Towards Annotation using DAML+OIL

Sean Bechhofer

Carole Goble

Information Management Group
Department of Computer Science,
University of Manchester,
Kilburn Building
Oxford Road
Manchester M13 9PL

{seanb, carole}@cs.man.ac.uk,
http://img.cs.man.ac.uk

ABSTRACT

Semantic metadata will play a significant role in the pro-
vision of the Semantic Web. Agents will need metadata
that describes the content of resources in order to perform
operations, such as retrieval, over those resources. In addi-
tion, if rich semantic metadata is supplied, those agents can
then employ reasoning over the metadata, enhancing their
processing power. Key to this approach is the provision of
annotation, both through automatic and human means. In
this paper, we describe a prototype annotation tool that we
are developing during the COHSE project, allowing the de-
scription of semantic metadata using the DAML+OIL lan-
guage. The development of the tool has exposed a number
of issues concerning the use of a language like DAML+OIL
for semantic annotation and we discuss these.

1. INTRODUCTION

The Semantic Web (SW) vision, as articulated by Tim
Berners-Lee [3], is of a Web in which resources are accessi-
ble not only to humans, but also to automated processes,
e.g., automated “agents” roaming the web performing use-
ful tasks such as improved search (in terms of precision)
and resource discovery, information brokering and informa-
tion filtering. The automation of tasks depends on elevating
the status of the web from machine-readable to something
we might call machine-understandable. The key idea is to
have data on the web defined and linked in such a way that
its meaning is explicitly interpretable by software processes
rather than just being implicitly interpretable by humans.

Within this vision of the SW, ontologies have become an
increasingly important research topic. This is a result both
of their usefulness in a range of application domains [27, 20,
26], and of the pivotal role that they are set to play in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00

development of the SW.

To realise this vision, it will be necessary to annotate
web resources with metadata (i.e., data describing their con-
tent/functionality). In particular, we may wish to annotate
resources with semantic metadata that provides some indi-
cation of the content of a resource. This is a further step
along the way from simple textual annotations, as the inten-
tion within the SW context is that this information will be
accessible not only to humans but also to software agents.
In order to do this we require languages which will sup-
port the representation of semantic metadata. Standard-
isation proposals for metadata languages are already rec-
ommendations or candidate recommendations of the World
Wide Web Consortium (W3C), in particular the Resource
Description Framework (RDF) and RDF Schema (RDF(S))
— see [10] for a discussion of the roles of these languages and
of XML/XML Schema. However, such annotations will be
of limited value to automated processes unless they share a
common understanding as to their meaning. Ontologies can
help to meet this requirement by providing a “representation
of a shared conceptualisation of a particular domain” and
a shared, controlled vocabulary that can be communicated
across people and applications [14, 15].

In this paper we discuss our initial experience of building
an annotation tool based on a rich ontological language. The
paper has three basic sections. First, we discuss DAML+OIL,
a proposed ontology language for the web. Second, we pro-
vide an overview of a prototype annotation tool for an-
notation using DAML+OIL. The construction of the tool
has highlighted a number of issues concerning the use of
DAML+OIL for annotation, and these are discussed in the
final section of the paper.

2. DAML+OIL: A LANGUAGE FOR THE
SEMANTIC WEB

A prerequisite for a widespread use of ontologies is a
joint standard for their description and exchange. RDF
Schema (RDF(S)) itself is already recognisable as an on-
tology/knowledge representation language: it talks about
classes and properties (binary relations), range and domain
constraints (on properties), and subclass and subproperty
(subsumption) relations. However, RDF(S) is a relatively
primitive language (the above is an almost complete descrip-

tion of its functionality), and more expressive power would
clearly be necessary/desirable in order to describe resources
in sufficient detail. Moreover, such descriptions should be
amenable to automated reasoning if they are to be used ef-
fectively by automated processes.

These considerations led to the development of the Ontol-
ogy Inference Layer OIL [11] and latterly DAML+OIL [8],
ontology languages that extend RDF(S) with a much richer
set of modelling primitives.

OIL [11] was a language proposed as a knowledge repre-
sentation language for the web and web-based applications.
OIL coupled modelling primitives commonly used in frame-
based ontologies, with the simple, clean and well-defined se-
mantics of an expressive Description Logic (DL). The frame
primitives facilitate tool building and ontology exchange,
the DL facilitates the provision of automated reasoning ser-
vices, in particular consistency and subsumption checking.
Thus a modeller is offered the best of both worlds in both
development and deployment of an ontology.

In addition, efforts were made to maximising compatibil-
ity with emerging web standards. These standards, such as
RDF(S), make it easier to use ontologies consistently (con-
sistent meaning for the elements of the ontology) across the
web.

