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Abstract 

Thielscher, M., On prediction in Theorist (Research Note), Artificial Intelligence 60 
(1993) 283-292. 

Theorist is a well-known framework and system for nonmonotonic reasoning which 
provides mechanisms for dealing with both explanations for observations and skeptical 
prediction. Its current implementation, developed by David Poole and co-workers, uses 
an algorithm for prediction which holds for a restricted part of Theorist. In more general 
cases, the system produces incorrect results in the case of prediction. 

In this note, we present an algorithm for prediction which is shown to be correct 
within the entire Theorist framework. 

1. Introduction 

In the past ten years, many formalisms for nonmonotonic reasoning have 
been developed. One direction of research consists in the use of classical 
first-order logic along with theory formation. Beside Reiter's default logic [9] 
the most prominent approach using this idea is described by David Poole 
in [5]. 

In Poole's so-called Theorist framework, knowledge about a world is repre- 
sented by several consistent sets of first-order formulas. These sets are used 
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to describe different scenarios, or to represent assumptions which provide 
an explanation for given observations. Initially, two sets are introduced, 
one containing facts, i.e. formulas which are supposed to be true in every 
scenario. The elements of  the other set are defaults. Defaults are used as 
assumptions for explanations as long as they do not lead to an inconsistency. 
In [5 ], Poole also argues that some formulas called constraints are necessary 
to restrict the use of  defaults in certain contexts. Constraints need to be 
distinguished from facts, because they are used only for checking consistency 
but not for providing explanations. 

In a subsequent article, Poole describes how to use his framework for 
skeptical prediction [8], but considers only the basic version without con- 
straints. Poole presents an algorithm for prediction together with a proof of  
correctness. However, within the entire Theorist framework which includes 
constraints, these results are no longer valid. This also applies to the current 
Theorist implementation developed by Poole [4], where this algorithm is 
used together with constraints. 

Constraints in Theorist are used to suppress unintuitive extensions. As 
regards skeptical prediction, a statement is believed if and only if it is 
in every extension. Therefore, the ability of using constraints seems to be 
inevitably necessary for skeptical reasoning close to the intuition. 

The aim of this paper is to show how to reconcile prediction with con- 
straints. This is not a trivial problem, as can be seen by the fact that the 
current implementation produces incorrect answers in the case of  predic- 
tion. The reason for this abnormal behaviour is that there is a need for a 
distinction between the consistency of  two scenarios and a weaker notion 
called compatibility. We use this term to suppress uniting two scenarios if 
their union is no valid scenario. 

The following section gives a brief summary of Theorist. We present a 
small example illustrating how to use this framework. The example also 
shows why the existing algorithm for prediction produces unintuitive and 
incorrect results (with respect to theory) when using constraints. In Sec- 
tion 3, we describe the idea of  our algorithm. In Section 4, we formalize 
this idea culminating in the main theorem of this paper and the resulting 
algorithm. In the last section, we discuss our result within the context of  
other approaches to nonmonotonic reasoning. 

2. Theorist framework 

The knowledge of  the world we want to model is represented by three sets 
of  first-order formulas, i.e. a world W is defined as a triple (~-, A,C) where: 

• The set U is called the set of facts. Facts are closed formulas which 
are assumed to be true. 
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• The set A is called the set of  defaults. Any ground instance of  some 
(possibly open) default may be used for theory formation. 

• The set C is called the set of constraints. A constraint is a closed 
formula used to suppress one or more defaults under certain circum- 
stances. 

It is assumed that ~" U C is consistent. 
One restriction normally made is to allow a default only to be an atomic 

formula. In fact, this is done by naming every default d (~), where ~ denotes 
the free variables in d, by some atomic formula n (~), adding this name to 
the set of defaults and taking the formula V~(n (~) ~ d (~))  as a fact. Poole 
has shown that there is no loss of  expressiveness making this restriction [ 5 ]. 
Using this method, the defaults mentioned in the set of  constraints are 
referred to by their name. 

We are now ready to state the basic definitions for using these sets. 

Definition 2.1. A scenario of W = (~-, A, C) is a set ~- U D such that D is a 
set of  ground instances of  elements of zt and ~" U D U C is consistent. 

Definition 2.2. An explanation of a closed formula g from W = (Y, A, C) is 
a scenario of W which (classically) implies g. 

Definition 2.3. An extension of W = (jr, A, C) is the set of  logical conse- 
quences of  a maximal (with respect to set inclusion) scenario of  W. 

Definition 2.4. A closed formula g is predictable in W = ( j r ,3 ,C)  iff it is 
in every extension of W. 

For the following discussion we introduce a new relation between scenar- 
ios. Two scenarios of  a world W are called incompatible if their union is no 
scenario of  W. 

Definition 2.5. Two scenarios 81 = jr U D1 and $2 = ~" u D2 of (5 r, A, C) are 
incompatible iff j r  u D1 U D2 U C ~ _L. 

The following example shows how to use these definitions to model 
nonmonotonic knowledge. It also shows why the notion of  compatibility is 
essential for computing predictions. 

