A Temporal Proof System for General Game Playing

Michael Thielscher
School of Computer Science and Engineering
The University of New South Wales, Australia
mit@cse.unsw.edu.au

Abstract

A generalgame player is a system that understands the rules
of unknown games and learns to play these games well with-
out human intervention. A major challenge for research in
General Game Playing is to endow a player with the ability
to extract and prove game-specific knowledge from the mere
game rules. We define a formal language to express tem-
porally extended—yet local—properties of games. We also
develop a provably correct proof theory for this language us-
ing the paradigm of Answer Set Programming, and we report
on experiments with a practical implementation of this proof
system in combination with a successful general game player.

1 Introduction

General Game Playing is concerned with the development

of systems that understand the rules of previously unknown

games and learn to play these games well without human

intervention. Recently identified as a Grand Challenge for
Artificial Intelligence, this endeavour requires to comnrain
methods from a variety of sub-disciplines, including rea-

Sebastian Voigt
Department of Computer Science
Dresden University of Technology, Germany
sebastian.voigt@inf.tu-dresden.de

2007). While successful General Game Playing systems like
the ones just mentioned do extract this kind of knowledge,
they do not actually attempt to prove it; rather they gererat
a number of random sample matches to test a property, and
then rely on the correctness of this informed guess.

In this paper, we present the first formal yet practical ap-
proach to the formalisation and automated provindpo#l
yettemporally extendegroperties of games on the basis of
the Game Description Language. By “local” we mean prop-
erties which do not require to analyse the entire game tree
and can be considered as invariants of reachable st&gs.
“temporally extended” we mean properties that concern two
or more successive game stateko this end,

e We define syntax and semantics of a formal language to
express game-specific, local knowledge.

e We develop a proof theory that allows to verify these for-
mulas against a given GDL game specification.

e We briefly report on first experiments with a practical im-
plementation of a proof system for this theory.

soning, search, computer game playing, and learning (Pell For gescribing game-specific properties, we combine ele-
1993; Genesereth, Love, and Pell 2005). The general Game ynants from GDL with Temporal Logic. Our proof the-

Description Language (GDL) (Genesereth, Love, and Pell

2005) has been developed for the purpose of communicat-

ing the rules of unknowmn-player games«(> 1) to a

ory employs the paradigm of Answer Set Programming
(ASP) (see, e.g., (Gelfond 2008)) and builds on a recent
and basic method for ascertaining simptatic properties

general game player. GDL rules are logical axioms, and a o games, that is, which hold across all positions (Schif-

plain, Prolog-like inference mechanism suffices for a basic

fel and Thielscher 2009a). For the implementation, we

general game player to be able to make legal moves (Schif- paye integrated an off-the-shelf, state-of-the-art ASfResy
fel and Thielscher 2009b). Simple games can then be solved (pgia55c0 2008) with a successful knowledge-based general
by complete search, and recent research in General Gamegame player (Schiffel and Thielscher 2007). Before we start

Playing has shown that Monte-Carlo methods provide a suc- poyever, we should stress that in this paper we are only con-
cessful form of selective blind search to address games that -arned with automaticallproving knowledge, not with au-

are more complex (Bjrnsson and Finnsson 2009).
Moving from blind to informed search, however, is a

great endeavour in General Game Playing as it requires a

player to fully automatically analyse the bare rules of un-
known games with the goal to extract and exploit game-
specific knowledge. This ability to form knowledge about

a new game is a prerequisite for both the automated gen-

eration of search heuristics and the construction of evalua
tion functions for non-terminal positions (Kuhlmann, Dres
ner, and Stone 2006; Clune 2007; Schiffel and Thielscher

Copyright(© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tomaticallyfinding properties worth proving.

*An example of aglobal property would be the existence of
a winning strategy for a player. This cannot be expressed by an
invariant, as it may hold initially but not for all reachable states.
Our interest here lies in games that are far too complex to enable
automatic proofs of global properties in practice.

2A simple, concrete example is the fact that in standard Tic-
Tac-Toe a marked cell persists from one position to the next.

