
Artificial Intelligence 60 (1993) 283-292 283
Elsevier

ARTINT 971

Research Note

On prediction in Theorist

Michael Thielscher
Fachgebiet lntellektik, Fachbereich Informatik, Technische Hochschule Darmstadt,
Alexanderstrafle 10, D-6100 Darmstadt, Germany

Received December 1991
Revised July 1992

Abstract

Thielscher, M., On prediction in Theorist (Research Note), Artificial Intelligence 60
(1993) 283-292.

Theorist is a well-known framework and system for nonmonotonic reasoning which
provides mechanisms for dealing with both explanations for observations and skeptical
prediction. Its current implementation, developed by David Poole and co-workers, uses
an algorithm for prediction which holds for a restricted part of Theorist. In more general
cases, the system produces incorrect results in the case of prediction.

In this note, we present an algorithm for prediction which is shown to be correct
within the entire Theorist framework.

1. Introduction

In the past ten years, many formalisms for nonmonotonic reasoning have
been developed. One direction of research consists in the use of classical
first-order logic along with theory formation. Beside Reiter's default logic [9]
the most prominent approach using this idea is described by David Poole
in [5].

In Poole's so-called Theorist framework, knowledge about a world is repre-
sented by several consistent sets of first-order formulas. These sets are used

Correspondence to: M. Thielscher, Fachgebiet Intellektik, Fachbereich Informatik, Technische
Hochschule Darmstadt, AlexanderstraBe 10, D-6100 Darmstadt, Germany. Telephone:
(+ 49-6151) 16-3638. Fax: (+ 49-6151) 16-5326. E-mail: thielseher@intellektik.informatik.th-
darmstadt.de.

0004-3702/93/$ 06.00 (~) 1993 - - Elsevier Science Publishers B,V. All rights reserved

284 M. Thielscher

to describe different scenarios, or to represent assumptions which provide
an explanation for given observations. Initially, two sets are introduced,
one containing facts, i.e. formulas which are supposed to be true in every
scenario. The elements of the other set are defaults. Defaults are used as
assumptions for explanations as long as they do not lead to an inconsistency.
In [5], Poole also argues that some formulas called constraints are necessary
to restrict the use of defaults in certain contexts. Constraints need to be
distinguished from facts, because they are used only for checking consistency
but not for providing explanations.

In a subsequent article, Poole describes how to use his framework for
skeptical prediction [8], but considers only the basic version without con-
straints. Poole presents an algorithm for prediction together with a proof of
correctness. However, within the entire Theorist framework which includes
constraints, these results are no longer valid. This also applies to the current
Theorist implementation developed by Poole [4], where this algorithm is
used together with constraints.

Constraints in Theorist are used to suppress unintuitive extensions. As
regards skeptical prediction, a statement is believed if and only if it is
in every extension. Therefore, the ability of using constraints seems to be
inevitably necessary for skeptical reasoning close to the intuition.

The aim of this paper is to show how to reconcile prediction with con-
straints. This is not a trivial problem, as can be seen by the fact that the
current implementation produces incorrect answers in the case of predic-
tion. The reason for this abnormal behaviour is that there is a need for a
distinction between the consistency of two scenarios and a weaker notion
called compatibility. We use this term to suppress uniting two scenarios if
their union is no valid scenario.

The following section gives a brief summary of Theorist. We present a
small example illustrating how to use this framework. The example also
shows why the existing algorithm for prediction produces unintuitive and
incorrect results (with respect to theory) when using constraints. In Sec-
tion 3, we describe the idea of our algorithm. In Section 4, we formalize
this idea culminating in the main theorem of this paper and the resulting
algorithm. In the last section, we discuss our result within the context of
other approaches to nonmonotonic reasoning.

2. Theorist framework

The knowledge of the world we want to model is represented by three sets
of first-order formulas, i.e. a world W is defined as a triple (~-, A,C) where:

• The set U is called the set of facts. Facts are closed formulas which
are assumed to be true.

Prediction in Theorist 285

• The set A is called the set of defaults. Any ground instance of some
(possibly open) default may be used for theory formation.

• The set C is called the set of constraints. A constraint is a closed
formula used to suppress one or more defaults under certain circum-
stances.

It is assumed that ~" U C is consistent.
One restriction normally made is to allow a default only to be an atomic

formula. In fact, this is done by naming every default d (~), where ~ denotes
the free variables in d, by some atomic formula n (~), adding this name to
the set of defaults and taking the formula V~(n (~) ~ d (~)) as a fact. Poole
has shown that there is no loss of expressiveness making this restriction [5].
Using this method, the defaults mentioned in the set of constraints are
referred to by their name.

We are now ready to state the basic definitions for using these sets.

