
Application of Relative Derivation Terms by
Polynomial Neural Networks

Ladislav Zjavka
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Abstract. A lot of problems involve unknown data relations, which can define 
a derivative based model of dependent variables generalization. Standard soft-
computing methods (as artificial neural networks or fuzzy rules) apply usual 
absolute interval values of input variables. The new proposed differential 
polynomial neural network makes use of relative data, which can better 
describe the character regarding a wider range of input values. It constructs and 
resolves an unknown partial differential equation, using fractional polynomial 
sum derivative terms of relative data changes. This method might be applied to 
solve problems concerned a visual pattern generalization or complex system 
modeling.  

1   Introduction 

Differential equations are able to solve a variety of pattern recognition and function 
approximation problems [2]. A principal lack of the artificial neural network (ANN) 
behavior in general is a disability of the data relation generalization [8]. Differential 
polynomial neural network (D-PNN) is a new neural network type, designed by the 
author, which creates and resolves an unknown partial differential equation (DE) of a 
multi-parametric function approximation. A DE is replaced producing sum of 
fractional polynomial derivative terms, forming a system model of dependent 
variables. Its regression is not based on a simple whole-pattern affinity but learned 
generalized data relations. This seems to be mainly profitable by application of 
different learning and testing interval values of input variables. Standard soft-
computing methods usual are not able to operate correctly on varying training and 
testing data range, utilizing only the absolute values.  
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m – number of variables 
A(a1, a2, ... , am), ... -  vectors of parameters X(x1, x2, ... , xm)  -  input vector 

 
    D-PNN resulted from the GMDH polynomial neural network (Fig.1.), which 

was created by a Ukrainian scientist Aleksey Ivakhnenko in 1968 [3]. When the back-
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propagation technique was not known yet a technique called Group Method of Data 
Handling (GMDH) was developed for neural network structure design and 
parameters of polynomials adjustment. General connection between input and output 
variables is expressed by the Volterra functional series, a discrete analogue of which 
is Kolmogorov-Gabor polynomial (1). This polynomial can approximate any 
stationary random sequence of observations and can be computed by either adaptive 
methods or system of Gaussian normal equations. 

 
y’ = a0 + a1xi + a2xj + a3xixj + a4xi

2 + a5xj
2        (2) 

 
GMDH decomposes the complexity of a process into many simpler relationships 

each described by low order polynomials (2) for every pair of the input values. 
Typical GMDH network maps a vector input x to a scalar output y', which is an 
estimate of the true function f(x) = y. Each neuron of the polynomial network fits its 
output to the desired value y for each input vector x from the training set. It defines an 
optimal structure of complex system model with identifying non-linear relations 
between input and output variables [5]. 

2   Differential polynomial neural network 

The basic idea of the D-PNN is to create and replace a partial differential equation 
(DE) (3), which is not known in advance and is able to describe a system of 
dependent variables, with a sum of fractional multi-parametric polynomial derivative 
terms (4)[2]. 
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u(x1, x2,, … , xn) - searched  function of all input variables (dependent variable) 
a, B(b1, b2,, ..., bn), C(c11, c12, ,... ) - parameters 

 
The applied method of integral analogues replaces math operators and symbols of 

a DE by ratio of corresponding variables. Derivatives are replaced by the integral 
analogues, i.e. derivative and all operators are replaced by analogous or proportion 
marks in equations [4]. 
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n – combination degree of  a complete polynomial of n-variables   
m – combination degree of denominator 

 
The numerator of a term (5) is a polynomial of all n-input variables of a single 

neuron and partly defines an unknown function u of eq. (3)(4). The denominator is a 
derivative part of a DE term (5), which arose from the partial derivation of the 
complete n-variable polynomial by competent variable(s). The root function of 
numerator takes the polynomial into competent combination degree but needn’t be 
used at all if not necessary. 
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A block of the D-PNN (Fig.1.) consists of basic neurons, one for each fractional 
polynomial (5), defining a sum partial derivative term of the DE (3) solution. Blocks 
of higher layers are additionally extended with compound neurons of composite 
functions, which apply previous layer block outputs and inputs. Each block contains a 
single output polynomial (without derivative part), thus the block skeleton of the D-
PNN is formed by the GMDH network. Neurons don’t affect the block output but are 
applied directly in the sum of a total output calculation of a PDE composition (4). 
Each block has 1 and neuron 2 vectors of adjustable parameters a, resp. a, b. 
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Fig. 1. D-PNN block of basic and compound neurons 
 
