Planning with Noisy Actions
(Preliminary Report)

Michael Thielscher

Dresden University of Technology
mit@inf.tu-dresden.de

Abstract. Ignoring the noise of physical sensors and effectors has al-
ways been a crucial barrier towards the application of high-level, cog-
nitive robotics to real robots. We present a method of solving planning
problems with noisy actions. The approach builds on the Fluent Calculus
as a standard first-order solution to the Frame Problem. To model noise,
a formal notion of uncertainty is incorporated into the axiomatization of
state update and knowledge update. The formalism provides the theoret-
ical underpinnings of an extension of the action programming language
Frux. Using constraints on real-valued intervals to encode noise, our
system allows to solve planning problems for noisy sensors and effectors.

1 Introduction

Research into Cognitive Robotics aims at explaining and modeling intelligent
acting in a dynamic world. Whenever intelligent behavior is understood as re-
sulting from correct reasoning on correct representations, the classical Frame
Problem [12] is a fundamental theoretical challenge: Given a representation of
the effects of the available actions, how can one formally capture a crucial regu-
larity of the real world, namely, that an action usually does not have arbitrary
other effects? Explicitly specifying for each single potential effect that it is ac-
tually not an effect of a particular action, is obviously unsatisfactory both as a
representation technique and as regards efficient inferencing [3]. The predicate
calculus formalism of the Fluent Calculus [15], which roots in the logic program-
ming approach of [7], provides a basic solution to both the representational and
the inferential aspect of the Frame Problem. This solution also forms the the-
oretical underpinnings of the action programming language FLUX (the Fluent
Calculus Egzecutor) [16], which is based on constraint logic programming and
allows to specify and reason about actions with incomplete states, and thus to
solve planning problems under incomplete information.

In order to make it possible for a robot to reason about the correct use of
its sensors, the Fluent Calculus has been extended by an axiomatization of how
sensing affects the robot’s knowledge of the environment [17]. A corresponding
extension of FLUX has been developed in [18], which allows to solve planning
problems with sensing actions. However, the method shares a common assump-
tion of high-level approaches to sensing, namely, that sensors are ideal. This
ignoring the noise of physical sensors and effectors has always been a crucial

barrier towards the application of cognitive robotics to real robots, because noisy
sensors and effectors may take influence on the correctness of plans.

In this paper, we extend the existing model for acting and sensing in the
Fluent Calculus to the representation of noise in both sensors and effectors.
Actions with noise result only in limited certainty about the values of the affected
state variables. As part of the approach we define a notion of executable plans
in which the robot may condition its further actions on previously obtained
sensor readings. In the second part of the paper, we present an extension of the
action programming language and system FLUX which allows to solve planning
problems with noisy actions, using constraints on real-valued intervals to encode
noise. Prior to presenting these results, we give a brief introduction to the basic
Fluent Calculus and FLUX.

2 FLUX

The action programming language FLUX [16] is a recent implementation of the
Fluent Calculus using constraint logic programming. The Fluent Calculus com-
bines, in classical logic, elements of the Situation Calculus [9] with a STRIPS-like
solution to the Frame Problem [15]. The standard sorts ACTION and SIT (i.e.,
situations) are inherited from the Situation Calculus along with the standard
functions Sy : SIT and Do : ACTION X SIT +— SIT denoting, resp., the initial sit-
uation and the successor situation after performing an action; furthermore, the
standard predicate Poss : ACTION X SIT denotes whether an action is possible
in a situation. To this the Fluent Calculus adds the sort STATE with sub-sort
FLUENT. The Fluent Calculus also uses the pre-defined functions @ : STATE;
o : STATE X STATE — STATE; and State : SIT — STATE; denoting, resp., the
empty state, the union of two states, and the state of the world in a situation.
As an example, let the function Dist : R — FLUENT denote the current dis-
tance of a robot to a wall. If z is a variable of sort STATE, then the following
incomplete state specification says that initially the robot is somewhere between
4.8m and 5.1m away from the wall:!

(3z, 2) (State(So) = Dist(x) oz A 4.8m < x < 5.1m) (1)

That is, the state in the initial situation is composed of the fluent Dist(x) and
sub-state z representing arbitrary other fluents that may also hold.