Definition 2.1. A scenario of W = (~-, A, C) is a set ~- U D such that D is a
set of ground instances of elements of zt and ~" U D U C is consistent.

Definition 2.2. An explanation of a closed formula g from W = (Y, A, C) is
a scenario of W which (classically) implies g.

Definition 2.3. An extension of W = (jr, A, C) is the set of logical conse-
quences of a maximal (with respect to set inclusion) scenario of W.

Definition 2.4. A closed formula g is predictable in W = (j r ,3 ,C) iff it is
in every extension of W.

For the following discussion we introduce a new relation between scenar-
ios. Two scenarios of a world W are called incompatible if their union is no
scenario of W.

Definition 2.5. Two scenarios 81 = jr U D1 and $2 = ~" u D2 of (5 r, A, C) are
incompatible iff j r u D1 U D2 U C ~ _L.

The following example shows how to use these definitions to model
nonmonotonic knowledge. It also shows why the notion of compatibility is
essential for computing predictions.

Example 2.6. Let Joe be the protagonist of our example. Joe was born in
New Orleans but some years ago he moved to San Francisco. Joe is a great
football fan.

286 M. Thie~cher

It is a well-known fact that anybody born in New Orleans identifies himself
with anything from his city, as does anybody living in San Francisco. To
represent this in our formalism we need the facts

= {born_in (joe, new_Orleans),
lives_in (joe, san_Francisco),
likes_football (joe),
VX, Y (born_in (X, Y) ~ identifies_himself_with (X, Y)),
VX, Y (lives_in (X, Y) ---, identifies_himself_with (X, Y)) }

If we know that someone is a football fan and that he identifies himself with
everything from New Orleans, then we may assume that he is a fan of the
New Orleans Saints. On the other hand, if we know that some football fan
identifies himself with everything from San Francisco, then we may assume
that he is a fan of the San Francisco 49ers. Formalizing these two statements
as defaults, we get

LI = {default_Saints (X) ,
default_S. F. 49ers (X) }

and

7 = ~ U {VX(default_Saints (X) -~ likes_football (X)
A identifies_himself_with (X, new_Orleans)

fan_of_Saints (X)),
V X (default_S.F. 4 9ers (X) ~ likes_football (X)

A identifies_himself_with (X, san_Francisco)
fan_of_S.F. 49ers (X)).

A conflict arises if a person identifies himself with everything from New
Orleans and San Francisco at the same time, since normally nobody is a fan
of both football teams (especially when there is a match between the Saints
and the 49ers). Therefore, we need a constraint to suppress the use of the
defaults with the same instantiation.

d := {VX(~ (default_Saints (X) A default_S.F.49ers (X)))}

Now, if we observe Joe being a fan of the Saints, then the constraint does
not prevent us to explain this by using the first default. But we are not able
to predict Joe being a fan of one of these teams from what we know, since
there are two different scenarios

81 = ~! u {default_Saints(joe) },
82 = Yr 'u {default_S.F.49ers(joe) }.

We do not want to add as a fact that anybody cannot be a fan of both teams,
because we will not exclude this. The aim of the constraint is to permit the

Prediction in Theorist 287

conclusion that someone is a fan of both teams just from the fact that he
identifies himself with everything from New Orleans and San Francisco.

Here, the crucial point is that 81 and $2 are incompatible, since Sl u $2 is
no scenario of (7 , ,t, C), but Sl U $2 is not inconsistent. The algorithm used
within the Theorist implementation [4] predicts a formula if it is implied
by a scenario which is consistent with all other scenarios. Therefore, this
algorithm predicts any formula implied by S1, especially "fan_of_Saints (joe)"
although this formula is not in every extension.

3. The idea of the algorithm

In Theorist, a formula g can be predicted in W if and only if it is in every
extension of W. This is a statement about every scenario, whereas explaining
is searching for exactly one scenario. Therefore, our aim of developing an
algorithm for prediction is to reduce the problem of prediction to the use
of explanations. We assume that we have an algorithm for explaining which
returns all minimal explanations of a formula g within a world W. An
analogous idea is used in the original algorithm [4,8].

For the following discussion we need to clarify what statements like
"explaining from a scenario", "predictable in a scenario", etc. mean. Given
a scenario 5 r U D of a world W = (~', A, C) we can create a new world W'
by using the scenario as the new set of facts, i.e. W' = (~ u D,A,C). Any
definition stated in the previous section can be used with regard to this new
world.

In the sequel, we describe an algorithm which determines whether a
formula g is explainable from every scenario of a world W. It is easy to
verify that this is logically equivalent to g being in every extension of W,
i.e. g being predictable in W.