Root mean square (RMS) error method (6) was applied for polynomial parameter 

optimization and PDE term selection. 
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3   Multi-layered backward D-PNN 

Multi-layered D-PNN forms composite polynomial functions (Fig.2.). Compound 
DE terms, i.e. derivatives in respect to variables of previous layers, are calculated 
according to the composite function partial derivation rules (7)(8). They are formed 
by products of partial derivatives of external and internal functions.  

 
F(x1, x2, … , xn) = f(y1, y2, … , ym) = f(φ1(X), φ2(X),..., φm(X)) i = 1, … , m (7) 

 

∑
= ∂

∂
⋅

∂
∂

=
∂
∂ m

i k

i

i

m

k x
X

y
yyyf

x
F

1

21 )(),...,,( φ  k=1, … , n (8) 

 
Each block of the D-PNN involves basic neurons e.g. (9), at first of only linear 

regression. Additionally blocks of the 2nd and following hidden layers are also 
extended with neurons, which form composite derivatives utilizing outputs and inputs 
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of back connected previous layer blocks, e.g. the 1st block of the last (3rd) hidden 
layer (10)(11) [7]. 
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Fig. 2. 3-variable 2-combination block D-PNN 
 
The best-fit neuron selection is the initial phase of the DE composition and may 

apply a proper genetic algorithm (GA). Parameters of polynomials might be adjusted 
by means of difference evolution algorithm (EA), supplied with sufficient random 
mutations [1]. The parameter optimization is performed simultaneously with the GA 
term combination search, where may arise a quantity of local and global error 
solutions. There would be welcome to apply an adequate gradient descent method 
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too, which parameter updates result from partial derivatives of polynomial DE terms 
in respect with the single parameters [6]. The number of network hidden layers 
coincides with a total amount of input variables. 
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Only some of all potential combination DE terms (neurons) may participate in the 

DE composition, in despite of they have an adjustable term weight (wi). D-PNN’s 
total output Y is the sum of all active neuron outputs, divided by their amount k (11). 

4   Identification of data relations 

Consider first only a linear simplification of data relations, thus only linear 
polynomials of neurons and blocks might be applied. D-PNN consisting of only 1 
block of 2 neurons, all terms of the DE (12), is able to identify simple linear 2-
variable dependence (function), e.g. x1 = 2x2. 
 

( ) ( )
210

2
1

21322110
2

110

2
1

21322110
1 xbb

xxaxaxaa
w

xbb
xxaxaxaa

wy
+

+++
+

+
+++

=      (12)

    
    More complicated dependence, where 2 variables depend on a 3rd (e.g. x1 + x2 = 

x3) may be resolved again D-PNN with one 3-variable combination block. The 
complete DE (of 1 and 2-combination derivatives) consists of 6 sum terms (neurons) 
but only 3 may be employed, derivative terms for x3 (13), x1x3 (14), x2x3 (15). Some 
neurons must be inactivated, having an undesirable effect on the network correct 
operation. The applied 2-variable combination block D-PNN has 3 hidden layers 
(Fig.2.).  
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    D-PNN can indicate the learned dependence of 3 variables (function) by the 

output value 1.0 (or any desired). It was trained with only 6 data samples (Tab.1), 
which were selected to involve proportionally the whole training data interval values 
<0,500>. However the output function values x3=x1+x2 (x-axis) of the test random 
input vectors can exceed the maximal trained sum value 500, while the response is 
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kept (Fig.3.). Output errors can result from very disproportional random vector 
values, which D-PNN was not trained to, e. g. 360 = 358 + 2. 