Based on the general signature, the Fluent Calculus provides a rigorously
logical account of the concept of a state being characterized by the set of fluents
that are true in the state. This is achieved by a suitable subset of the Zermelo-
Fraenkel axioms, stipulating that function o behaves like set union with @ as
the empty set (for details see, e.g., [18]). Furthermore, the macro Holds is used
to specify that a fluent is contained in a state:

Holds(f,z) = (3z")z=foz (2)

! Free variables in formulas are assumed universally quantified. Variables of sorts
ACTION, SIT, FLUENT, and STATE shall be denoted by the letters a, s, f, and
z, resp. The function o is written in infix notation.

A second macro, which reduces to (2), is used for fluents holding in situations:

Holds(f,s) = Holds(f, State(s))

As an example, consider the following so-called state constraint, which stipulates
that the distance to the wall be unique in every situation:

(Vs) (3!z) Holds(Dist(x), s)

The Frame Problem is solved in the Fluent Calculus using so-called state
update axioms, which specify the difference between the states before and after
an action. The axiomatic characterization of negative effects, i.e., facts that
become false, is given by an inductive abbreviation which generalizes STRIPS-
style update to incomplete states:

2 =z—f € [¢lof=2V2 =2z] A ~Holds(f,2')

Z'=z—(fio...ofno fni1) =
(F")(Z'"=z=(fio...ofn)) N2 =2" — fnt1)

This is the general form of a state update axiom for a (possibly nondeterministic)
action A(Z) with a bounded number of (possibly conditional) effects:

Poss(A(F),s) D
(341) (A1 (F, 73, State(s)) A State(Do(A(F),s)) = (State(s) — 97) o 97)
V...V
(FGn) (An(Z, §n, State(s)) A State(Do(A(Z), s)) = (State(s) —9,,) o I;})

where the sub-formulas A;(Z,7;, State(s)) specify the conditions on State(s)
under which A(Z) has the positive and negative effects 9] and ¥; , resp. Both
Y] and 9; are STATE terms composed of fluents with variables among Z, ;.
If n =1 and A; = True, then action A(Z) does not have conditional effects.
If n > 1 and the conditions A; are not mutually exclusive, then the action is
nondeterministic.

Consider, as an example, the function MoveFwd : R — ACTION denoting
the action of the robot moving a certain (positive) distance towards the wall.
Under the assumption that the effectors are ideal, the effect of this axiom can
be axiomatized by the following state update axiom:

Poss(MoveFwd(d), s) D
(3z,y) (Holds(Dist(z),s) Ny =z —d A (3)
State(Do(MoveFwd(d), s)) = (State(s) — Dist(x)) o Dist(y))

Put in words, moving the distance d towards the wall has the effect that the
robot is no longer x units away from the wall and will end up at x — d.
Recall, for example, formula (1) and suppose for the sake of argument that
Poss(MoveFwd(2m), Sp). After combining the inequations, our state update ax-
iom and the foundational axioms imply

(Jy, z) (State(Do(MoveFwd (2m), Sg)) = z o Dist(y))
A28m<y<3.1m)

A crucial property of this new state equation is that sub-state z has been carried
over from (1). Thus any additional constraint on z in (1) equally applies to the
successor state State(Do(MoveFwd(2m), Sg)). This is how the Frame Problem
is solved in the Fluent Calculus.

Based on the theory of the Fluent Calculus, the distinguishing feature of the
action programming language FLUX is to support incomplete states, which are
modeled by open lists of the form

20 = [F1,...,Fm | Z]
(encoding the state description Z0 =Flo...0Fmo Z), along with constraints

not_holds(F, Z)
not_holds_all([X1,...,Xk], F, Z)

encoding, resp., the negative statements (37) —Holds(F,Z) (where ¢ are the
variables occurring in F) and (37)(VX1,...,Xk) - Holds(F,Z) (where § are the
variables occurring in F except X1,...,Xk). These two constraints are used to
bypass the problem of ‘negation-as-failure’ for incomplete states. In order to pro-
cess these constraints, so-called declarative Constraint Handling Rules [4] have
been defined and proved correct under the foundational axioms of the Fluent
Calculus. In addition, the core of FLUX contains definitions for holds(F,Z),
by which is encoded macro (2), and update(Z1,ThetaP,ThetalN,Z2), which
encodes the state equation Z2 = (Z1 — ThetaN) o ThetaP.

