
Application of Relative Derivation Terms by
Polynomial Neural Networks

Ladislav Zjavka

VŠB – Technical University of Ostrava, IT4innovations Ostrava, Czech Republic
ladislav.zjavka@vsb.cz

Application of Relative Derivation Terms by
Polynomial Neural Networks

Ladislav Zjavka

VŠB-Technical University of Ostrava, IT4innovations Ostrava, Czech Republic
ladislav.zjavka@vsb.cz

Abstract. A lot of problems involve unknown data relations, which can define
a derivative based model of dependent variables generalization. Standard soft-
computing methods (as artificial neural networks or fuzzy rules) apply usual
absolute interval values of input variables. The new proposed differential
polynomial neural network makes use of relative data, which can better
describe the character regarding a wider range of input values. It constructs and
resolves an unknown partial differential equation, using fractional polynomial
sum derivative terms of relative data changes. This method might be applied to
solve problems concerned a visual pattern generalization or complex system
modeling.

1 Introduction

Differential equations are able to solve a variety of pattern recognition and function
approximation problems [2]. A principal lack of the artificial neural network (ANN)
behavior in general is a disability of the data relation generalization [8]. Differential
polynomial neural network (D-PNN) is a new neural network type, designed by the
author, which creates and resolves an unknown partial differential equation (DE) of a
multi-parametric function approximation. A DE is replaced producing sum of
fractional polynomial derivative terms, forming a system model of dependent
variables. Its regression is not based on a simple whole-pattern affinity but learned
generalized data relations. This seems to be mainly profitable by application of
different learning and testing interval values of input variables. Standard soft-
computing methods usual are not able to operate correctly on varying training and
testing data range, utilizing only the absolute values.

∑∑∑∑∑∑
= = == ==

++++=
m

i

m

j

m

k
kjiijk

m

i

m

j
jiij

m

i
ii xxxaxxaxaay

1 1 11 11
0 ... (1)

m – number of variables
A(a1, a2, ... , am), ... - vectors of parameters X(x1, x2, ... , xm) - input vector

 D-PNN resulted from the GMDH polynomial neural network (Fig.1.), which

was created by a Ukrainian scientist Aleksey Ivakhnenko in 1968 [3]. When the back-

V. Snášel, K. Richta, J. Pokorný (Eds.): Dateso 2013, pp. 98–108, ISBN 978-80-248-2968-5.

Application of Relative Derivation Terms by Polynomial Neural Networks 99

propagation technique was not known yet a technique called Group Method of Data
Handling (GMDH) was developed for neural network structure design and
parameters of polynomials adjustment. General connection between input and output
variables is expressed by the Volterra functional series, a discrete analogue of which
is Kolmogorov-Gabor polynomial (1). This polynomial can approximate any
stationary random sequence of observations and can be computed by either adaptive
methods or system of Gaussian normal equations.

y’ = a0 + a1xi + a2xj + a3xixj + a4xi

2 + a5xj
2 (2)

GMDH decomposes the complexity of a process into many simpler relationships

each described by low order polynomials (2) for every pair of the input values.
Typical GMDH network maps a vector input x to a scalar output y', which is an
estimate of the true function f(x) = y. Each neuron of the polynomial network fits its
output to the desired value y for each input vector x from the training set. It defines an
optimal structure of complex system model with identifying non-linear relations
between input and output variables [5].

2 Differential polynomial neural network

The basic idea of the D-PNN is to create and replace a partial differential equation
(DE) (3), which is not known in advance and is able to describe a system of
dependent variables, with a sum of fractional multi-parametric polynomial derivative
terms (4)[2].

 ∑∑∑∑
∞

====

==+
∂∂

∂
+

∂
∂

+
11

2

11
0...

k
k

n

j ji
ij

n

i

n

i i
i uu

xx
uc

x
uba (3)(4)

u(x1, x2,, … , xn) - searched function of all input variables (dependent variable)
a, B(b1, b2,, ..., bn), C(c11, c12, ,...) - parameters

The applied method of integral analogues replaces math operators and symbols of

a DE by ratio of corresponding variables. Derivatives are replaced by the integral
analogues, i.e. derivative and all operators are replaced by analogous or proportion
marks in equations [4].

()

m

n
mn

m

i xxx
xxf

xbb
xaxaxxaxaxaa

u
∂∂∂

∂
=

++
++++++

=
...

),...,(
...

...