In a similar development, the DAML [8] programme was
investigating the definition of an agent markup language
for the web. The two initiatives have now been combined,
leading to the definition of the DAML+OIL language, which
has the following characteristics:

o An underlying mapping to an expressive Description
Logic (SHZQ) [18] provides a well defined seman-
tics and a clear understanding of the language’s formal
properties. The DL gives DAML+OIL the ability and
flexibility to compose classes and slots to form new ex-
pressions using boolean connectives, unlimited nesting
of class elements, transitive and inverse slots, general
axioms, etc. For example, we are able to define suf-
ficiency conditions for concepts as well as necessary
conditions. Moreover, we are able to use automated
reasoning support to automatically compute subsump-
tion (isa) relations between concepts, or to check the
consistency and coherency of the classification and its
concepts. This is highly useful when collaboratively
building substantial ontologies or when ontologies are
reused or merged [24]. The mapping also provides a
mechanism for the provision of practical reasoning ser-
vices by exploiting implemented DL systems, e.g., the
FaCT system [17]. This means that an ontology ex-
pressed in DAML+OIL can be reasoned over by the
FaCT reasoner (see Section 2.3).

o A machine-readable syntactic encoding in the languages
of the web. RDF(S) [4] is a proposed mechanism for
deploying metadata. DAML+OIL is defined as an ex-
tension of RDF(S), thereby making DAML+OIL on-
tologies (partially) accessible to any “RDF(S)-aware”
application [5]. An ontology in DAML+OIL can be
used by an agent that is not DAML+OIL aware but
is RDF(S) aware. Thus DAML+OIL is a potential
management device for the general Semantic Web.

o A layered architecture, avoiding the temptation to throw
everything into the core language, mixing up features

that cannot be reasoned over with those that can be.
Thus the limits are clear and explicit.

DAML+OIL forms a key piece of work strongly related to
the W3C’s Semantic Web Activity. The language has been
described in more detail elsewhere [11], but we provide here
a flavour of the DAML+OIL approach. DAML+OIL allows
the definition and description of classes (concepts), slots (re-
lationships), individuals (instances) and axioms within an
ontology.

2.1 Class Definitions

In DAML+OIL, class definitions are provided through the
use of assertions or axioms. These assert that, for example,
a particular class cat is a subclass of the class animal. Alter-
natively, axioms can assert equality between classes, say that
animal is equivalent to beast. A key aspect of DAML+OIL
is that these axioms and assertions need not simply concern
atomic concepts, such as animal or cat, but can also use
concept operators such as the boolean operators and, or and
not. In addition, restriction expressions that represent role
restriction or quantification can be used which themselves
may employ complex fillers. This is in contrast to conven-
tional frame representation systems, where in general, slot
constraint fillers and superclasses must be class names.

For example, we may define carnivore as the conjunction
of animal and the restriction that all fillers for eats must be
of type animal. As a more complex example, we could define
a fussy-carnivore as the conjunction of animal with the
restriction that all fillers for eats must be the conjunction of
animal with the restriction that the animal must come-from
India, i.e. a fussy carnivore only eats Indian animals.

In this way, arbitrarily complex descriptions can be built
up.

2.2 Property Definitions

Property definitions gives the name of the property and
allows additional properties of the slot to be asserted, i.e.
inverses, or whether the slot has transitive, symmetric or
functional properties. Slots also form hierarchies, so we may
also specify the names of any superslots.

In keeping with RDF(S), domain and range restrictions
on a slot can also be specified, and as with class descrip-
tions, domain and range restrictions can be arbitrary class
expressions such as anonymous class expressions or boolean
combinations of class names and class expressions, again ex-
tending the expressivity of traditional frame languages. All
assertions made about slots are used by the reasoner, and
may induce hierarchical relationships between classes.

2.3 Reasoning and DAML+OIL

The reasoning services offered by a Description Logic sup-
port the development and incremental maintenance of an
ontology [24]. Highly optimised implementations of sound
and complete tableaux subsumption algorithms for very ex-
pressive DLs such as SHZQ can be used in spite of the high
worst-case complexity. Thus an ontology expressed using
DAML+OIL can be verified using the FaCT reasoner. The
key reasoning services are:

Subsumption checking between two concept descriptions,
C and D, C subsumes D, when the set of individuals
that are instances of D are always a subset of the in-
dividuals that are instances of C.

Classification organises a collection of concept expressions
into a partial order based on the subsumption check.
This provides a lattice of definitions, ranging from the
general to the specific. Composed definitions have
their position implicitly determined automatically. Thus
classification is a dynamic process where new compo-
sitional expressions can be added to an existing hier-
archy.

Concept satisfiability checks whether a concept descrip-
tion can never have instances because of inconsisten-
cies or contradictions in the model.

When classifying an ontology, a number of new subsump-
tion relationships may be discovered (due to the class defini-
tions in the model). This can be useful during the ontology
construction phase [25].

2.4 Layers of DAML+OIL

DAML+OIL has a layered architecture, avoiding the temp-
tation to throw everything into the core language, mixing up
features that cannot be reasoned over with those that can
be. Thus the limits are clear and explicit. The idea is that
features such as rules can be included as layers, carefully
preserving the bounds of what can be reasoned with but
without excluding features that are desirable.

3. ANNOTATION

In this section we present the basic architecture and phi-
losophy behind our prototype annotation tool.

3.1 COHSE

Our interest in annotation here is within the context of
the COHSE (Conceptual Open Hypermedia Service) project
[6]. COHSE aims to bring together an open hypermedia
architecture (in particular the Distributed Links Service [7]
or DLS) with ontological services in order to provide an
architecture for the Semantic Web [12]. Key to the COHSE
approach is the ability to annotate resources with semantic
medata — this metadata is then used to link documents (in
particular to provide links out of documents). COHSE’s
current prototype employs a specialist browser plugin® that
applies links to documents.