As an example, the following is the FLUX encoding of our state update ax-
ioms (3) (ignoring preconditions) and the initial specification (1):2

state_update(Z1, move_forward(D), Z2) :-
holds(dist(X), Z1), Y =X - D,
update(Z1, [dist(Y)], [dist(X)], Z2).

init(Z0) :- X :: 4.8..5.1, holds(dist(X), Z0),
duplicate_free(Z0).

where the constraint duplicate_free(Z) means that list Z does not contain
multiple occurrences. The following sample query computes the conclusion made
in (4):

[eclipse 1]: init(Z0), state_update(Z0, move_forward(2), Z1).

Z0
z1

[dist(X{4.8..5.1}) | _Z]
[dist(¥{2.8..3.1}) | _Z]

2 Throughout the paper we use EcCLIPSE-Prolog notation. The interval expression
X::L..R is taken from the library RIA, the constraint solver for interval arithmetic
(see Section 4 below).

3 Update for Noisy Actions

The Fluent Calculus provides a simple and elegant means to axiomatize noisy
effectors. Uncertainty regarding the values of affected fluents can be represented
in a state update axiom as existentially quantified and constrained variables.
For example, suppose that the effectors of our robot are noisy in that the actual
position after moving towards the wall may differ from the ideal one by the
factor 0.05. The following is a suitable state update axiom for this noisy action:

Poss(MoveFwd(d), s) D
(3z,v) (Holds(Dist(x), s) A (5)
State(Do(MoveFwd(d), s)) = (State(s) — Dist(z)) o Dist(y) A
v~ (z—d)| < d-0.08)

Moving a distance d thus has the effect that the robot will end up at some
distance y which is at most d-0.05 units away from the goal position z — d.

To represent knowledge in the Fluent Calculus and to reason about sensing
actions, the predicate KState : SIT x STATE has been introduced in [17]. An
instance KState(s,z) means that according to the knowledge of the planning
robot, z is a possible state in situation s. On this basis, the fact that some
property of a situation is known to the robot is specified using the macro Knows,
which is defined as follows:

Knows(p,s) = (Vz) (KState(s,z) D HOLDS(p, 2)) (6)
where
HOLDS(a,2) = a (o arithmetic constraint)
HOLDS(f,z) < Holds(f, z)
HOLDS(—¢, z) = ~HOLDS (g, z)
HOLDS (¢ A1), z) = HOLDS(yp,z) A HOLDS(¢), 2)
HOLDS((Vz) ¢, z) = (V&) HOLDS (¢, z)

This model of knowledge uses pure first-order logic. As an example, the precon-
dition for the action MoveFwd can be specified in such a way that the robot
always keeps a safety distance to the wall. This of course requires to take into
account the uncertainty of the effectors:

Poss(MoveFwd(d),s) = Knows((Vz)(Dist(x) Dx — 1.05-d > 0.1m), 5)

Hence, moving forward is possible only if the robot knows that it will end up
at least 0.1m away from the wall. Suppose given that the robot knows that its
initial position is somewhere between 4.8m and 5.1m away from the wall, that
is,
KState(So, 2) D (Vz) (Holds(Dist(x),z) D4.8m < z < 5.1m) (7
With the help of macro (6) it follows that Poss(MoveFwd(2m),Sy).
The Frame Problem for knowledge is solved by axioms that determine the
relation between the possible states before and after an action. More formally,

the effect of an action A(F), be it sensing or not, on the knowledge is specified
by a knowledge update axiom of the form

Poss(A(F),s) D (8)
[(Vz) (KState(Do(A(Z), s), z) = (32')(KState(s, 2') NP(z,2',3)))]

In case of non-sensing actions, formula ¥ defines what the robot knows of the
effects of the action. E.g., state update axiom (5) for moving with unreliable
effectors corresponds to the following knowledge update axioms:

Poss(MoveFwd(d), s) D
[(Vz) (KState(Do(MoveFwd(d), s),z) =
(3z,y, 2") (KState(s, z') A Holds(Dist(z),2") A (9)
z = (2' — Dist(x)) o Dist(y) A
y—(e—d)| <d-0.05))]

The generic ACTION term Sense(f) has been introduced in [17] to denote
the action of sensing whether a fluent f holds. The corresponding knowledge
update axiom,

Poss(Sense(f),s) D
[KState(Do(Sense(f), s), z) = (10)
KState(s, z) A [Holds(f,z) = Holds(f, s)]]

says that among the states possible in s only those are still possible after sensing
which agree with the actual state of the world as far as the sensed fluent is
concerned. An important implication is that after sensing f either the fluent or
its negation is known to hold [17]. Thus axiom (10) can be viewed as modeling
an ideal sensor.

