalization came into SOA, methods and research
steps on this field and related works. In Section 5, we will try to define our point of
view on chosen issue, our future work and we will summarize all we wanted to ex-
plain in this article.

2. SOA progress through time

SOA emerges from previous successful solutions of developing IT systems and SOA
learned & followed the impact of styles such as Modular programming, Model-based
development, Software components and Object Orientation methods. SOA also adapts
well known technologies as Internet WWW, Open Systems, Net-Centricity, System-
of-Systems Engineering and Open Distributed Processing.

From these technologies became integral parts of SOA:

• Web Service Infrastructure
• Message-Oriented Middleware
• Enterprise Service Bus
• Enterprise Application Integration

When taken from the development view SOA adapts:

• Modular programming
• Model-based development
• Software components
• Object Orientation

As times went, business pushed onwards to the software vendors so SOA have to
adopt also:

• Loosely Coupled Organization
• Long Tail (Why the Future of Business Is Selling Less of More)

72 Zdeněk Skřivánek, Karel Richta

• Mass Customization
• Outsourcing
• Business as a platform
• Enterprise Federation
• Power to the Edge

All these mentioned technologies meets at SOA in its own style as Web Services,
Enterprise Mash-Ups, Software as a Service, Real time Enterprise and ESB & Grid.

In our project we will focus on three main aspects of SOA which are important for
our future work and they are: XML (content), web services (content transmitters) and
their usage in SOA.

Short history of XML: Like HTML, the Extensible Markup Language (XML) was a
W3C innovation derived from the popular Standard Generalized Markup Language
(SGML) that has existed since the late 60s. This widely used meta-language allowed
organizations to add intelligence to raw document data. XML gained popularity dur-
ing the eBusiness movement of the late 90s. Through the use of XML, developers
were able to attach meaning and context to any piece of information transmitted
across Internet protocols. Not only was XML used to represent data in a standardized
manner, the language itself was used as the basis for a series of additional specifica-
tions. The XML Schema Definition Language (XSD) and the XSL Transformation
Language (XSLT) were both authored using XML. These specifications, in fact, have
become key parts of the core XML technology set. The XML data representation
architecture represents the foundation layer of SOA. Within it, XML establishes the
format and structure of messages traveling throughout services. XSD schemas pre-
serve the integrity and validity of message data, and XSLT is employed to enable
communication between disparate data representations through schema mapping. In
other words, you cannot make a move within SOA without involving XML.

Short history of web services: In 2000, the W3C received a submission for the Simple
Object Access Protocol (SOAP) specification. This specification was originally de-
signed to unify (and in some cases replace) proprietary RPC communication. The idea
was for parameter data transmitted between components to be serialized into XML,
transported, and then de-serialized back into its native format. This ultimately led to
the idea of creating a pure, Web-based, distributed technology number one that could
leverage the concept of a standardized communications framework to bridge the
enormous disparity that existed between and within organizations. This concept was
called Web services. The most important part of a Web service is its public interface.

Interface is a central piece of information that assigns the service an identity and
enables its invocation. Therefore, one of the first initiatives in support of Web servic-
es was the Web Service Description Language (WSDL). The W3C received the first
submission of the WSDL language in 2001 and has since continued revising this
specification. To further the vision of open interoperability, Web services required an
Internet-friendly and XML-compliant communications format that could establish a
standardized messaging framework. Although alternatives, such as XML-RPC, were
considered, SOAP won out as the industry favorite and remains the foremost messag-
ing standard for use with Web services. In support of SOAP's new role, the W3C

How can formalization of SOA help in finding solutions for IT systems 73

responded by releasing newer versions of the specification to allow for both RPC-
style and document-style message types.