(1) Try to find an arbitrary explanation of g from W using the available
function for explaining. If there is no such explanation, the formula
is not explainable from every scenario, as there is at least one trivial
scenario, the set of facts itself (i.e. without using any default). In
this case, return "no".

(2) If, on the other hand, there is an explanation 6 of the formula,
then this explanation is a scenario of W, so it is either compatible
or incompatible with any other scenario. If there is no scenario
incompatible with E, the computed explanation may be seen as a
universal explanation of g and therefore, return "yes".

(3) For every incompatible scenario there have to be other explanations
of g if g is in every extension. To simplify this search, regard only
minimal incompatible scenarios (with respect to set inclusion) and

288 M. Thielscher

show by a recursive call that the formula is explainable from every
scenario of such a minimal scenario. Return "yes" if and only if the
recursive call is successful for every incompatible minimal scenario.

The problem left is how to find all minimal scenarios which are incom-
patible with a given explanation £. As the following section shows, every
such scenario can be seen as a scenario which explains the negation of one
element of E from a special world. The facts of this new world contain the
original facts together with some subset of E. The crucial point is that also
every constraint in ~4; must be regarded as a fact in the new world when
searching for incompatibility instead of inconsistency. Using the function for
explaining together with this new world provides all minimal incompatible
scenarios.

One might object that taking constraints as facts and therefore using them
for explanations contradicts the intention to use constraints for checking
consistency only. However, the aim of using constraints for explaining is
just to find incompatibilities.

In the following section, we justify every step towards the algorithm
described above. Combining these justifications leads to a theorem our
algorithm is based on.

4. The formal description

First of all, the idea to show that a formula is explainable from every sce-
nario instead of proving membership in every extension has to be justified.
The following lemma was originally stated and proven in [6].

Lemma 4.1. A closed formula g is in every extension of (~, J, C) iff g is
explainable from every scenario of (yr, A, C).

The next step towards the algorithm is to find an arbitrary explanation of
g, and then to examine incompatible scenarios.

Lemma 4.2. A closed formula g is explainable from every scenario of
(~,J,C) iff there is some scenario £ explaining g from (.F,3,C) and for
every scenario 8 of (9r, 3,C) which is incompatible with £, g is explainable
from (8,3,C).

Proof. (~) Suppose g is explainable from every scenario. Then,

(1) there is an explanation of g from (~r,d,C), since g is explainable
from ~" U { }, and

(2) g is explainable from (8,J,C), as 8 is a scenario of (Sv,•,d).

Prediction in Theorist 289

(¢=) Let S be a compatible scenario (with respect to £). Then, £ is a
scenario of (S, A, C), as 8 U S U C is consistent. Therefore, g is explainable
from S by using £. []

Our intention is to try to prove that the formula to predict is in every
extension of every minimal incompatible scenario instead of showing that
it is explainable from every incompatible scenario. The following lemma
justifies this.

Lemma 4.3. Let S be a scenario o f (~-,3,C). Then, a closed formula g is
explainable from every scenario S' ~ S o f (~, ,t, C) i f f g is in every extension

o f S.

Proof. Since every scenario S' _~ S of (~', ,t, C) is also a scenario of (S, 3, C),
the two statements are equivalent according to Lemma 4.1. []

At the heart of our algorithm is the use of explanations to find incompat-
ible minimal scenarios. If two scenarios are incompatible, then their union
and the set of constraints are inconsistent. Therefore, some part of this
union along with the constraints can be seen as an explanation of some
negated element of one of these scenarios.

Lemma 4.4. Let ~ U D and £ = ~ U {e l , . . . , en} be two scenarios o f
(~, A, C). Then, F U D is incompatible with E if f there is some i E { 1 n}
such that ~ u D U {el ei- 1 } U C is an explanation of -~ei from
(.~'U {el ei-1} U C, zl,O).

Proof. (=~) Since ~" U D and £ are incompatible, we have

.~ 'UDU{e l , . . . ,en}Ud k J-.

Following the deduction theorem, there is some i E { 1 n} such that

. T r U D U { e l , . . . , e i - l } U C ~ -~ei

and

~" U D U {e l , . . . , el- 1 } U C is consistent.

Using the definition of explanation, Jr U D U {el ei_ 1 } U C can be seen as
explaining ~ei from (Y" u {el ei-i } u C, 3, 0).

(~) Let ~ u D u {el ei_l } U C be an explanation of-~ei, i.e.

~r U D U {el , ei- l } U C k -~ei.