Up to now, our prototypes have used a very simple ap-
proach. Word-matching within the text of documents has
been used to determine candidate link anchor opportunities,
with a lexicon attached to the ontology providing the bridge
between the document and the concepts. We are now at a
stage where we wish to employ the use of explicit metadata
associated with the documents — this will require semantic
annotations and tools which facilitate production of those
annotations.

3.1.1 Linking as Annotation

Koivunen et al. [19] discuss approaches to Web annota-
tions and categorise systems as, in the main, either proxy-
based or browser-based. In a proxy-based approach, the
annotations and document are merged by the proxy, with
the browser seeing only the merged documents. In a browser-
based approach, a specialist browser application will merge

Versions based on both Mozilla and Microsoft’s Internet
Explorer have been developed

the annotations with the original documents while brows-
ing. Annotations can be stored separately and provided via
some annotation service (or kept within the proxy itself).
This bears many comparisons with the DLS, where instead
of annotations we are adding links.

In fact the provision of dynamic linking as used by the
COHSE project can be seen as a kind of annotation — in this
case hypertext links are being provided rather than some
textual annotation. COHSE’s current architecture uses the
browser-based approach, although we are investigating the
use of a proxy (as was initially employed by the DLS).

Note that within COHSE, the purpose of annotation is
not simply to populate a knowledge base for retrieval, as the
annotations will be used to derive link anchors for outward
links from resources.

3.2 The Tool

Our annotator has been implemented using a number of
existing components and is provided as a browser plug-in.
Providing the annotation tool as a plug-in to an existing web
browser has a number of advantages. The user can continue
to browse documents in a familiar environment with access
to their own bookmarks and browsing preference. In addi-
tion, the browser can take care of the difficulties of dealing
with badly-formed HTML, a perennial problem when deal-
ing with resources on the web. By using a plug-in architec-
ture, the annotator has access to the DOM object built by
the browser and can base annotations on that.

Figure 1 shows the basic architecture that we are employ-
ing. The annotation tool interacts with a web browser and
a collection of ontologies, providing annotations which are
then stored in an annotation service or RDF repository.

Reasoner »
.
— \\ Web
\, Browvser
“
1!
Annotati
Ortology e wia plug-in RGO
Edit M. | Sermice
itar - '\ L]
Annotation
Taal

ROF
Repository

Ontologies

Figure 1: Basic Architecture

Those ontologies may be built with the help of a reasoner.
In addition, the annotation tool may use functionality pro-
vided by an ontology editing component, or even a reasoner
as discussed below.

The annotator consists of an extra toolbar which is added
to the user’s web browser (here we describe the Internet Ex-
plorer version, although the Mozilla client plugin is similar).
The tool bar offers a number of actions:

e Annotate the currently selected text with the currently
selected concept.

e Open the concept browser. This opens up the interface
which allows the user to specify a concept to be used
for the annotation.

e Save the annotation session.
e Load the results from an earlier annotation session.

3.2.1 Concept Browsing

OilEd [1] is a simple editor for the OIL and DAML+OIL
languages. It adopts a frame-like approach that allows users
to construct ontologies using a familiar “user-friendly” in-
terface. To date, some 700 downloads of the tool have been
requested from the OilEd web site®. OilEd was developed in
Java, and as a result the components used within the inter-
face can be easily reused in the annotator. In particular, the
OilEd interface components allow us to provide a concept
browser that can construct arbitrarily complex and nested
concept expressions. Figure 2 shows the concept browser
with the simple concept Researcher selected — this will be
familiar to anyone who has used the OilEd application.

& p i3l
Ontology-

I CS.Imah.ac. i daml -
! 5|

Description [RDF | sages |
rSubclass of- |
i

Researcher
=
rHierarchy
O (C) Object
® () Event
(C) Organization
& (© Person
o (E) Emplayee
& (©) AcademicStaf
Lecturer
(E) [Regearcher

Slot Constraints
type sl

Supers-
S Academicstar

(o

Figure 2: Concept Browser

3.2.2 An Example Annotation

Figure 3 shows the Web browser. A region of the docu-
ment has been selected for annotation. The annotation tool-
bar can be seen below the Google toolbar on the browser.
Once a resource in a region and an appropriate concept have
been selected, the annotation can be made. This associates
the selected region with the selected concept in an internal
structure. Figure 4 shows the situation after the annota-
tion has been made. A marker is added to the document
rendering to indicate the presence of the annotation. Note,
however, that the annotation has not been added to the ac-
tual document. When the mouse is moved over this marker,
the concept forming the annotation is shown. Once the an-
notations have been made, there are a number of actions
that we may take.

e Save the annotation, using RDF or a similar repre-
sentation. Figure 5 shows the RDF corresponding to
the annotation made above. We are using an exten-
sion of the W3C annotation schema® that provides

*http://img.cs.man.ac.uk/oil
3http://www.w3.0rg/2000/10/annotation-ns

| 2} Sean Bechhofer - Microsoft Internet Explorer

o)
Bl Edt Vew Favortes Tools Help |

« - ® B

Fack | Fowed | Stop Refresh Home

B =

mail Print

Q m o

Search Favorites History
adiess [@) huipi/fostako,cs.man.ac uKlseanb] | @
Links éjcuslnrmze Links &]Free Hotmall & Liquid Music Network &1 Welcome to Liquid sudia

e 7| Bpsearchwed Rocaciois | @Psgelnfo - E)lp - 2

“&E J &l _| Ll)—Annotatlon Tool Bar

| Sean Bechhofer |

[Home | Resean

I'm a JEEEEa= BN the Information Management Groun within the University of
Manchester Denartent of Computer Science.