Completing the first generation of the Web services standards family was the
UDDI (Universal Description Discovery and Integration) specification. Originally
developed by UDDI.org, it was submitted to OASIS, which continued its develop-
ment in collaboration with UDDI.org. This specification allows the creation of stan-
dardized service description registries both within and outside of organization boun-
daries. UDDI provides the potential for Web services to be registered in a central
location, from where they can be discovered by service requestors. Unlike WSDL and
SOAP, UDDI has not yet attained industry-wide acceptance, and remains an optional
extension to SOA. Custom Web services were developed to accommodate a variety of
specialized business requirements, and a third-party marketplace emerged promoting
various utility services for sale or lease [11].

3. SOA Services

Service oriented architecture puts, as the name itself tells, the main pressure on ser-
vices. Service can implement a single business process or a set of different processes
that are made available for integration with other heterogeneous services. Services
can be developed using a wide range of technologies, including SOAP, REST, RPC,
DCOM, CORBA and Web Services. SOA basically involves three main players: the
service provider, the service broker and the service consumer see Fig. 1. The service
provider designs and develops a service. The service broker makes this service avail-
able to the rest of world through public registries such as Universal Description Dis-
covery and Integration (UDDI) for web services. The service consumer locates the
entries in the public registry and binds with the service provider to invoke the web
services required.

Services are described in a standard definition language, have a published interface,
and communicate with each other requesting execution of their operations in order to
collectively support a common business task or process [13]. Services in SOA are

Fig. 1: Overview of requests and response flow between the actors in SOA

74 Zdeněk Skřivánek, Karel Richta

loosely coupled, supposed to be autonomous, self-contained, one have neither control
nor authority over them.

Most common type of service in SOA is a web service which is a method of com-
munication between two electronic devices over the World Wide Web. A Web ser-
vice is a software function provided at a network address over the web or the cloud, it
is a service that is "always on" as in the concept of utility computing.
The W3C defines a "Web Service" as "a software system designed to sup-
port interoperable machine-to-machine interaction over a network".

It has an interface described in a machine-process format (specifically Web Servic-
es Description Language, known by the acronym WSDL). Other systems interact with
the Web service in a manner prescribed by its description using SOAP messages,
typically conveyed using HTTP with an XML serialization in conjunction with other
Web-related standards. The W3C also states, "We can identify two major classes of
Web services, REST-compliant Web services, in which the primary purpose of the
service is to manipulate XML representations of Web resources using a uniform set of
"stateless" operations; and arbitrary Web services, in which the service may expose an
arbitrary set of operations."[13].

WS* is set of specifications proposed through W3C, OASIS, WS-I. It uses SOAP,
WSDL, WS-Security. It is supported by IBM, Microsoft. It is designed as a technical
implementation of service Oriented Architecture.

Service requests are messages formatted according to the Simple Object Access
Protocol (SOAP). SOAP entails a light-weight protocol allowing RPC-like calls over
Internet [13]. The SOAP request is received by a run-time service (a SOAP “listener”)
that accepts the SOAP message, extracts the XML message body, transforms the
XML message into a native protocol, and delegates the request to the actual business
process within an enterprise. SOAP is by nature a platform-neutral and vendor-neutral
standard. These characteristics allow a loosely coupled relationship between requester
and provider, which is important especially over the Internet where two parties may
resides in different organizations or enterprises.

Requested operations of Web services are implemented using one or more Web
service components. Web service components may be hosted within a Web service
container providing facilities such as location, routing, service invocation and man-
agement. Web containers are similar to J2EE containers. Thread pooling allows mul-
tiple instances of a service to be attached to multiple listeners within a single contain-
er. Finally the response that the provider sends back to the client takes again the form
of a SOAP envelope carrying on XML message [13]. While SOA services are visible
to the service client, their Web components are transparent. The service consumer
does not have to be concerned with the implementation of the service, as long as it
supports the required functionality, while offering the desired quality of service.