290 M. Thielscher

FUNCTION predict (g, (S, 3, C));

£ := explain (g, (f , 3 , C)) ;

IF £ = [] THEN RETURN NO "no explanation"

ELSE

FOR ALL ei e £ = {el en} DO

FOR ALL £* := explain (~ei, (~'U {el, . . . ,ei_~} UC, J , ¢)) DO

L E T Y U D U { o , e i - l } U C = £* ;

IF ~predict (g, (.T U D,3 ,C)) T H E N

RETURN NO

END-IF

END-FOR

END-FOR;

RETURN YES

END-IF

END-FUNCTION

Fig. 1. This algorithm tries to determine whether or not a formula can be predicted in a
Theorist world.

Then,

f U D U { e l ei}UC ~ ±

and therefore

~ - u D u { e l ,en}UC ~ ± .

Hence, ~v U D and £ are incompatible. []

Combining the statements above leads to the following theorem.

Theorem 4.5. A closed formula g is in every extension of (U, 3, C) if f there is
some explanation Yru {el en} explaining g from (Yr,3,C) such that for
all i E { 1 , n} and every minimal 3 r u D u {el ei_ 1 } U C explaining -~ei
from (SrU {el e l_ l } UC, d,¢) , g is in every extension o f (Yru D,3,C).

If we assume that we have a function explain (g, W) which generates all
minimal explanations of g from W, then the algorithm extracted from this
theorem is shown in Fig. 1.

Prediction in Theorist 291

5. Discussion

We have presented an algorithm for implementing skeptical reasoning
in Theorist. We have defined the notion of incompatibility as a principle
underlying prediction. The notion of incompatibility is related to the notion
of commitment to assumptions in default logic. Default logic as defined in [9]
lacks commitment as pointed out in [7]. Since commitment seems to be
an intuitively indispensable property of nonmonotonic reasoning, recently a
number of variants of default logic have been developed (cf. [3]). Some of
these variants turned out to be closely related to Theorist with constraints.
For example, a transformation from semi-normal prerequisite-free default
theories to Theorist worlds including constraints is given in [3], and it is
shown that every so-called constrained extension corresponds to a Theorist
extension. Because of this transformation, we can use our algorithm for
skeptical reasoning in default logics such as [1,2].

Moreover, we believe that our algorithm can be generally modified to
implement skeptical reasoning within default logics which consider com-
mitment. In [9], an algorithm solving the extension membership problem
for closed normal default theories is given. This algorithm generates default
proofs, which resembles generating explanations in Theorist. We think that
combining default proof algorithms with the result presented in this paper
would straightforwardly lead to a procedure for skeptical reasoning in many
variants of default logic.

6. Conclusion

We have developed an algorithm for prediction within the entire Theorist
framework and we have shown that this algorithm is correct.

In addition, we have implemented our algorithm within the current im-
plementation of Theorist which is written in Prolog [4]. The system now
gives correct answers in any case using prediction together with constraints.

The extended code is available from the author and described in [10].

Acknowledgement

I am indebted to Wolfgang Bibel for his support and helpful discussions
during the preparation of this work. I am also grateful to Norbert Hanf
and Torsten Schaub for valuable remarks and to Christoph Kreitz and an
anonymous referee for their constructive criticism on an earlier version of
this paper.

292 M. Thielscher

References

[1] G. Brewka, Cumulative Default Logic: in defense of nonmonotonic inference rules,
Artif. Intell. 50 (1991) 183-205.

[2] J.P. Delgrande and W.K. Jackson, Default logic revisited, in: Proceedings Second
International Conference on Principles of Knowledge Representation and Reasoning,
Cambridge, MA (1991) 118-127.

[3] J.P. Delgrande, W.K. Jackson and T. Schaub, Alternative approaches to default logic,
in: Proceedings ECAI-92, Vienna, Austria (1992).

[4] D. Poole, A Theorist to Prolog compiler, Logic Programming and AI Group, Department
of Computer Science, University of Waterloo, Ont. (1987).

[5] D. Poole, A logical framework for default reasoning, Artif. Intell. 36 (1) (1988) 27-47.
[6] D. Poole, Explanation and prediction: an architecture for default and abductive reasoning,

Comput. Intell. 5 (2) (1989) 97-110.
[7] D. Poole, What the Lottery Paradox tells us about default reasoning, in: Proceedings

First International Conference on Principles of Knowledge Representation and Reasoning,
Toronto, Ont. (1989) 333-340.

[8] D. Poole, Compiling a default reasoning system into Prolog, New Gen. Comput. 9 (1)
(1991) 3-38.

[9] R. Reiter, A logic for default reasoning, Artif. lntell. 13 (1980) 81-132.
[10] M. Thielscher, Prognostizieren im Poole'schen Ansatz--Arbeiten mit Theorist, Tasso

Rept. ! 8, Technische Hochschule Darmstadt, Germany (1991).