In order to model sensing with noise, axiom schema (8) needs to be used in
a different manner, where formula ¥ restricts the possible states to those where
the value of the sensed property may deviate from the actual value within a
certain range. To this end, we introduce the generic ACTION function Senser
where F can be any domain function of type IR — FLUENT.? For later purpose,
we assume that for any fluent which can thus be sensed there is an additional
fluent SensorReading(z) denoting the last sensor reading. Let pr denote the
maximal deviation of the noisy sensor reading from the actual value. The effect
of noisy Senser is then specified by this knowledge update axiom:

Poss(Senser,s) D
[(3r) (Vz) (KState(Do(Senser, s), z) =
(', z,y, 2") (KState(s, z') A
Holds(F(x), s) A (11)
Holds(F(y),z') A Holds(SensorReading z(r'), z') A
z = (2' — SensorReading p(r')) o SensorReading (1) A
|z —r[<eor Aly—r|<er)]
3 For the sake of simplicity, we assume that each sensor delivers just a unary value. The
generalization to perceivable fluents with multiple arguments, such as the position
in a two-dimensional space, is straightforward.

Put in words, after sensing, a sensor reading r is obtained which differs from
the actual value z by at most gr, and only those states are still considered
possible where the value y of the sensed fluent deviates from r by at most g
and where the old sensor reading 7’ has been updated to r. The accompanying
state update axiom says that a new sensor reading is obtained within the allowed
range:

Poss(Senser, s) D
(3r,r',z) (Holds(F(z), s) A Holds(SensorReading (r'), s) A
State(Do(Senser, s)) = (State(s) — SensorReadingr(r')) (12)
oSensorReading . (r)
Alz—r| < or)

While precise knowledge of the sensed property is thus no longer guaranteed,
an important consequence of the generic knowledge update axiom (11) is that
sensing never cause loss of possibly more precise initial knowledge wrt. the sensed
fluent.

Proposition1. Let a be an arithmetic constraint with free variable x, then
(11) and the foundational azioms entail

Knows((3z) (F(x) A a), s) D Knows((3z) (F(z) A), Do(Senser, s))

A second crucial consequence is that the sensor reading itself will be known by
the robot.

Proposition 2. (11) and the foundational azioms entail
(3z) Knows(SensorReading p(x), Do(Senser, s))

Suppose, for example, that the noise of the robot’s sensor for measuring the
distance to the wall is given by op;s¢ = 0.1m, and recall the specification of initial
knowledge given in (7). Then after moving 2m towards the wall and sensing the
distance, the robot will know the distance to the wall within a range of 0.1m.
Moreover, this distance must be between 2.7m and 3.2m (as above) while the
possible sensor readings are between 2.6m and 3.3m due to the noise of the
sensor. Formally, let Ss = Do(Sensepist, Do(MoveFwd(2m), Sy)), then the state
and knowledge update axioms for MoveFwd and Sensep;s; entail

(3z) (2.tm <z < 3.2m A Knows((Jy) (Dist(y) A |y — x| < 0.1m), S3))
A (3r) (2.6m < r < 3.3m A Knows(SensorReading p,;.,(r),S2))

Solutions to planning problems with noisy sensing actions may require to
condition an action on the outcome of sensing. Suppose, for example, the goal
of our robot is to be at a point where it is between 2.8m and 3.2m away from
the wall. Given the initial knowledge state (7), this problem is solvable only by
a plan which includes reference to previous sensing readings. A possible solution
along this line would be for the robot to advance 2m, measure the distance, and
if necessary adjust its position according to the obtained reading r. A suitable

choice of the argument for the second MoveFwd action is r — 3m: As we have
seen above, the robot knows that it will be between 2.7m and 3.2m away from
the wall after the initial move. Moreover, the sensor reading r will measure
the actual position z within the range x £ 0.1m. Thus, even with the added
uncertainty caused by the new movement, the robot can be sure without further
sensing that it will end up at a distance which is between 2.885m and 3.12m.