Other technology than SOAP nowadays popular is REST. REST defines a set of
architectural principles by which you can design Web services that focus on a sys-
tem's resources, including how resource states are addressed and transferred over
HTTP by a wide range of clients written in different languages. If measured by the
number of Web services that use it, REST has emerged in the last few years alone as a
predominant Web service design model. In fact, REST has had such a large impact on
the Web that it has mostly displaced SOAP- and WSDL-based interface design be-
cause it's a considerably simpler style to use [13]. A fully REST-compliant architec-

How can formalization of SOA help in finding solutions for IT systems 75

ture is created without using SOAP at all. WSDL version 2.0 offers support for bind-
ing to all the HTTP request methods (not only GET and POST as in version 1.1) so it
is closer to REST-ful web services [8]. However, support for this specification is still
poor in software development kits, which often offer tools only for WSDL 1.1. Com-
plete REST example can be found at [15].

4. Formalization

Formal methods and tools are a popular means of analyzing the correctness proper-
ties, specification of a service.

Web services are based on very minimal set of concepts: service, XML document,
address and envelope. All the services must expose an interface defined using the
WSDL. Several XML-based languages have been proposed for orchestration and
choreography. There are many attempts to built formal frameworks for SOA manag-
ing orchestration of the services, see [2]. Services orchestration is a key issue in order
to fit expectations and reach objects. Amongst the most well known orchestration
languages BPEL4WS, XLANG, BPML, WSFL, WS-CDL, pi-calculus etc. The au-
thors distinguish two layers: an abstract layer for which process algebras can be used
and a concrete layer using classical services description, orchestration and choreogra-
phy languages (WSDL, WS-CDL). Services are implemented with programming
languages (Java, C# …).

Non-functional properties which include scalability, service reliability, and service
flexibility can be assured by Quality of Service (QoS) methods. QoS is the set of
techniques to manage network resources. The goal of QoS is to provide guarantees on
the ability of a network to deliver predictable results. Elements of network perfor-
mance within the scope of QoS often include availability (up-
time), bandwidth (throughput), latency (delay), and error rate.

Description of service capabilities as automation of composition is addressed by
the usage of XML-based standards for a machine readable message and interface
description (i.e., WSDL). Also, orchestration languages provide the possibility of
defining business processes. Besides these there are some more advised techniques
we should also consider as distributed problem solving (DPS).

Each service can be characterized syntactically by its type of input and its type of
output messages, i.e., its syntactic interface. The behavior of a service is characterized
by the relation of input- and output messages [2]. The service perspective is the most
abstract perspective within the SOA framework. The structure within this perspective
defines which services are provided at the interface (black-box-view).

There are also commercial successful approaches as The Windows Communication
Foundation (or WCF), previously known as "Indigo", is a runtime and a set of APIs
(application programming interfaces) in the .NET Framework for building connected,
service-oriented applications or IBM WebSphere Service Registry and Repository
(WSRR) which is a service registry for use in a Service-oriented architecture etc.

76 Zdeněk Skřivánek, Karel Richta

5. Service Model

The service model tells “how the service works”; that is, it describes what happens
when the service is carried out [1]. For nontrivial services (those composed of several
steps over time), this description may be used by a service-seeking agent in at least
four different ways:
(1) to perform a more in-depth analysis of whether the service meets its needs;
(2) to compose service descriptions from multiple services to perform a specific task;
(3) during the course of the service enactment, to coordinate the activities of the

different participants; and
(4) to monitor the execution of the service.
The process model identifies three types of processes: atomic, simple, and composite.
Each of these is described below.

The atomic processes are directly invocable (by passing them the appropriate mes-
sages). Atomic processes have no subprocesses, and execute in a single step, from the
perspective of the service requester. That is, they take an input message, execute, and
then return their output message – and the service requester has no visibility into the
service’s execution. For each atomic process, there must be provided a grounding that
enables a service requester to construct these messages.

Simple processes are not invocable and are not associated with a grounding, but,
like atomic processes, they are conceived of as having single-step executions. Simple
processes are used as elements of abstraction; a simple process may be used either to
provide a view of (a specialized way of using) some atomic process, or a simplified
representation of some composite process (for purposes of planning and reasoning).
In the former case, the simple process is realized by the atomic process; in the latter
case, the simple process expands to the composite process.