21

1

110

2
25

2
1421322110 (5)

n – combination degree of a complete polynomial of n-variables
m – combination degree of denominator

The numerator of a term (5) is a polynomial of all n-input variables of a single

neuron and partly defines an unknown function u of eq. (3)(4). The denominator is a
derivative part of a DE term (5), which arose from the partial derivation of the
complete n-variable polynomial by competent variable(s). The root function of
numerator takes the polynomial into competent combination degree but needn’t be
used at all if not necessary.

100 Ladislav Zjavka

A block of the D-PNN (Fig.1.) consists of basic neurons, one for each fractional
polynomial (5), defining a sum partial derivative term of the DE (3) solution. Blocks
of higher layers are additionally extended with compound neurons of composite
functions, which apply previous layer block outputs and inputs. Each block contains a
single output polynomial (without derivative part), thus the block skeleton of the D-
PNN is formed by the GMDH network. Neurons don’t affect the block output but are
applied directly in the sum of a total output calculation of a PDE composition (4).
Each block has 1 and neuron 2 vectors of adjustable parameters a, resp. a, b.

x1 x2 x3

Block output

Polynomial

Neurons (5)

Input
variables

Combination
degree n=3

Compound
neurons

/ /

Π

Fig. 1. D-PNN block of basic and compound neurons

Root mean square (RMS) error method (6) was applied for polynomial parameter

optimization and PDE term selection.

()
min

2

1 →
−

=
∑

=

M

yy
E

M

i
i

d

 (6)

3 Multi-layered backward D-PNN

Multi-layered D-PNN forms composite polynomial functions (Fig.2.). Compound
DE terms, i.e. derivatives in respect to variables of previous layers, are calculated
according to the composite function partial derivation rules (7)(8). They are formed
by products of partial derivatives of external and internal functions.

F(x1, x2, … , xn) = f(y1, y2, … , ym) = f(φ1(X), φ2(X),..., φm(X)) i = 1, … , m (7)

∑
= ∂

∂
⋅

∂
∂

=
∂
∂ m

i k

i

i

m

k x
X

y
yyyf

x
F

1

21)(),...,,(φ k=1, … , n (8)

Each block of the D-PNN involves basic neurons e.g. (9), at first of only linear

regression. Additionally blocks of the 2nd and following hidden layers are also
extended with neurons, which form composite derivatives utilizing outputs and inputs

Application of Relative Derivation Terms by Polynomial Neural Networks 101

of back connected previous layer blocks, e.g. the 1st block of the last (3rd) hidden
layer (10)(11) [7].

()

)(2
),(

2110

2
1

222132222110
1

21

2221
1 xbb

xxaxaxaa
w

x
xxf

y
+⋅

+++
=

∂
∂

= (9)

()1110

21

22

222132222110
2

11

2221
2 2

)(
2

)(),(2
1

2
1

xbb
x

x
xxaxaxaa

w
x

xxf
y

+⋅
⋅

⋅
+++

=
∂

∂
= (10)

()110

11

12

21

22

222132222110
3

1

2221
3 2

)(
2

)(
2

)(),(2
1

2
1

2
1

xbb
x

x
x

x
xxaxaxaaw

x
xxfy

+⋅
⋅

⋅
⋅

⋅
+++

=
∂

∂
= (11)

x1 x2 x3

x31

Y

x23x22x21

x13x12x11

Σ

CT CT CT

CT CT CT

Fig. 2. 3-variable 2-combination block D-PNN

The best-fit neuron selection is the initial phase of the DE composition and may

apply a proper genetic algorithm (GA). Parameters of polynomials might be adjusted
by means of difference evolution algorithm (EA), supplied with sufficient random
mutations [1]. The parameter optimization is performed simultaneously with the GA
term combination search, where may arise a quantity of local and global error
solutions. There would be welcome to apply an adequate gradient descent method

102 Ladislav Zjavka

too, which parameter updates result from partial derivatives of polynomial DE terms
in respect with the single parameters [6]. The number of network hidden layers
coincides with a total amount of input variables.

k

y
Y

k

i
i∑

== 1 k = amount of active DE terms (11)

Only some of all potential combination DE terms (neurons) may participate in the

DE composition, in despite of they have an adjustable term weight (wi). D-PNN’s
total output Y is the sum of all active neuron outputs, divided by their amount k (11).

4 Identification of data relations

Consider first only a linear simplification of data relations, thus only linear
polynomials of neurons and blocks might be applied. D-PNN consisting of only 1
block of 2 neurons, all terms of the DE (12), is able to identify simple linear 2-
variable dependence (function), e.g. x1 = 2x2.