In order to allow for the use of sensor readings as parameters for actions, we
need to make precise when formal actions such as MoveFwd(r —3m) can be con-
sidered executable by the robot. To this end, we introduce the macro Kref(r,s)
(inspired by [14]) with the intended meaning that the arithmetic expression 7
can be evaluated by the robot on the basis of its knowledge in situation s. The
macro is inductively defined as follows:

Kref(c,s) = True (¢ constant)

Kref (F,s) = (3z) Knows(F(z), s) (F value fluent) (13)
KTCf(Op(Tl, TQ); S) = Kref(Tla S) A KTef(T27 S) (opE {+7 Ty })
The executability of a plan Do(an,...,Do(a1,Sp)...) is then defined as the

macro EXEC as follows:

EXEC(So) = True
EXEC(Do(A(m1,...,m),s) = EXEC(s) A Poss(A(t1,...,T4),5)
A Kref(m1,8) A ... A Kref (1x, 8)

4 Planning with Noise in Flux

Encoding state update axioms for noisy actions requires to state arithmetic con-
straints. A constraint solver is then needed to deal with these constraints. A
suitable choice for FLUX is the standard ECLIPSE constraint system RIA (for real
number interval arithmetic). Incorporating this constraint module, the follow-
ing is a suitable encoding of state update axiom (5), specifying an action with
unreliable effectors:

:- 1lib(ria).

state_update(Z1, move_forward(D), Z2) :-
holds(dist(X), Z1),
abs(Y-(X-D)) *=< 0.05x%D,
update(Z1, [dist(Y)], [dist(X)], Z2).

In comparison with the computed answer shown at the end of Section 2, the
new state update axiom causes a higher degree of uncertainty wrt. the resulting
position:

init(Z0) :- X :: 4.8..5.1, holds(dist(X), Z0),
duplicate_free(Z0).

[eclipse 1]: init(Z0), state_update(Z0, move_forward(2), Z1).

Z0
Z1

[dist(X{4.8..5.1}) | _Z]
[dist(Y{2.7..3.2}) | _Z]

While the explicit notion of possible states leads to an extensive framework
for reasoning about knowledge and noisy sensing, automated deduction becomes
considerably more intricate by the introduction of the modality-like KState
predicate. As a consequence, in [18] we have developed an inference method
which avoids separate update of knowledge and states. In what follows, we ex-
tend this result to noisy sensors and effectors and show how knowledge updates
are implicitly obtained by progressing an incomplete state through state update
axioms.

Our approach rests on two assumptions. First, the planning robot needs to
know the given initial specification ®(State(Sp)), and this is all it knows of Sy,
that is, KState(Sy,z)=P(z). Second, the robot must have accurate knowledge
of its own actions. That is, formally, the possible states after a non-sensing action
are those which would be the result of actually performing the action in one of
the previously possible states:

Definition 3. [17] A set of axioms X represents accurate effect knowledge if
for each non-sensing ACTION function A, X contains a unique state update
axiom

Poss(A(Z), s) D Iu{z/State(Do(A(Z), s)), 2"/ State(s))} (14)

(where I'4(Z,z,%") is a first-order formula with free variables among %, z, 2z’ and
without a sub-term of sort SIT) and a unique knowledge update axiom which is
equivalent to

Poss(A(E),s) D [(Vz) (KState(Do(A(Z), s),2z) =

(32')(KState(s, 2') A Ta(Z, 2, 7)))] (15)

Accurate knowledge of effects suffices to ensure that the possible states after
a non-sensing action can be obtained by progressing a given state specification
through the state update axiom for that action. The effect of sensing, on the
other hand, cannot be obtained in the same fashion. To see why, let S be a
situation and consider the knowledge specification

KState(S, z) =

(3z,y) (z = Dist(x) o SensorReading p,;,,(y) N 4.8m < z < 5.1m) (16)

Suppose that Poss(Sensepisi,S), then knowledge update axiom (11) yields dif-
ferent models reflecting the possible sensing result r, which run from 4.7m to
5.2m. However, in each model the distance is known up to an error of just op;st =
0.1m! Hence, while we cannot predict the sensing outcome, it is clear that the
sensed value will be known within the precision of the sensor. This knowledge is
not expressible by a specification of the form KState(Do(Sensepist,S),z) = P(2)
entailed by (16) and (11). Hence, the effect of a sensing action cannot be obtained
by straightforward progression.