Composite processes are decomposable into other (non-composite or composite)
processes; their decomposition can be specified by using regular control constructs
such as “Sequence” and “If-Then-Else”. Such a decomposition normally shows,
among other things, how the various inputs of the process are accepted by particular
subprocesses, and how its various outputs are returned by particular subprocesses.

6. Related works

A variety of description techniques and formalism already exists, which differ in
many aspects such as separation between control, communication, structuring, formal
foundation, process composition, concepts and so on. The concept of processes is
introduced in Petri nets or in activity diagrams of the Unified Modeling Language.
Formalization of the activity diagram semantics is possible in terms of existing for-
malism such as (Colored) Petri nets or by introducing new formalism. Another Petri
net-based approach focusing on the control of flow aspect is YAWL. BPEL is a do-
minant language for the definition and execution of business process using Web
services. Approaches using process algebra like ACP, CCS, CSP and variants in order
to formalize work flows.

How can formalization of SOA help in finding solutions for IT systems 77

A wide variety of formal models exists for service-oriented computing. Two dis-
tinguished approaches of formalization are presented: process calculus models for
expressing and analyzing service based-systems, or models for giving a formal se-
mantic for a standard orchestration language, like BPEL [2]. Business Process Execu-
tion Language (BPEL), short for Web Services Business Process Execution Lan-
guage (WS-BPEL) is an OASIS [2] standard executable language for specifying ac-
tions within business processes with web services. Processes in BPEL export and
import information by using web service interfaces exclusively. There are three main
interactions in web service composition, they are: invoke, send, and receive. In the
colored Petri nets they are modeled as transitions [4].

There is need to understand and justify the role of formal engineering methods in
developing services for SOA. Address the barriers to deploying formal engineering
methods in business. Achieve deployment of formal engineering methods. We want to
become inspired from other researchers solutions and we will bring own added value
to it.

7. Conclusion and future work

It is clear that there are not enough current known tools for testing semantic correct-
ness of included services. Our aim is to fill this gap with our own solution and pro-
grammed tools to use.

Model driven development principles try to achieve machine readable specifica-
tions and define software tools which can then be used to verify the correctness of
using the services according to the required rules and its testing. The formalization of
the transfer process between business models and software design models, and the
formalization of the methods of integrating existing services.

There is a gap of abstraction between the formal model and concrete implementa-
tion. We should make it as small as possible. First we will seek for a service model.
Patterns as components of software development could be used in model driven de-
velopment or in domain specific modeling (DSM).

Available approaches do not relate available techniques to a basic, comprehensive
semantic model. In order to establish an engineering approach for SOA, such a theo-
retical foundation of the basic concept is needed. Once we establish understanding of
concepts, we can start the formalization. Operations can follow as simulation, verifi-
cation, methodological support, tools etc. and we try to map them to the existing me-
thodologies, tools, and framework if needed.

SOA has various levels of abstraction – similar to object orientation where we dis-
tinguish OO-analysis, OO-design and OO-programming. These levels address differ-
ent aspects like business process modeling, system architecture and implementation.
The different levels of abstraction should not exist independently but should be re-
lated to each other.

We will try to find out why some projects using formal methods but others not.
Identify positive & negative experiences, opportunities & obstacles, what the added
value is. And solve all our efforts to the point when integration will be possible to
accomplish by non-experts.

78 Zdeněk Skřivánek, Karel Richta

Validation and verification must take place in order to ensure the correctness of the
solution with the initial business requirements and the defined semantics. Verification
and validation is possible only if concepts are clearly defined, their exact relations can
be developed. Model of a service is needed. We want to describe SOA scenarios
while there can be benefits from the advantages offered by formal methods.