() ()
210

2
1

21322110
2

110

2
1

21322110
1 xbb

xxaxaxaa
w

xbb
xxaxaxaa

wy
+

+++
+

+
+++

= (12)

 More complicated dependence, where 2 variables depend on a 3rd (e.g. x1 + x2 =

x3) may be resolved again D-PNN with one 3-variable combination block. The
complete DE (of 1 and 2-combination derivatives) consists of 6 sum terms (neurons)
but only 3 may be employed, derivative terms for x3 (13), x1x3 (14), x2x3 (15). Some
neurons must be inactivated, having an undesirable effect on the network correct
operation. The applied 2-variable combination block D-PNN has 3 hidden layers
(Fig.2.).

()

310

3
1

32172143322110
11

...
xbb

xxxaxxaxaxaxaawy
+

++++++
= (13)

()
31332110

3
2

32172143322110
22

...
xxbxbxbb

xxxaxxaxaxaxaawy
+++

++++++
= (14)

()
32332210

3
2

32172143322110
33

...
xxbxbxbb

xxxaxxaxaxaxaawy
+++

++++++
= (15)

 D-PNN can indicate the learned dependence of 3 variables (function) by the

output value 1.0 (or any desired). It was trained with only 6 data samples (Tab.1),
which were selected to involve proportionally the whole training data interval values
<0,500>. However the output function values x3=x1+x2 (x-axis) of the test random
input vectors can exceed the maximal trained sum value 500, while the response is

Application of Relative Derivation Terms by Polynomial Neural Networks 103

kept (Fig.3.). Output errors can result from very disproportional random vector
values, which D-PNN was not trained to, e. g. 360 = 358 + 2.

Table 1. Training data set of the 3-variable dependence (function) identification x1+ x2 = x3

 1 2 3 4 5 6
x1 1 70 40 160 30 300
x2 2 3 100 60 330 200
x3 3 73 140 220 360 500

The identification of data relations might be applied to a generalization of

fragmented visual patterns into some characteristic dependent elements, which shape
assume moved or sized form in the input matrix and where ANN applications fail [7].
The outcomes of 1-block and multi-layered D-PNN are comparable, however the 2nd
type is able to involve far larger amount of DE terms and so form a more accurately
description of a model.

Fig. 3. Identification of a multi-parametric function relation

5 Function approximations

D-PNN can approximate a multi-parametric function, analogously to the ANN
approach. Consider the sum function again yt = x1 + x2 + x3, however it could be any
linear function. The network with 3 input variables, forming 1 output y = f(x1, x2, x3)
should approximate the true function yt by means of sum derivative terms of the
partial DE solution. The training data was necessary to be doubled into 12 samples
(Tab.2). The D-PNN and ANN approximation is co-equal on the trained interval
values <6, 520>, however the ANN approximation ability rapidly falls outside of this
range (Fig.4.). The type and operating principle of the D-PNN is the same with

104 Ladislav Zjavka

applied the dependence identification (Fig.2.), though requiring more time-consuming
adjustment.

Table 2. The yt = x1 + x2 + x3 function approximation training data set

 1 2 3 4 5 6
x1 1 70 4 160 200 30
x2 2 3 100 90 20 330
x3 3 20 40 10 100 20
yd 6 93 144 260 320 380

 7 8 9 10 11 12

x1 4 10 150 20 50 260
x2 5 70 5 210 150 60
x3 12 80 55 100 200 200
yd 21 160 210 330 400 520

Fig. 4. Comparison of a linear multi-parametric function approximation

0,,,,,,, 2

22

2

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂∂
∂

∂
∂

∂
∂

∂
∂

y
u

yx
u

x
u

y
u

x
uuyxF (16)

where F(x, y, u, p, q, r, s, t) is a function of 8 variables

In the case of a real-data application D-PNN processes 2-combination square

polynomials of blocks and neurons (DE terms), the same as applied by the GMDH
algorithm (2). This simple polynomial type proves to yield best results besides an
easy use and improves also the linear function approximation (which is notable).
Thus each block includes 5 basic neurons of derivatives x1, x2, x1x2, x1

2, x2
2 of the 2nd

Application of Relative Derivation Terms by Polynomial Neural Networks 105

order partial DE (3) of an unknown 2-variable function u, which might be transferred
into form of eq. (16). Without this extension only a linear regression of the training
data set would be applied. The square and combination derivative terms are also
calculated according to the composite function derivation rules (17)(18). However
they don’t apply the complete sum of the formulas but only 2 simple terms with 1st
order external function derivatives e.g. (19).