My research interests are centered around the technologies required to implement and
deliver the Semantic Web.

T'm currently warking on a project known as COHSE, funded by the EPSRC under the DIM
iritiative, This is a joint project with the University of Southampton's Intellgence, Agerts

WMultimedia group, and s aBodt using ontological services to enance an open hypermedia
system,

(3]] Local intranet

alle

Figure 3: Browser before annotation

a specialization of the http://www.w3.0rg/2000/10/
annotation-ns#body property. The provision of an
RDF Schema based representation for DAML+OIL
allows us to use a uniform representation for the an-
notation — the annotations will be accessible to any
agent that understands the annotation schema and ba-
sic RDF(S) (although without knowledge of DAML+OIL
or reasoning the agent may not be able to infer any ex-
tra information).

e Alternatively, we can send the annotation to an An-
notation Service such as Annotea®.

o Finally, if the original document is within our control,
we can insert the annotation into the document. This
is, of course, a less satisfactory solution, but is the
approach that has been adopted in some early exper-
iments in annotation (such as the DAML+OIL home-
work®).

Our current implementation offers only the first of these
options — a facility for saving annotations as RDF.

In this example (see Figure 5), a single concept has been
used for the annotation (shown in italics). Note also the
XPointer-like expressions used to identify the region of the
document which has been selected. Work is underway to
bring this into line with the W3C XPointer candidate rec-
ommendation®. To look at a more complex example, we
may annotate a page about Indian animals using the con-
cept shown in Figure 6 This will then result in the RDF
shown in Figure 7 which again has the concept shown in
italics.

4. DISCUSSION

In this section, we focus on three areas of interest which
have arisen during our experience of building our prototype:

4h‘l:tp: //www.w3.0rg/2001/Annotea
Shttp://www.daml . org/homework/
Shttp://www.w3.org/TR/xptr

|2 Sean Bechhofer - Microsoft Internet Explorer -1oj %]

Fle Edt Yew Fgvortes Tools Help |ﬁ

« .+ @ B 8 = 9 B 3 -

Fack | Foward | Stop Refresh Home | Search Faverites History mail Print.
address [@] hitp:/fpotato cs.man.ac ukjseanbd | @
Links @] Customize Links &1 Free Hotmail] Liquid Music Metwork &1 Welcome to Liquid Audio >|
Google - =] Bpseachweb @Woeachioie | @Pagelnfo - Fjp - 2

I
COHSE igﬁJ EI E‘
| Sean Bechho

Home

Concept - Annotation Concept

<dlaml:Class
dfiabot=" man.ac. Uk her”
p: [ivwwvs. daml.orgf2001 dannl4-oil&"

tp: ffimg. cs.man 9

nln:rdf="hit d .
nin:rdfs="http: rvewr.3,orgl 2000/0Lrof-schemadt >

<Jdami;Class»

Created by seanb on Tue Jul L0 14:51:26 2001

1'm a Research Fefjowl
Manchester Dey

& [FiOrmaton Mensgement Group within the Unfversity o
Computer Science.

dlarkeered around the technologies required to implement and
deliver the Semantic Web,

T'm currently working on a project known as COHSE, funded by the EPSRC under the DIM
iritiative, This is a joint project with the University of Southampton's Intelligence, Agents

WMultimectia group, and is about using ontological services to enhance an open hypermedia
system,

& Done [[B8 Local intranet

alle

Figure 4: Browser after annotation

<rdf:RDF xmlns:rdf="http://wuw.w3.org/1999/02/22-rdf-syntax-nx#"
xmlns:de="http://purl.org/dc/elements/1.1"
xmlns:anno="http://www.w3.org/2000/10/annotation-ns#"
xmlns:cohse="http://cohse.semanticweb.org/annotation-ns#">
<rdf :Description>
<rdf:type resource="http://www.w3.0rg/2000/10/annotation-ns#Annotation"/>
<rdf:type resource="http://cohse.semanticweb.org/annotation-ns#ConceptAnnotation"/>
<anno:annotates
rdf:resource=
"http://potato.cs.man.ac.uk/seanb/#P(2) /TEXT/Research(0),0: :P(2) /TEXT/Fellow(0) ,6"/>
<anno:context/>
<dc:creator>seanb</dc:creator>
<anno:created>Tue Jul 10 14:51:26 2001</anno:created>
<dc:date>Tue Jul 10 14:51:26 2001</dc:date>
<cohse:concept>
<daml :Class
rdf:about="http://potato.cs.man.ac.uk/cohse/ontologies/ka.daml#Researcher”
zmins:daml="http://uuw.daml .org/2001/03/daml+oil#"
zmins:oiled="http://img.cs.man.ac.uk/0il/oiled#"
zmins:rdf="nttp://www.w3.org/1999/02/22-rdf -syntaz—-ns#"
amlns:rdfs="http://www.uw3. org/2000/01/rdf-schema#">
</daml :Class>
</cohse:concept>
</rdf:Description>
</rdf :RDF>

Figure 5: Simple RDF Annotation

e Anonymous Descriptions;
e Ontology Containment;
e Instance vs. Aboutness.