3We refer to (Clune 2007; Schiffel and Thielscher 2007) for an
extensive discussion on various types of game-specific knowledge
that helps a general game player find good heuristics and generate
tailor-made evaluation functions.

rol e(xplayer). role(oplayer).

init(control (xplayer)). init(cell(1,1,b)). ... ‘init(cell(3,3,h)).
legal (P,mark(X,Y)) :- true(control(P)), true(cell (X Y,b)).

| egal (xpl ayer, noop) :- true(control (oplayer)).

| egal (opl ayer, noop) :- true(control (xplayer)).

next(cell (M N, x)) :- does(xplayer,mark(MN)).

next (cell (M N o)) :- does(oplayer,mrk(MN)).

next(cel | (MN W) :- true(cel| (MN, W), distinct(Whb).

next(cell (MN b)) :- true(cell (MN b)), does(P,mark(l,J)), distinct(MI).
next(cell (M N b)) :- true(cell (MN, b)), does(P,mark(l,J)), distinct(N,J).
next (control (oplayer)) :- true(control (xplayer)).

next (control (xplayer)) :- true(control (oplayer)).

Figure 1: A GDL description of Tic-Tac-Toe (without the défion of termination and goalhood). A game position is erexbd
using featurescontrol(P), where P € {xplayer, oplayer}, and cell(X, Y, C), where X, Y € {1,2,3} and C € {z, 0, b}.

2 Game Description Language Based on the concept of the standard model, a GDL de-

The Game Description Language (GDL) has been developed SCription can be understood as a state transition system as
to formalise the rules of any finite game with complete in- follows. To begin with, any valid game descriptio&
formation in such a way that the description can be automat- in GDL contains a finite set of function symbols, includ-
ically processed by a general game player. Due to lack of iNg constants, which implicitly determines a set of ground
space, we can give just a very brief introduction to GDL and terms X. This set constitutes the symbol basein the for-
have to refer to (Love et al. 2006) for details. mal semantics folG. . _
GDL is based on the standard syntax of logic programs, ~ The players and the initial position of a game can be di-
including negation. We assume familiarity with the basic rectly determined from the clauses for, respectivelp| e
notions of logic programming. We adopt the Prolog conven- andinit in G. Inorder to determine the legal moves, up-
tion according to which variables are denoted by uppercase date, termination, and goalhood for any given positiors thi
letters and predicate and function symbols start with a low- POsition has to be encoded first, using the keywordie.
ercase letter. As a tailor-made specification language, GDL TO this end, for anyfinite subsetS = {f1,...,f.} € X

uses a few pre-defined predicate symbols: of a set of ground terms, the following set of logic program
facts encodesS as the current position:

rol e(R) Ris a player
init(F) F holds in the initial position gtrue % e true
true(F) F holds in the current position { (A1) e (fn)- }
| egal (R, M | playerRhas legal mové[Furthermore, for any functiod : ({r1,...,rx} — X) that
does(R M | playerRdoes moveM assigns a move to each player, . . ., 7, € X, the following
next (F) F holds in the next position set of facts encodesl as a joint move:
term nal the current position is terminal § de
goal (R N) | playerRgets goal valué Afes = {does(r, A(r1)). , ..., does(ry, A(ry)). }
A further standard predicate idi stinct (X, Y), which Definiion 1 Let G be a GDL specification whose signa-
means syntactic inequality of the two arguments. GDL im- ture determines the set of ground termis Let 2° be the
poses restrictions on the use of these keywords: set offinite subsets oft.. Thesemanticof G is the state
e rol e only appears in facts; transition system(R, Sinit, ', 1, u, g) wheré
e init and next only appear as head of clauses, and ¢ R={recX:GErol e(r)} (the players);
ini t doesnotdependonany of ue, | egal , does, e St ={f€X:GEinit(f)} (theinitial position);
next, termnal, or goal ; e T={Sec2”:GuUS'" Eterm nal } (the terminal
e true and does only appear in clause bodies with positions);
does notdepending ot egal , t er mi nal , or goal . o | ={(ra,S8): GUS'"U® k| egal (r,a)}, wherer €