In order to account for different models for KState caused by sensing, we
introduce the notion of a sensing history ¢ as a finite, possibly empty list of
real numbers. A history is meant to describe the outcome of each sensing action
in a sequence of actions. For the sake of simplicity, we assume that the only
sensing action is the generic Senser with knowledge update axiom (11) and
state update axiom (12).

For the formal definition of progression we also need the notion of an action
sequence ¢ as a finite, possibly empty list of ground ACTION terms. An action
sequence corresponds naturally to a situation, which we denote by S,:

S[] d:ef S() and S[A(t") | <7] dZEf DO(A(F), So-)

We are now in a position to define, inductively, a progression operator P(o,s,z)
along the line of [18], by which an initial state specification @(State(Sp)) is
progressed through an action sequence o wrt. a sensing history ¢, resulting in
a formula specifying z:

P(l,s,2) = &(2) ifs=]] (17)

P(A() |o],5,2) = (32') (P(o,s,2') ATu(F 2,2"))

18
if A non-sensing with state update (14) (18)

def

P([Senser |0],5,2) =
@', @,y,2") (P(o,¢",2') A
Holds(F(z), s) A
Holds(F(y),z") A Holds(SensorReading (r'), z") A (19)
z = (2! — SensorReading (r'")) o SensorReading () A
lz—7r| <or Aly—r| < or)
where ¢ = [r|¢’]

In case the length of the history ¢ does not equal the number of sensing actions
in o, we define P(o0,c,2) as False. Progression provides a provably correct
inference method for knowledge update.

Theorem 4. Consider the initial state and knowledge X9 = {P(State(So)),
KState(So,2) =P(2)} and let X be the foundational azioms plus a set of do-
main axioms representing accurate effect knowledge. Let o be an action sequence
such that ¥ U Xy = EXEC(S,). Then for any model M of XoU X and any
valuation v,

M, v |= KState(S,,2) iff M,v=P(o,s,2) for someg

The proof is by simple induction on o.

This theorem serves as the formal justification for the FLUX encoding of
knowledge and sensing. The sensing action Sensep;s:, for example, is encoded
by a state update axiom which carries as additional argument the result of
sensing, that is, the sensor reading:

state_update(Z1, sense_dist, Z2, SV) :-
holds(dist(X), Z1), holds(reading(Y), Z1),
abs(X-SV) *=< 0.1,
update(Z1, [reading(SV)], [reading(Y)], Z2).

The definition of progression is a direct encoding of (17)—(19):

pCd, [0, Z2) :- init(2).
p([AlS], H2, Z2) :- p(S, H1, Z1),
(state_update(Z1, A, Z2), H2=H1 ;
state_update(Z1, A, Z2, SV), H2=[SV|H1]).

In principle, the FLUX clauses we arrived at can readily be used by a simple
forward-chaining search algorithm. Enumerating the set of plans, including all
possible sensing actions, a solution will eventually be found if only the problem
is solvable. However, planning with incomplete states usually involves a con-
siderable search space, and the possibility to generate conditional plans only
enlarges it. The concept of nondeterministic robot programs has been intro-
duced in GOLOG as a powerful heuristics for planning, where only those plans
are searched which match a given skeleton [10]. This avoids considering obvi-
ously useless actions such as ineffectual sensing. In [18] we have shown how this
concept can be adopted in FLUX on the basis of a progression operator, in order
to make planning with sensing more efficient. These heuristics can be directly
applied to planning with noisy actions in FLUX.

5 Summary and Discussion

We have presented an approach to planning with noisy actions by appealing to
the Fluent Calculus as a basic solution to the Frame Problem. The axiomatiza-
tion has be shown to exhibit reasonable properties. Moreover, we have extended
the action programming language FLUX to obtain a system for solving planning
problems that involve noisy actions.