4.1 Anonymous descriptions

Perhaps the key aspect of DAML+OIL within this con-
text is the ability to describe arbitrary concept expressions
— i.e. not just simple class expression such as cat and dog,
but complex expressions such as animal with 4 legs and
long-fur. This means that any annotation tool must be
able to support the ability to construct such arbitrary ex-
pressions, and any framework for the representation and
handling of the annotations must be capable of dealing with
such expressions.

We can then use classification, as described above, to
then position these anonymous descriptions within the con-
cept hierarchy provided by the ontology. This classification
comes into play when the COHSE client system uses the
annotations to determine linking opportunities as described
in more detail in [6, 12].

F— i
Ontology:
I cs.man.ac. i daml [~

Description
Subclass of-

animal

Ol £ [56] 2.]
Slot Canstraints:

type. [slot [filler
|hag-value comes_from ({one-of Indiay or (fis_part_of hag-value (one-of .|
=3 Expression Editor x|

B % {(one-of India) or (fis_part_of has-value ([somes_from has-valug (one-of Indi) 11}
{3 tone-of India)
IE (lis_part_of has-value {[comes_from has-value (one-of Indialj}

Root
| o8]]][@] @
OK Cancel

Figure 6: Concept Browser with complex expression

A key point here is that descriptions need not be intro-
duced until they are needed, which means that provided the
components are present in the ontology, annotations can be
as detailed as required, without the original ontologist or
modeller having to provide conceptual descriptions match-
ing all eventualities.

As has been discussed elsewhere [25, 22], reasoning can
play a part during the construction phase of the ontology.
Our current prototype simply uses functionality taken from
the OilEd application in order to allow the user to form com-
plex concept descriptions. The current prototype makes no
use of any reasoning during annotation. A possible use of
reasoning would be to ensure that the conceptual descrip-
tions which are being constructed are consistent and sat-
isfiable w.r.t. the axioms in the ontology. Alternatively,
we could provide an ontology-driven interface [2] as is used
within the TAMBIS [13] project (see Figure 8). The TAM-
BIS interface allows the user to construct conceptual expres-
sion which are then translated to queries over bioinformatics
data sources. A similar approach would allow users to in-
crementally construct concept expressions for annotation.
The key aspect of the TAMBIS interface here is the use of a
reasoner to determing the appropriate specialisation options
that are presented to the user.

4.2 Ontology Containment

The question “what constitutes an ontology?” becomes
important when we consider annotation within the Semantic
Web. The context within which annotations are made is vi-
tal for the correct and consistent interpretation of those an-
notations. With an approach like DAML+OIL, the classes
and properties in an ontology are defined by a number of
statements. So far, examples of DAML+OIL ontologies tend
to be given as URIs, with an XML serialization of those
RDF statements forming the body of the resource. As an
example, take the ontology shown in Figure 9.

This tells us something about cats (as represented by
the class http://ontos-r-us.com/moggy#cat), in particu-
lar that they are animals and are furry. To be more explicit,
within the context of this particular collection of statements
(or collection of RDF triples), we can determine that a cat is
a furry animal. However, in order to know this, we have to
know about those statements, and we thus have to be able

<rdf:RDF xmlns:rdf="http://www.u3.org/1999/02/22-rdf-syntax-nx#"
xmlns:de="http://purl.org/dc/elements/1.1"
xmlns:anno="http://www.w3.0rg/2000/10/annotation-ns#"
xmlns:cohse="http://cohse.semanticweb.org/annotation-ns#">
<rdf :Description>
<rdf :type resource="http://wuw.w3.org/2000/10/annotation-ns#Annotation"/>
<rdf :type resource="http://cohse.semanticweb.org/annotation-ns#ConceptAnnotation"/>
<anno:annotates
rdf:resource=
"http://wwu.bnhs.org/services/books_animals.htm#P(2)/FONT(0)/TEXT/Indian(0),
0::P(2)/FONT(0) /TEXT/Animals (0),7"/>
<anno:context/>
<dc:creator>seanb</dc:creator>
<anno:created>Tue Jul 10 16:20:51 2001</anno:created>
<dc:date>Tue Jul 10 16:20:51 2001</dc:date>
<cohse:concept>
<daml:Class zmlns:daml="http://www.daml.org/2001/03/daml+o% 14"
amins:oiled="http://img.cs.man.ac.uk/oil/oiled#"
amlns :rdf="http://ww.uv3. 0rg/1999/02/22-rdf-syntaz-ns#"
amlns :rdfs="http://wuw.u3.org/2000/01/rdf-schema#">
<daml : intersection0f parseType="daml:collection">
<daml :Class
rdf :about="http://potato.cs.man.ac.uk/cohse/ontologies/elephants. daml#tanimal ">
</daml:Class>
<daml :Restriction>
<daml :onProperty

rdf:resource="http://potato.cs.man.ac.uk/cohse/ontologies/elephants. daml#comes_from">