As an example, Figure 1 shows an excerpt of a GDL de- R, a € ¥,and S € 2¥ (the legality relation);
scription for the simple game of Tic-Tac-Toe. GDL imposes e u(A,S) = {f € ¥ : G U St"U¢ U A%es E next (£)},
some further, general restrictions on a set of clauses hith t forall A: (R~ %) and S € 2% (the update function);
intention to ensure finiteness of the set of derivable pred- o ; — 1(; 4, S): GUS! U E goal (r,v)}, wherer € R,
icate instances. Specifically, the program mustsbati- veN,and S € 2% (the goal relation).
fied (Apt, Blair, and Walker 1987) andllowed (LIoyd and
Topor 1986). Stratified logic programs are known to admit “Below, entailmentk is via the aforementioned standard
a specificstandard mode{Apt, Blair, and Walker 1987). model for a set of clauses.

For 5,5 € 2% wewrite S A4 S" if A: (R~ X) issuch
that (r, A(r),S) € | foreachr € R and S’ = u(4,5)
(and S ¢ T). Wecall S, 49 §; A1 ... 4=t 5 (where

—

m > 0) asequencé¢of legal moves), sometimes abbreviated
as (SQ, Sl, e ,Sm).

This definition provides a formal semantics by which a GDL
description is interpreted as an abstraciplayer game: in
every positionS, starting with Si,it, each playen- chooses

a move « that satisfiesl(r,a,S). As a consequence the
game state changes tg A, S), where A is the joint move.
The game ends if a position ii" is reached, and thep

taken into account. Otherwise, a formula like A Op
would be considered true in each terminal stateregard-
less of the truth ofy, as no legal sequence of length 1
exists in S;. In general, a sequence shorter thars rele-
vant if and only if it ends in a terminal state. These consid-
erations motivate the following definition.

Definiton3 A sequence(Sy,...,S,) is called n-
maximaliff either m =n or m<n and S,, € T.

Entailment of a formulay wrt. a state S can now be
formally defined over alldeq ¢)-maximal sequences start-
ing at S.

determines the outcome. The restrictions in GDL ensure that Definition 4 Let G be a GDL descriptionS, a state, and

entailment wrt. the standard model is decidable and that onl
finitely many instances of each predicate are entailed. This
guarantees that the definition of the semantics is effective

3 Formalising Temporal Game Knowledge

In this section we define a formal language which allows the
formulation of temporally extended yet local properties of
a game given in GDL. A simple and elegant way to obtain
such a language is by extending GDL by the unary operator
“(O" borrowed from Temporal Logic and used to refer to a
successor game state.

Definition 2 Let G be a GDL description and® be the
set of ground atomg(Z') over the signature of? such that
p ¢ {init,next} and p does not depend odoes in
G. We define the sef’ of formulasto be the smallest set
such thatP? C F' and F is closed under-, A and Q.

We also define over syntax tregs and t,, of o, € F:

e dedy) (thedegree ofy): the maximal number of occur-
rences of O on paths from the root of, to its leaves;

o lev(v, ¢) (thelevels of ¢ wrt.): a set of integers such
that i € lev(vy, ¢) iff ¢, is asubtree oft, and there are
i occurrences ofQ on the path from the root of, to
the root of ¢;.

We definev and O as the usual macros and use restricted
quantificationV (X : Xaom) ¢ to abbreviate/\,. v, »[X/1]

for finite subsetsX ., of X. We also allow counting quan-
tifiers of the form3,,, ,, (X : Xuom) ¢ to formulate that there
are at leastn and at mostn instances forX for which ¢

is true. Modality O¢ states thaty holds in all positions
that are a direct, legal successor of the current gameAsate.
an example for a formula, consider the Tic-Tac-Toe prop-
erty that once the cell at positiofil,1) has been marked
by xplayer, it will keep this mark in every legal succes-
sor state. This can be formulated &sie(cell(1,1,x)) D
Otrue(cell(1,1,x)). The degree of this formula i and
the levels of subformularue(cell(1,1,x)) are {0,1}.