Both the axiomatic approach as well as the realization in FLUX are an exten-
sion of the solution to the Frame Problem for knowledge [17, 18]. A distinguishing
feature of this approach is its expressiveness in comparison to most existing ap-
proaches to planning with knowledge and sensing. Unlike other systems, FLUX
is not tailored to restricted classes of planning problems (as opposed to, e.g.,
[6, 5, 2, 11, 8]) and allows to search for suitable sensing actions during planning
(as opposed to [13]).

Closest to our work is [1], where an extension of the Situation Calculus is
presented that allows to axiomatize noisy actions. The crucial difference to our
approach is the indirect way of modeling a noisy action as a non-deterministic
selection among actions with determined effects. To this end, the approach uses
the non-deterministic programming constructs of GOLOG for modeling noise.
Consequently, these programs can no longer be used as planning heuristics, and
therefore the theory cannot be straightforwardly integrated into GOLOG to pro-
vide a planning system that deals with noise. On the other hand, the approach

of [1] includes a notion of probability distribution for noisy effects. The extension
of our approach along this line is an important goal for future work.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. F. Bacchus, J. Halpern, and H. Levesque. Reasoning about noisy sensors and

effectors in the situation calculus. Artif. Intell., 111(1-2):171-208, 1999.

C. Baral and T. C. Son. Approximate reasoning about actions in presence of
sensing and incomplete information. In Proc. of ILPS, pp. 387401, 1997. MIT
Press.

W. Bibel. Let’s plan it deductively! Artif. Intell., 103(1-2):183-208, 1998.

T. Frithwirth. Theory and practice of constraint handling rules. J. of Logic Pro-
gramming, 37(1-3):95-138, 1998.

G. De Giacomo, L. Iocchi, D. Nardi, and R. Rosati. Planning with sensing for a
mobile robot. In Proc. of ECP, vol. 1348 of LNAI pages 158-170. Springer, 1997.
K. Golden and D. Weld. Representing sensing actions: The middle ground revis-
ited. In Proc. of KR, pp. 174-185, 1996. Morgan Kaufmann.

S. Holldobler and J. Schneeberger. A new deductive approach to planning. New
Generation Computing, 8:225-244, 1990.

G. Lakemeyer. On sensing and off-line interpreting GOLOG. In Logical Founda-
tions for Cognitive Agents, pages 173-189. Springer, 1999.

H. Levesque, F. Pirri, and R. Reiter. Foundations for a calculus of situa-
tions. Electronic Transactions on Artif. Intell., 3(1-2):159-178, 1998. TURL:
http://www.ep.liu.se/ea/cis/1998/018/.

H. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl. GOLOG: A logic
programming language for dynamic domains. J. of Logic Programming, 31(1-
3):59-83, 1997.

J. Lobo. COPLAS: A conditional planner with sensing actions. In Cognitive
Robotics, vol. FS-98-02 of AAAI Fall Symposia, pp. 109-116. AAAT Press 1998.
J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. Machine Intell., 4:463-502, 1969.

R. Reiter. On knowledge-based programming with sensing in the situation calculus.
In Cognitive Robotics Workshop at ECAI pp. 55-61, Berlin, Germany, August
2000.

R. Scherl and H. Levesque. The frame problem and knowledge-producing actions.
In Proc. of AAAI pp. 689-695, 1993.

M. Thielscher. From Situation Calculus to Fluent Calculus: State update axioms
as a solution to the inferential frame problem. Artif. Intell., 111(1-2):277-299,
1999.

M. Thielscher. The Fluent Calculus: A Specification Language for Robots with
Sensors in Nondeterministic, Concurrent, and Ramifying Environments. Tech-
nical Report CL-2000-01, Dept. of Computer Science, Dresden Univ. of Tech.,
2000. URL: http://www.cl.inf.tu-dresden.de/ mit/publications/reports/
CL-2000-01. pdf.

M. Thielscher. Representing the knowledge of a robot. In Proc. of KR, pp. 109-
120, 2000. Morgan Kaufmann.

M. Thielscher. Inferring implicit state knowledge and plans with sensing actions.
In Proc. of KI, vol. 2174 of LNAI pp. 366-380, 2001. Springer.