)],(),,([),(),(yxyxfvufyxF ψϕ== (17)

2

2

2

22

2

222

2

2

2

2

2
xv

f
xu

f
xv

f
xxvu

f
xu

f
x
F

∂
∂

⋅
∂
∂

+
∂
∂

⋅
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

+
∂
∂

⋅
∂
∂

∂∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=
∂
∂ ψϕψψϕϕ (18)

)(23
)(),(

2
1121110

21

22

2
225

2
214222132222110

42
11

2221
2

4

2
1

xbxbb
x

x
xaxaxxaxaxaaw

x
xxfy

++⋅
⋅

⋅
+++++

=
∂

∂
= (19)

 (a)

106 Ladislav Zjavka

 (b)

 (c)

 (d)

Application of Relative Derivation Terms by Polynomial Neural Networks 107

Fig. 5a-d. Comparison of static pressure time-series predictions

The 3-variable D-PNN applying extended polynomials (2) of blocks, neurons and

square, combination DE terms, tried to predict the static pressure of 1 site locality
time-series (Fig.5a-d). It was trained along with the 1-layer ANN the previous day
hourly pressure data series (24 or 48 hours, i.e. data samples), which are free on-line
available [9]. Meteorological forecasts require as a rule high amount of state input
variables to define a complex model, however some tendencies of the progress curves
are notable. The D-PNN 2 models double the applied amount of neurons compared
with D-PNN 1 (Fig.5.). The DE composition based predictions of the D-PNN seems
to succeed any better. The more varied models are formed than ANN (applying 4 or 5
input variables), which is induced by a different neuron combination selection.

6 Conclusion

D-PNN is a new neural network type, which identification and function
approximation is based on generalization of data relations. The relative data
processing is contrary to common soft-computing method approachs (e.g. ANN),
which applications are subjected to a fixed interval of absolute values. This handicap
disallows to use various learning and testing data range values (Fig.4.), which may
involve real data applications. Thus D-PNN’s non-linear regression can cover a
generalization of wider interval values. It forms and resolves a DE, composed of sum
fractional derivative terms, defining a system model of dependent variables. It is
trained only with a small set of input-output data samples, likewise the GMDH
algorithm does [1]. The inaccuracies of presented experiments can result from applied
incomplete rough training and selective methods, requiring large improvements.
Behavior of the presented method differs essentially from other common neural
network techniques.

Acknowledgement

This work has been elaborated in the framework of the IT4Innovations Centre of
Excellence project, reg. no. CZ.1.05/1.1.00/02.0070 supported by Operational
Programme ’Research and Development for Innovations’ funded by Structural Funds
of the European Union and by the Ministry of Industry and Trade of the Czech
Republic, under the grant no. FR-TI1/420 , and by SGS, VŠB – Technical University
of Ostrava, Czech Republic, under the grant No. SP2012/58.

108 Ladislav Zjavka

References

1. Das, S., Abraham, A., Konar, A.: Particle swarm optimization and Differential evolution
algorithms. Studies in Computational Intelligence (SCI) 116, 1-38, 2008. Springer-Verlag
Berlin.

2. Iba, H.: Inference of differential equation models by genetic programming. Information
Sciences, Volume 178, Issue 23, 1 December 2008, Pages 4453–4468.

3. Ivakhnenko, A.G.: Polynomial theory of complex systems. IEEE Transactions on systems,
Vol. SMC-1, No.4. 1971.

4. Kuneš, J., Vavroch, O., Franta, V.: Essentials of modeling. SNTL Praha 1989 (in Czech).
5. Nikolaev, N.Y., Iba, H.: Adaptive Learning of Polynomial Networks. Springer, New York

2006.
6. Nikolaev, N. Y., Iba, H.: Polynomial harmonic GMDH learning networks for time series

modelling. Neural Networks 16 (2003), 1527–1540. Science Direct.
7. Zjavka, L. : Generalization of patterns by identification with polynomial neural network.

Journal of Electrical Engineering Vol. 61, No. 2/2010, p. 120-124
8. Zjavka, L.: Recognition of Generalized Patterns by a Differential Polynomial Neural

Network. Engineering, Technology & Applied Science Research Vol. 2, No 1 (2012).
9. National Climatic Data Center of National Oceanic and Atmospheric Administration

(NOAA) http://cdo.ncdc.noaa.gov/cdo/3505dat.txt