</daml : onProperty>
<daml :hasClass>
<daml :Class>
<daml :union0f parseType="daml:collection">
<daml:Class>
<daml :one0f parseType="daml:collection">
<daml :Thing
rdf :about="http://potato.cs.man.ac.uk/cohse/ontologies/elephants. daml#India">
</daml : Thing>
</daml :one0f>
</daml :Class>
<daml:Restriction>
<daml :onProperty

rdf:resource="http://potato.cs.man.ac.uk/cohse/ontologies/elephants. daml#is_part_of">

</daml :onProperty>

<daml :hasClass>

<daml :Class>
<daml:one0f parseType="daml:collection">
<daml : Thing

rdf:about="http://potato.cs.man.ac.uk/cohse/ontologies/elephants. daml#India">

</daml :Thing>
</daml :one0f>
</daml:Class>
</daml :hasClass>
</daml :Restriction>
</daml : unionOf>
</daml :Class>
</daml:hasClass>
</daml:Restriction>
</daml :intersection0f>
</daml:Class>
</cohse:concept>
</rdf:Description>
</rdf :RDF>

Figure 7: Complex RDF Annotation

to talk about the use of the class http://ontos-r-us.com/
moggy#cat within the context of these statements. This then
requires us to be able to specify the context within which
an annotation that uses the concept was made.

Having the class itself is not enough. Just because the
class is given by the url http://ontos-r-us. com/moggy#cat,
we can make no assumptions about where the statements
that make up the ontology reside. We might ezpect that the
URI http://ontos-r-us.com/moggy will direct us to the
RDF schema that provides the statements defining cats, but
we cannot guarantee this. There is no requirement within
the DAML+OIL approach that ontologies must be repre-
sented as XML-serializations of RDF statements sitting at a
single URI, and alternative representations or storage mech-
anisms may be employed.

This is not a question of namespaces — the namespace is a
simple mechanism for disambiguating terms — but is instead
about how we might specify exactly the context or terms
of reference within which an annotation was made. A key
motivation for the use of ontologies is the ability to share
information unambiguously. Due to the mechanics of the
RDF/DAML+OIL representations, there is thus a require-
ment for ezplicitness here, ensuring that the ontology within

£ =1 £

protein seven propeller domain

[Restiict by a relationship... protein = S|
Undo Bookmark query ol F
—‘ domain | NI
hasGrossSecondaryStructureArrangement
seven propeller
o AAAJ |1 protein
isComponentOf
catalyses
protein | reaction]
tassiricat
[species]
A eore. |[s || coren ||| Hoost \
[Dane: formsPartor
[T protein compiex]

| accept | | concel | [mew

Figure 8: TAMBIS Query Interface

<7xml version="1.0" 7>
<rdf:RDF xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.u3.0rg/2000/01/rdf-schema#"
xmlns="http://ontos-r-us .com/moggy">
<danl:Ontology rdf:about="">
<rdfs:comment>An Ontology</rdfs:comment>
<danl:versionInfo>1.0</danl:versionInfo>
</daml :Ontology>
<daml:Class rdf:ID="http://ontos-r-us.com/moggy#animal"/>
<daml:Class rdf:ID="http://ontos-r-us.com/moggy#furry thing"/>
<daml:Class rdf:ID="http://ontos-r-us.com/moggy#cat">
<rdfs:subClassOf>
<daml:Class rdf:about="http://ontos-r-us.com/moggy#furry thing"/>
</rdfs:subClass0f>
<rdfs:subClassOf>
<daml:Class rdf:about="http://ontos-r-us.com/moggy#animal"/>
</rdfs:subClassOf>
</daml:Class>
</rdf :RDF>

Figure 9: Cats are furry animals

which the classes are being used is known.

Topic Maps [21] are an alternative representation for se-
mantic metadata influenced by subject indices as found in
books. From a formal reasoning perspective, topic maps
suffer in some ways in comparison to DAML+OIL — the
DAML+OIL language provides a rich collection of concept
forming operators (such as conjunction, negation and ex-
plicit quantification) with well defined semantics, facilitat-
ing the use of reasoners such as the FaCT system to organize
and classify hierarchies. Topic Maps do, however, recognise
the containment issue with the inclusion of a scoping mech-
anism.

Two projects concerned with semantic annotation were
SHOE and Ontobroker. In the SHOE approach [16], ontolo-
gies are marked up in an extension to HTML and are stored
and referred to using a URL. The annotation (which occurs
within the document) contains an explicit reference to the
ontology. Ontobroker [9] again uses in-document markup
(relying on an extension of the <A> tag). In the Ontobro-
ker examples provided the ontology is referred to implicitly—
presumably it is the responsibility of the crawler agent to de-
termine the ontology that is in use. Both of these systems
adopt an approach whereby a collection of pages are regis-
tere with a service. An agent then crawls those pages and
uses the metadata to provide retrieval. This could be con-
sidered in some way a “closed” or “centralised” approach.
With the COHSE approach, pages are annotated, and at
browsing or reading time, the annotations are then used to
augment the documents. Of course within COHSE we will
still require a number of known documents (or access to a

service) in order to provide the linking targets.