At the business level, we do not want to consider platform-specific aspects but
concentrate on core functionalities. Using components and connectors, communicat-
ing through dedicated ports only. Define vocabulary of elements as message, channel,
semantics, specification, composition etc. Define and constraint relationships, com-
munication mechanisms, and reconfiguration mechanisms. The use of UML and
UML profiles as concrete notation for the presented SOA models.

Fig. 2: Overview of service modeling, services and they relationship

Added topic one of the nowadays challenges in SOA could be the gap between trans-
formation of business models with no component specification into a software model.
All these steps we will try to finish with dedicated tools to verify of using that service.

This all is meant as verifying the process when creating new services across the
needs of business, also one added interest for us will be integration of existing servic-
es into SOA by MDI (Model Driven Integration) see Fig. 2. This process of develop-
ing services across MDD/MDI we will enchant by adding component such type as a
knowledge base based on CBR mechanism (Case Based Reasoning). We argue for the
use of the formalization as a basis for the development of tool-supported engineering
approach.

How can formalization of SOA help in finding solutions for IT systems 79

References

1. Agarwal, S.: Formal Description of Web Services for Expressive Matchmaking. Ph.D.
thesis, University of Karlsruhe, 2007.

2. Allam, D.: A Unified Formal Model for Service Oriented Architecture to Enforce Security
Contracts, In: AOSD, 2012.

3. Alonso, G.: Challenges and Opportunities for Formal Specifications in Service Oriented
Architectures, Springer-Verlag, 2008.

4. Bhakti, M.A.C. – Abdullah, A.B.: Formal Modelling of an Autonomic Service Oriented
Architecture. In: International Conference of Telecommunication Technology and Appli-

cations, 2011.
5. Bocchi, L. – Ciancarini, P.: On the Impact of Formal Methods in the SOA. ScienceDirect,

2006.
6. Broy, M. – Leuxner, Ch. – Fernández, D.M. – Heinemann, L. – Spanfelner, B. – Mai, W.

– Schlör, R: Towards a Formal Engineering Approach for SOA. Technical Report, Tech-
nische Universität München, December 2010.

7. Complex Rest example:
URL: http://www.acme.com/phonebook/UserDetails?firstName=John&lastName=Doe

8. Erl, T.: Service-Oriented Architecture a field guide to Integrating XML and Web services,
ISBN 0-13-142898-5, 2009.

9. Erl, T.: SOA Principles of Service Design, ISBN 0-13-234482-3, 2008.
10. Erl, T.: SOA Design Patters, ISBN 0-13-613516-1, 2009.
11. Erl, T.: SOA Kompletní průvodce, ISBN 978-80-251-1886-3, 2009.
12. Khosravi, A. – Modiri, N.: Service Oriented Architecture Essentiality as a Best-Practice

for the Development of Large Software Projects. Journal of Automation and Control En-

gineering, 2012.
13. Parazouglu, M.P. - Van den Heuven, W.J.: Service oriented architectures: approaches,

technologies and research issues, The VLDB Journal, Volume 16 Issue 3, July 2007
Pages 389 – 415, 2007.

14. Rodriguez, A.: RESTful Web services: The basics, IBM, 2008.
15. Singh, H. – Singh, R.: On Formal Models and Deriving Metrics for Service-Oriented

Architecture. Journal of Software, Vol. 5,No. 8, 2010.
16. Šelmeci, R. - Rozinajová, V.: One approach to partial formalization of SOA design pat-

terns using production rules. In: Proceedings of the Federated Conference on Computer

Science and Information Systems, ISBN 978-83-60810-51-4, pp. 1381–1384, 2012.
17. Verjus, H. - Pourraz, F.: A formal framework for building, checking and evolving service

oriented architectures, LISTIC – Language and Software Evolution group. In: ECOWS '07

Proceedings of the Fifth European Conference on Web Services, pp. 245-254, 2007.
18. Wolff, T.: Using models to design business processes and services, IBM Corporation,

2011.