Semantics Intuitively, a formula should be true in a state
S only if it is satisfied by all “relevant” sequences starting
at S. Clearly, sequences of length greater thar- deq v)

¢ aformulasuch that ddg) = n. We say thatS, satisfies
@ (written Sy F, ¢) if for all n-maximal sequenceS, ¢

7t Sm (m < n) we have that(Sy,...,Sn) Ft ¢
according to the following definition:
(Siy...,Sm) Eep iff GUSI'™U*Ep (peP)
(SZ,,Sm)':t“QO iff (Sz,Sm)J?ftgo
(Si,...,Sm) ':t ©1 /\(pg iff (5“757”) ’:t ©1 and

(Si, [N 7Sm) ﬁt Y2
(Si,...75m) . Op iff (Si+la-~-75m) ':tSD (z<m)
(S’m) ':t O(P

A crucial part here is(S,,) F: O¢: In case we reach
the end of a state sequence, every formula of the fohp
must be true. Note that this implieS ¢ to be true in every
terminal state even ifp is inconsistent. In our setting this is
perfectly acceptable as we are just interested in the tifidh o
formula in reachable states—all states beyond are irrefevan
It is also worth mentioning that, therefore;Op implies
O— but not vice versa.

4 Encoding Temporal Game Knowledge

In the following we first present an encoding of temporal
formulas as logic program clauses which, together with a set
of GDL rules, will then enable us to define a suitable proof
method. Since we consider properties that are local but may
involve sequences of successive game states, we first need to
define thetemporal extensiofwith a horizonn) of a given
GDL specification.

Definition 5 Let G be a GDL description and¥i,i; the
set of all clauses of+ with headi ni t . For n > 0 we de-
fine G, = Up<;<nic | c € (G\ Ginr) }, Where " replaces
each occurrence of
e next (f) bytrue(f,i+1) and
o p(ti,... tn) bY p(te,. .. tn, 1),

if p¢ {rol e,distinct, next}.
Extending the definitions of'"Y¢ and A9°°s (cf. Sec-
tion 2), we define their timed variants as

Strue(0) = {true(f,0). | f€ S}and

A% (7) = {does(r1, A(r1),i), . ..,does (ry, A(ry), i)}

need not be considered: Since future states that are more As an example, consider the fourth rule with heaeixt

than n steps away carry no information about the formula,

in the GDL descriptionG of Figure 1. Its temporal ex-

these sequences can be reduced to their initial subseguencetension GG,, contains a temporally extended rule for every

of length n. Sequences shorter than however, must be

i < n; e.g. the following clause fof = 0.

true(cell (MN,b),1) :-
true(cell (M N, b), 0),

does(P, mark(l,J),0), distinct(MI).

Note thatG,, could easily be defined such that it is strat-

ified: instead of extending predicatgsby a time argument,

time could be encoded into their names, obtaining different
predicatesp; for each time step. We find Definition 5 more

convenient but will nonetheless assurfig to be stratified.

This assumption is needed for the following result, which
shows that a temporally extended GDL description can be
used to reason about limited sequences of state transitions

Theorem1 Consider a GDL descriptionz and a se-
quenceS, 49 §;... “my Let P = S{"U¢(0) U
G UUS r Adoes (;) then for all 0 < i < m and pred-
icate symboISp ¢ {init, next} that do not depend on
does we have

o S;={f|PEtrue(f,i}
o GUSITUe (1) iff PEp(ti)

Proof (sketch): By induction on'm. The main argument
is the existence of a stratification d? such that for each
timepoint 7 the rules concerning lie in a lower stratum
than the rules concerning timepoint+ 1. O

Since predicaté egal never depends odoes in valid

GDL descriptions, the second item of Theorem 1 together

with Definition 5 implies P k | egal (r, A;(r),i) for all
re€ R and0<i<m-—1. Similarly, P Fterm nal (m)
holds if and only if S,,, is a terminal state.

Next we show how game-specific knowledge in form
of temporal formulas can be encoded as logic programs.