4.3 Instance vs. Aboutness

A further key question to address when we consider an-
notation is that of instance-of vs. aboutness. RDF(S) has
a built in property rdf:type that allows us to make as-
sertions about individual resources. For example, take the
RDF statement shown in Figure 10.

<rdf :Description rdf:about="http://widgets.com/staff/bob.html">
<rdf :type rdf:resource="http://ontos-r-us.com/work#Manager"/>
</rdf :Description>

Figure 10: Bob is a Manager

This says that the resource http://widgets.com/staff/
bob.html is an instance of the class http://ontos-r-us.
com/work#Manager. RDF is well set up to deal with such
assertions. However, there may often be situations where
we want to make an assertion that a particular resource is
about a particular concept (in terms of its content), rather
than saying it is an instance of it. As an example, the page
http://wuw.nczooeletrack.org/ is about elephants, but is
not itself an instance of an elephant — we thus need some
mechanism that allows us to refer to the content of resources
without having to explicitly type the resources themselves.

Note that we should not confuse RDF’s rdf:about at-
tribute with “aboutness” as discussed here. Within RDF,
rdf :about is a mechanism that relates a resource to RDF
statements concerning it, rather than describing the content
of some resource.

In our current prototype, we are effectively side-stepping
the issue. All that the annotation asserts is that the selected
resource has an annotation which consists of the selected
concept. There is no instance-of assertion here.

One possible solution to this problem is to introduce a
new relation, say cohse:hasSubject and use this to related
the resources to the classes that represent their subjects as
in Figure 11.

<rdf:Description rdf:about="http://www.nczooeletrack.org/">
<cohse:hasSubject rdf:resource="http://ontos-r-us.com/beasts#elephant"/>
</rdf:Description>

Figure 11: This site is about Elephants

This solves this problem, but relies on a shared under-
standing of the semantics of our extension to the basic RDF
model (e.g. the <cohse:hasSubject> property) if such an
annotation is to interpreted consistently.

Returning to Topic Maps, the approach there is to di-
vide the world up in terms of Topics, Associations and Oc-
currences. Broadly speaking, Topics are related via As-
sociations and Occurrences represent concrete manifesta-
tions of the Topics. Topics can include both classes and
instances (in the DL sense), while Occurrences are not in-
stances of the Topics. Thus concepts like Opera Singer and
Pavarotti will both occur as topics, with a relationship be-
tween Pavarotti and Opera Singer representing the fact
that he’s a singer. A web page containing, say a JPG im-
age of Pavarotti, or a WAV of him singing Nessun Dorma
can then be considered to be occurrences of Pavarotti. Oc-
curence roles are used to identify the kind of role that the
occurrence is playing and its relationships with the topic

— for example the JPG is playing the role of a picture of
Pavarotti, but the key factor here is that it is not an in-
stance of Pavarotti.

It may be that a similar approach will help in dealing with
the instance/aboutness problem.

4.4 Related Work

As discussed above, Ontobroker [9] and SHOE [16] were
projects concerned with semantic annotation using ontolo-
gies.

OntoAnnotate [23] is a tool for building semantic anno-
tations for web pages. However, it is not clear whether the
tool is supporting the construction of a relationship between
the web resource and the ontology, or is intended to allow
the population of a knowledge base with information taken
from the page.

4.5 Concluding Remarks

Semantic metadata is set to play a major part in the im-
plementation of the Semantic Web and annotation will be a
key mechanism for supplying the metadata which will then
be used by agents as they retrieve information. We have pre-
sented some ideas on an annotation tool which is intended
to support the use of DAML+OIL in resource annotation.
This is, the authors freely admit, still preliminary work and
much is to be done, in particular an evaluation of the tool.
However, we have already encountered some issues relating
to the use of representations such as DAML+OIL and RDF
in this context. In particular, we must support complex,
anonymous expressions. There is a need for explicit defini-
tions of context which will allow agents to interpret anno-
tations in a consistent manner. The issue of what exactly
constitutes an ontology, and how we might refer to this is
also in need of clarification. Finally the distinction between
instance and aboutness must be supported.

5. ACKNOWLEDGEMENTS

This work was supported by EPSRC Grant GR/M75426.
The prototype annotator was implemented by Tim Miles-
Board of the University of Southampton.

6. REFERENCES
[1] S. Bechhofer, I. Horrocks, C. Goble, and R.. Stevens.

OilEd: a Reason-able Ontology Editor for the
Semantic Web. In To appear in KI2001, Joint
German/Austrian conference on Artificial Intelligence,
Vienna, September 2001.

[2] S. Bechhofer, R. Stevens, G. Ng, A. Jacoby, and C.A.
Goble. Guiding the User: An Ontology Driven
Interface. In UIDIS, Workshop on User Interfaces to
Data Intensive Systems, pages 158-161, Edinburgh,
1999. IEEE Computer Society.