 
Table 1. Training data set of the 3-variable dependence (function) identification x1+ x2 = x3  
 

 1 2 3 4 5 6 
x1 1 70 40 160 30 300 
x2 2 3 100 60 330 200 
x3 3 73 140 220 360 500 

 
The identification of data relations might be applied to a generalization of 

fragmented visual patterns into some characteristic dependent elements, which shape 
assume moved or sized form in the input matrix and where ANN applications fail [7]. 
The outcomes of 1-block and multi-layered D-PNN are comparable, however the 2nd 
type is able to involve far larger amount of DE terms and so form a more accurately 
description of a model. 

 

 
 

Fig. 3. Identification of a multi-parametric function relation 

5   Function approximations 

D-PNN can approximate a multi-parametric function, analogously to the ANN 
approach. Consider the sum function again yt = x1 + x2 + x3, however it could be any 
linear function. The network with 3 input variables, forming 1 output y = f(x1, x2, x3) 
should approximate the true function yt by means of sum derivative terms of the 
partial DE solution. The training data was necessary to be doubled into 12 samples 
(Tab.2). The D-PNN and ANN approximation is co-equal on the trained interval 
values <6, 520>, however the ANN approximation ability rapidly falls outside of this 
range (Fig.4.). The type and operating principle of the D-PNN is the same with 
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applied the dependence identification (Fig.2.), though requiring more time-consuming 
adjustment. 
 
Table 2. The yt = x1 + x2 + x3 function approximation training data set 
 

 1 2 3 4 5 6 
x1 1 70 4 160 200 30 
x2 2 3 100 90 20 330 
x3 3 20 40 10 100 20 
yd 6 93 144 260 320 380 

 
 7 8 9 10 11 12 

x1 4 10 150 20 50 260 
x2 5 70 5 210 150 60 
x3 12 80 55 100 200 200 
yd 21 160 210 330 400 520 

 
 

 
 

Fig. 4. Comparison of a linear multi-parametric function approximation  
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where F(x, y, u, p, q, r, s, t) is a function of 8 variables 

 
In the case of a real-data application D-PNN processes 2-combination square 

polynomials of blocks and neurons (DE terms), the same as applied by the GMDH 
algorithm (2). This simple polynomial type proves to yield best results besides an 
easy use and improves also the linear function approximation (which is notable). 
Thus each block includes 5 basic neurons of derivatives x1, x2, x1x2, x1

2, x2
2 of the 2nd 
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order partial DE (3) of an unknown 2-variable function u, which might be transferred 
into form of eq. (16). Without this extension only a linear regression of the training 
data set would be applied. The square and combination derivative terms are also 
calculated according to the composite function derivation rules (17)(18). However 
they don’t apply the complete sum of the formulas but only 2 simple terms with 1st 
order external function derivatives e.g. (19). 
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 (b) 
 

 (c) 
 

 (d) 
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Fig. 5a-d. Comparison of static pressure time-series predictions 

 
 
The 3-variable D-PNN applying extended polynomials (2) of blocks, neurons and 

square, combination DE terms, tried to predict the static pressure of 1 site locality 
time-series (Fig.5a-d). It was trained along with the 1-layer ANN the previous day 
hourly pressure data series (24 or 48 hours, i.e. data samples), which are free on-line 
available [9]. Meteorological forecasts require as a rule high amount of state input 
variables to define a complex model, however some tendencies of the progress curves 
are notable. The D-PNN 2 models double the applied amount of neurons compared 
with D-PNN 1 (Fig.5.). The DE composition based predictions of the D-PNN seems 
to succeed any better. The more varied models are formed than ANN (applying 4 or 5 
input variables), which is induced by a different neuron combination selection. 

6   Conclusion 

D-PNN is a new neural network type, which identification and function 
approximation is based on generalization of data relations. The relative data 
processing is contrary to common soft-computing method approachs (e.g. ANN), 
which applications are subjected to a fixed interval of absolute values. This handicap 
disallows to use various learning and testing data range values (Fig.4.), which may 
involve real data applications. Thus D-PNN’s non-linear regression can cover a 
generalization of wider interval values. It forms and resolves a DE, composed of sum 
fractional derivative terms, defining a system model of dependent variables. It is 
trained only with a small set of input-output data samples, likewise the GMDH 
algorithm does [1]. The inaccuracies of presented experiments can result from applied 
incomplete rough training and selective methods, requiring large improvements. 
Behavior of the presented method differs essentially from other common neural 
network techniques. 
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