Specifically, we define the mapping of every subformeila

of a formula ¢ € F' to a logic program relative to a natu-

ral number: which indicates the level ofy) wrt. . The
definition assumes a function such thatn (v, i) gives an
atom of arity 0 which is unique for every) and: and not
used elsewhere.

Definition 6 Let ¢ € F' and i € N. Theencoding of
at level i, denoted En@,), is recursively defined:

Endp(?),7) = {n(p(t),i) : - p(£9). }
Eng(—), 1) = {n(=¢,i) 1 - = n(,i). } UENQ4, 1)
Enq¢1A¢27i) = {77(¢IA1/)27):- 77(¢17)5 (¢27) }
U EnC(?/}l,i) @] Enqu,i)
EndOv,i) = {n(Ov,i):- termnal (i).,
(O, i) 1 - nh,i+1). }
U Endv,i+1)

Put in words, a predicatep(t) at level i is trans-

lated to a rule which entails;(p(#),i) if p(t,7) holds.
Formulas with connectives-, A, and O recursively
resolve to their correspondent subformulas. Note that

End O, i) entails n(Ow,i) in case level: is termi-
nal or subformulay is true at leveli + 1. As an

example, recall from above the formula for Tic-Tac-Toe,

true(cell(1,1,x)) > Otrue(cell(1,1,x)). Macro expansion
results in —(true(cell(1, 1,x)) A =Otrue(cell(1, 1,x))) by

al :- not a2. a2 :- a3, a4.
a3 :- true(cell(1,1,x),0).
a4 :- not ab. a5 :- termnal (0).

ab :- a6. a6 :- true(cell(1,1,x),1).

It is easy to see that the size of the encoding of a given
formula is always linear in the size of the original formula.
Together with the underlying temporally extended GDL de-
scription the given encoding is correct wrt. the definitidn o
formula entailment, as the following result shows.

Theorem 2 Let ¢ be aformulas.tdeqy) =n, G be a

GDL description, Sy A9 G .. Am 1 S,, be n-maximal,

and P = SiU¢(0) U G, uum lAdOES()UEno(so, 0).
Then (So, ..., Sm) F: o iff P':U(%O)

Proof: Let ¢ be a subformula ofp. We prove by in-
duction on the structure ofy that for all I € lev(y, v)
st.l<m: (S,...,5n) Ft wiff PE n(y,l). Note that
we haveEndv,l) € Endp,0) and henceP contains all
clauses referred to in the proof.

Base case) = p(t) holds by Th.1; caseg) = —p and
1 = p1/\p2 follow immediately by the induction hypothesis
(IH). Now considery) = Qp. Casel < m follows by IH
applied to sequencéS;;1,...,S5,). Casel = m yields
(Sm) E¢+ Op. Moreover, eitherm = n or both m < n
and S,, € T (since the sequence ig-maximal). From
m = n itfollows that (n+1) € lev(p, ¢), which contradicts
dedp) = n. Hencem < n and S,,, € T, which gives (by
Th.1l) PEterm nal (m) andthusP E n(Op,m). O

5 Proving Temporal Game Knowledge

For a general game player, showing the correctness of a
given property by complete search through the state tran-
sition diagram for a game, as in (van der Hoek, Ruan, and
Wooldridge 2007), is not practically feasible. To overcome
this, Schiffel and Thielscher (2009a) suggested a locaifpro
method based on Answer Set Programming (ASP) to ver-
ify simple static properties for all finitely reachable st
in a GDL game. In the following, we generalise their basic
idea to obtain a local proof method for temporally extended
properties. Answer setdorm a specific class of models of
logic programs with negation (for details, see e.g. (Galfon
2008)). In the following, we use two common additions that
have been defined for ASP (NierdglSimons, and Soini-
nen 1999): aveight atomm { p: d(Z) } n means that for
atom p an answer set has at least and at mostn dif-
ferent instances that satisiy(Z). Both m and n can be
omitted, in which case there is no lower (respectively, uppe
bound. Aconstraintisarule: - bq,..., by, which excludes
any answer set that satisfiés, . . . , by

To prove that a temporal formula holds in each reach-
able stateS (i.e., S F; ¢), we will construct two answer
set programs dependent @nin order to establish proofs for
a base case and an induction step. The base case shows that
o is entailed in the initial state. The induction step shows
that, provided a state entailg, each legal successor state
will also entail . In conclusion, theny is entailed in all

means of double negation, and hence the following encod- reachable states. We assume a set of negation-free clauses

ing.