[3] T. Berners-Lee. Weaving the Web. Orion Business
Books, 1999.

[4] D. Brickley and V.R. Guha. Resource description
framework schema specification 1.0. W3C Candidate
Recommendation, 2000.
http://www.w3.org/TR/rdf-schema.

[5] J. Broekstra, M. Klein, S. Decker, D. Fensel, F. van
Harmelen, and I. Horrocks. Enabling knowledge
representation on the Web by Extending RDF
Schema. In Proceedings of WWW10, the 10th World
Wide Web conference, Hong Kong, May 2001.

[6] L. Carr, S. Bechhofer, C. A. Goble, and W. Hall.
Conceptual Linking: Ontology-based Open
Hypermedia. In WWW10, Tenth World Wide Web
Conference, Hong Kong, May 2001.

[7] L. Carr, D. De Roure, W. Hall, and G. Hill. The
Distributed Link Service: A Tool for Publishers,
Authors and Readers. World Wide Web Journal,
1(1):647-656, 1995.

[8] DAML. Darpa Agent Markup Language Program.
http://www.daml.org.

[9] S. Decker, M. Erdmann, D. Fensel, and R. Studer.
Ontobroker: Ontology Based Access to Distributed
and Semi-Structured Information. In R. Meersman,
Z. Tari, and S. Stevens, editors, Semantic Issues in
Multimedia Systems. Proceedings of DS-8, pages
351-369. Kluwer Academic Publishers, 1999.

[10] S. Decker, F. van Harmelen, J. Broekstra,
M. Erdmann, D. Fensel, I. Horrocks, M. Klein, and

S. Melnik. The semantic web — on the respective roles

of XML and RDF. IEEE Internet Computing, 2000.
[11] D. Fensel, I. Horrocks, F. Van Harmelen, S. Decker,
M. Erdmann, and M. Klein. OIL in a nutshell. In
Proc. of EKAW-2000, LNAI, 2000.
[12]
W. Hall. Conceptual Open Hypermedia = The
Semantic Web? In SemWeb2001 The Second

International Workshop on the Semantic Web, Hong

Kong, May 2001.

[13] C.A. Goble, R. Stevens, G. Ng, S. Bechhofer, N.W.
Paton, P.G. Baker, M. Peim, and A. Brass.
Transparent access to multiple bioinformatics
information sources. IBM Systems Journal,
40(2):532-551, 2001.

[14] T. R. Gruber. Towards principles for the design of

ontologies used for knowledge sharing. In Proc. of Int.

Workshop on Formal Ontology, 1993.

[15]
In Proc. of FOIS-98. 10S Press, 1998.

[16] J. Heflin, J. Hendler, and S. Luke. SHOE: A
Knowledge Representation Language for Internet
Applications. Technical Report CS-TR-4078
(UMIACS TR-99-71), Department of Computer
Science, University of Maryland, 1999.

[17] 1. Horrocks. Benchmark analysis with fact. In Proc.
TABLEAUX 2000, pages 62—66, 2000.

[18] I. Horrocks, U. Sattler, and S. Tobies. Practical

reasoning for expressive description logics. In Proc. of

LPAR’99, pages 161-180, 1999.

[19] M.-R. Koivunen, D. Brickley, J. Kahan,

E. Prud’Hommeaux, and R. R. Swick. The W3C
Collaborative Web Annotation Project ... or how to
have fun while building an RDF infrastructure.
http://www.w3.org/2000/02/collaboration/
annotation/papers/annotationinfjrastructure,
May 2000.

[20] D. L. McGuinness. Ontological issues for
knowledge-enhanced search. In Proc. of FOIS-98,
1998.

21]
XML Europe, Paris, France, June 2000.

[22] R.Stevens, I.Horrocks, C. A. Goble, and S. Bechhofer.

C. A. Goble, S. Bechhofer, L. Carr, D. De Roure, and

N. Guarino. Formal ontology and information systems.

S. Pepper. The TAO of Topic Maps. In Proceedings of

[26]

[27]

Building a Reason-able Bioinformatics Ontology Using
OIL. In IJCAI’01 Workshop on Ontologies and
Information Sharing, Seattle, August 2001.

S. Staab, A. Maedche, and S. Handschuh. An
Annotation Framework for the Semantic Web. In The
First International Workshop on MultiMedia
Annotation, Tokyo, Japan, January 2001.

R. Stevens, C. A. Goble, and S. Bechhofer.
Ontology-based knowledge representation for
bioinformatics. Briefings in Bioinformatics, 2001.

R. Stevens, C.A. Goble, I. Horrocks, and S. Bechhofer.
Building a Bioinformatics Ontology Using OIL. To
appear in IEEE Information Technology in
Biomedicine special issue on Bioinformatics, 2001.

M. Uschold and M. Griininger. Ontologies: Principles,
methods and applications. K. Eng. Review,
11(2):93-136, 1996.

G. van Heijst, A. Schreiber, and B. Wielinga. Using
explicit ontologies in KBS development. Int. J. of
Human-Computer Studies, 46(2/3):183-292, 1997.