D,, which defines the domains of featuréslpr, actions

(adon), and time pointd), 1, ...,n (t dom). The encoding
of each player performing a legal move in each nonterminal
state is given by the following ASP clausé®ga :

(1): termnated(T) :- termnal (T).
(2): terminated(T+1) :- termnated(T).

(3): 1{does(R A T):adon(A)}1 :- role(R),
tdom(T), not terminated(T).
(4): :- does(R A T), not legal (RAT).

For a GDL descriptionG and formulay with degreen,
the answer set program for thase casés then defined as

Pb(G) = Sii(0) UGy U Pegal U Dy g U
Endp,0) U{ - n(p,0). }

Hence Pff(G) consists of an encoding for the initial state,
Siiu€(0); a temporal GDL description up to time step
G,; the necessary requirements concerning legal moves
together with the necessary domain descriptiofga U
D,,_1; an encoding for the formula in the initial time step,
Endp, 0); and the statement that should not be entailed
in any model of P2°(G), { : - 1(p,0). }. In case P)(G)
has no model, the last rule implies that there is no state se-
guence starting abj,i; that makesy false—which means
that ¢ is entailed by Siyt.

For theinduction steghe answer set program is

P2(G) = {(5)} UGy 11U PegaUD,, U
Endy, 0) U ENdOp, 0) U {(6), (7)},
where
(5): O{true(F, 0):fdon(F) }.
(6): :- not n(p,0)
(7): 1= n(Og,0)

P (G) deviates fromPf;C(G) in that the state encoding (5)
considers arbitrary states instead of the initial staterevio
over, the maximal time step is increased by onejs as-
sumed to be true by (6), an@ is assumed to be false by
(7). Assuming thaty is entailed in S, P;S(G) not having
a model implies thaty is entailed by all statess’ that are
direct successors of.

As an example, recall agaip = true(cell(1,1,x)) D
Otrue(cell(1,1,x)). This formula can now be proved to
hold in all reachable states: L&t be the rules in Figure 1.
Answer sets forP¢(G) do not satisfyn(¢,0) and hence
must satisfy the encoded premise @f in the initial state,
true(cell (1,1, x),0). This however contradicts the
initial state encoding, scPﬁc(G) has no answer set. Sim-
ilarly, constraint (7) of P:*(G) only permits answer sets
which satisfyt rue(cel | (1, 1, x), 1) and do not satisfy
true(cell (1,1, x), 2), contradicting the temporal ex-
tension of the thirdnext rule in Figure 1.

6 Correctness of the Proof Method

We are now ready to state and prove our main result: the
correctness of the proof method.

Theorem 3 Let ¢ be a formula for a game with GDL
description G and whose initial state iSjni;. If Pf,C(G)

and P’*(G) are inconsistent, then for all finite sequences

Sinit ji)) Sh... Ak_:l Sr we haveS, E; ©.

Proof: Let deqy) = n. The proof is via induction ork.
Base Casek = 0: We prove that if Siniy ¥, ¢ then

ch(G) admits an answer set.Sinit #; ¢ implies that

there is ann-maximal sequences, 4¢ S, ... Amo1 S

st St = So and (So,...,Sn) E: ¢. Let M be

the standard model of = [P5(G) U ", Adoes (i)] \
{(3),(4), : - n(v,0). }. As stratified programs are known
to admit a unique answer set that coincides with its stan-
dard model (Gelfond 20081 is also an answer set faP.
(Soy---,Sm) ¥ ¢ implies (by Th.2) thatP ¥ n(e,0)

and hence that\ is also an answer set foP, = P U
{:- (e, 0). }.

In the following we argue thaiM is also a model of
Pj;c(G). Consider S; s.t. i < m: There is exactly
one a for every r such thatM E does(r,a,i), hamely
a = A;(r); this fulfils (3). SinceM & | egal (r, A;(r),1)
(by Th.1) we also have (4). Now considé&t,,: If S,
is terminal then (by Th.1)P. £ term nal (m), hence
P. E term nated(j) forall m < j < n, which im-
plies (3) and (4). IfS,, is nonterminal thenm = n, hence
(3) and (4) are fulfilled ag dom(n) is false.

Induction Step: By IH we have S ¢ and

S, Ak Spy1 for some A, and Sp.;. We prove
that if Sp41 ¥ o, then P*(G) admits an answer set.
Sk+1 #: @ implies that there is am-maximal sequence

Sk MY Sy Ak Siimy1 (Where
0 < m < n) st (Skrts--Shame1) Fr oo It
follows that (Sk, Sk+1,---,Sk+m+1) ¥t O and that

(SkySk+1y- -+ Sktm+1) IS (n + 1)-maximal. LetM be
the standard model foP = [P%(G) U (U1 Adoes (i) U
SEU 0]\ {(3), (4), (5), (6), (7)}.

Sk -y Sktm, Sktms1) e Oy gives (Th.2) P ¥
n(Ow,0) which fulfils (7). For (6): Casem + 1
deg O¢) yields m = n, hence (Sk,..., Sktm) IS n-
maximal. Casen+1 < degd Oy) and Sgym+1 € T gives
m+1 < n, hence(Sk, ..., Sktm, Sk+m+1) IS n-maximal.
Both cases imply (Th.2)P E n(¢,0), thus satisfying (6).
Now M remains a model by replacing}"“¢(0) with (5).

The remaining argumentation is similar to the base case and
implies thatM is also a model ofP%*(G). O

Fi

Ak+7n
—

7 Experimental Results

We have implemented our proof method for temporally ex-
tended properties of games using Fluxplayer (Schiffel and
Thielscher 2007) for the generation of the logic program,
which is then passed to the grounder Bingo (Potassco 2008),
in turn passing the result to the ASP solver Clasp (Potassco
2008). The domains for variables that occur in formulas
as well as the domains for playergy(.), moves Myom),

etc. are calculated based on dependency graphs as described
in (Schiffel and Thielscher 2009a), but with some optimisa-
tions (which together with some improvements concerning
clauses (3) and (5) are beyond the scope of this paper). We
ran tests on a number of games from previous GGP compe-

Turn Taking Persistence Control
3pttc yes).44 no0.33 (blue yes).42
b-tictactoe no0.07 yes).18 (—b) no0.21
connect4 yes).14 yes).18 (r) yes).20
endgame yesp.15 no,1.42 (—wk) yesl14.75
othello yes2.03 no0.89 (red) yes2.84
tictactoe yes).12 yes(.13 (—b) yes).12
tttcca yesy.52 no0.56 (redpawrn | yes3.02

Figure 2: Results of three selected properties (“yes” means

proved true) for seven games (ggmeral-game-playing.ge

and respective times to prove in seconds. Experiments were

run on an Intel Core 2 Duo cpu with 3.16 GHz. Persis-
tence is for featurecell with ground third argument, e.g.
in tictactoe —b means that we provetf(X : Xgom) V(Y :
Yiom) (—true(cell(X, Y, b)) > O-true(cell(X, Y, b))).

titions (Genesereth, Love, and Pell 2005) to automatically
verify some very common properties that are often crucial
for a general game player to know. A selection is shown in
Figure 2, where we exemplarily had the player try to prove

e Turn Taking:Always at most one player has two or more
legal moves:
30“1 (PZPdom) HQOO(M : Mdom) IegaI(P7 M)

e Persistence:A feature f stays true [false] once it be-
comes true [false]{—]true(f) D O[-]true(f).

e Control: In an n -player game, a player who has control
will also have control aftemm moves:
V(P Pyom) (true(control(P)) > O™true(control(P))).

The size of the ground answer set program for a property is
crucial for the proof time and has been reduced by omitting
irrelevant rules, resulting in excellent computation tinfier

2009a). Our semantics is inspired by work on control knowl-
edge in planning problems (Bacchus and Kabanza 2000),
adapting planning actions with preconditions and effects t
joint moves with legality and update. The first method of
automatically proving temporally extended properties for
general games is presented in (van der Hoek, Ruan, and
Wooldridge 2007), but this requires to systematically sear
the entire set of reachable positions in a game and therefore
cannot be used in practice except for very simple games.

References

Apt, K.; Blair, H. A.; and Walker, A. 1987. Towards a the-
ory of declarative knowledge. IRoundations of Deductive
Databases and Logic Programming9—148.

Bacchus, F., and Kabanza, F. 2000. Using Temporal Logics
to Express Search Control Knowledge for Plannidgtifi-

cial Intelligencel16(1-2):123-191.

Bjornsson, Y., and Finnsson, H. 2009. CADIAPLAYER: A
simulation-based general game play#EE Transactions

on Computational Intelligence and Al in GanmH4):4-15.
Clune, J. 2007. Heuristic evaluation functions for general
game playing. IrAAAI, 1134-1139.

Gelfond, M. 2008. Answer sets. klandbook of Knowledge
Representatior?85-316. Elsevier.

Genesereth, M.; Love, N.; and Pell, B. 2005. General game
playing: Overview of the AAAI competitionAl Magazine
26(2):62-72.

Kuhimann, G.; Dresner, K.; and Stone, P. 2006. Automatic
heuristic construction in a complete general game player. |
AAA|, 1457-1462.

Lloyd, J., and Topor, R. 1986. A basis for deductive database
systems I1.J. of Logic Programming(1):55—67.

many games and thus enabling various proof attempts in the Love, N.; Hinrichs, T.; Haley, D.; Schkufza, E.; and Gene-

practical setting of the GGP competitions, with strictipii
ited time to analyse a given description. Beyond the typi-
cally tight time limits in a GGP competition, the results are
promising for the aim of discovering increasingly complex
and interesting properties of a new game on its own right.

8 Summary

sereth, M. 2006. General Game Playing: Game Descrip-
tion Language Specification. Technical Report LG-2006—
01, Stanford University. Available glames.stanford.edu

Niemeh, |.; Simons, P.; and Soininen, T. 1999. Stable model
semantics of weight constraint rules. Pnoceedings of LP-
NMR, vol. 1730 ofLNCS 317-331.

Pell, B. 1993 Strategy Generation and Evaluation for Meta-

We have defined syntax and semantics of a formal language g5me Playing Ph.D., Cambridge.

to describe game-specific properties in the context of Gen-
eral Game Playing. We have shown how these formulas

Potassco 2008. Potsdam Answer Set Solving Collection.
Available atpotassco.sourceforge.net/

can be encoded as a logic program on the basis of a tem-))
poral extension of GDL rules, and we have developed (and Schiffel, S., and Thielscher, M. 2007. Fluxplayer: A suc-
formally verified) a proof theory with the help of Answer ~ cessful general game player. AMAI, 1191-1196.

Set Programming. While the main focus of this paper is Schiffel, S., and Thielscher, M. 2009a. Automated theorem
theoretical, initial experimental results support our e proving for general game playing. 14CAl, 911-916.

tation that knowledge-based general game playing systems gchiffel, S., and Thielscher, M. 2009b. A multiagent seman-
can make practical use of our proof method to automati- tics for the Game Description Language Agents and Arti-
cally verify game-specific knowledge against a previously ficjal Intelligence: Proceedings of ICAARVol. 67 ofCom-
unknown game description. Of course our method also sup- munications in Computer and Information Scierminger.
ports the design of new games by allowing the designer to van der Hoek, W.; Ruan, J.; and Wooldridge, M. 2007. Strat-

verify that her game rules satisfy desired properties. egy logics and the game description languageProceed-

In terms of related work, our proof theory builds on, and . . ; ; :
significantly extends, a recent basic method for ascengini ggus”?gf the Workshop on Logic, Rationality and Interaction

simple static properties of games (Schiffel and Thielscher