Example 2.6. Let Joe be the protagonist of our example. Joe was born in 
New Orleans but some years ago he moved to San Francisco. Joe is a great 
football fan. 
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It is a well-known fact that anybody born in New Orleans identifies himself 
with anything from his city, as does anybody living in San Francisco. To 
represent this in our formalism we need the facts 

= {born_in (joe, new_Orleans), 
lives_in (joe, san_Francisco), 
likes_football (joe), 
VX, Y (born_in (X, Y )  ~ identifies_himself_with (X,  Y)), 
VX, Y (lives_in (X, Y )  ---, identifies_himself_with (X, Y ) ) }  

If we know that someone is a football fan and that he identifies himself with 
everything from New Orleans, then we may assume that he is a fan of the 
New Orleans Saints. On the other hand, if we know that some football fan 
identifies himself with everything from San Francisco, then we may assume 
that he is a fan of the San Francisco 49ers. Formalizing these two statements 
as defaults, we get 

LI = {default_Saints ( X ) , 
default_S. F. 49ers ( X ) } 

and 

7 = ~ U {VX(default_Saints  (X )  -~ likes_football (X )  
A identifies_himself_with (X, new_Orleans) 

fan_of_Saints ( X ) ), 
V X ( default_S.F. 4 9ers ( X ) ~ likes_football ( X ) 

A identifies_himself_with (X,  san_Francisco) 
fan_of_S.F. 49ers ( X ) ). 

A conflict arises if a person identifies himself with everything from New 
Orleans and San Francisco at the same time, since normally nobody is a fan 
of  both football teams (especially when there is a match between the Saints 
and the 49ers). Therefore, we need a constraint to suppress the use of the 
defaults with the same instantiation. 

d := {VX(~ (default_Saints (X )  A default_S.F.49ers ( X ) )  )} 

Now, if we observe Joe being a fan of the Saints, then the constraint does 
not prevent us to explain this by using the first default. But we are not able 
to predict Joe being a fan of one of these teams from what we know, since 
there are two different scenarios 

81 = ~!  u {default_Saints(joe) }, 
82 = Yr 'u  {default_S.F.49ers(joe) }. 

We do not want to add as a fact that anybody cannot be a fan of both teams, 
because we will not exclude this. The aim of the constraint is to permit the 
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conclusion that someone is a fan of both teams just from the fact that he 
identifies himself with everything from New Orleans and San Francisco. 

Here, the crucial point is that 81 and $2 are incompatible, since Sl u $2 is 
no scenario of ( 7 ,  ,t, C), but Sl U $2 is not inconsistent. The algorithm used 
within the Theorist implementation [4] predicts a formula if it is implied 
by a scenario which is consistent with all other scenarios. Therefore, this 
algorithm predicts any formula implied by S1, especially "fan_of_Saints (joe)" 
although this formula is not in every extension. 

3. The idea of the algorithm 

In Theorist, a formula g can be predicted in W if and only if it is in every 
extension of W. This is a statement about every scenario, whereas explaining 
is searching for exactly one scenario. Therefore, our aim of developing an 
algorithm for prediction is to reduce the problem of prediction to the use 
of explanations. We assume that we have an algorithm for explaining which 
returns all minimal explanations of a formula g within a world W. An 
analogous idea is used in the original algorithm [4,8]. 

For the following discussion we need to clarify what statements like 
"explaining from a scenario", "predictable in a scenario", etc. mean. Given 
a scenario 5 r U D of a world W = (~', A, C) we can create a new world W' 
by using the scenario as the new set of  facts, i.e. W' = (~  u D,A,C).  Any 
definition stated in the previous section can be used with regard to this new 
world. 

In the sequel, we describe an algorithm which determines whether a 
formula g is explainable from every scenario of a world W. It is easy to 
verify that this is logically equivalent to g being in every extension of W, 
i.e. g being predictable in W. 

( 1 ) Try to find an arbitrary explanation of g from W using the available 
function for explaining. If there is no such explanation, the formula 
is not explainable from every scenario, as there is at least one trivial 
scenario, the set of  facts itself (i.e. without using any default). In 
this case, return "no". 

(2) If, on the other hand, there is an explanation 6 of the formula, 
then this explanation is a scenario of W, so it is either compatible 
or incompatible with any other scenario. If there is no scenario 
incompatible with E, the computed explanation may be seen as a 
universal explanation of g and therefore, return "yes". 

(3) For every incompatible scenario there have to be other explanations 
of g if g is in every extension. To simplify this search, regard only 
minimal incompatible scenarios (with respect to set inclusion) and 



288 M. Thielscher 

show by a recursive call that the formula is explainable from every 
scenario of such a minimal scenario. Return "yes" if and only if the 
recursive call is successful for every incompatible minimal scenario. 

The problem left is how to find all minimal scenarios which are incom- 
patible with a given explanation £. As the following section shows, every 
such scenario can be seen as a scenario which explains the negation of one 
element of  E from a special world. The facts of  this new world contain the 
original facts together with some subset of  E. The crucial point is that also 
every constraint in ~4; must be regarded as a fact in the new world when 
searching for incompatibility instead of inconsistency. Using the function for 
explaining together with this new world provides all minimal incompatible 
scenarios. 

One might object that taking constraints as facts and therefore using them 
for explanations contradicts the intention to use constraints for checking 
consistency only. However, the aim of using constraints for explaining is 
just to find incompatibilities. 

In the following section, we justify every step towards the algorithm 
described above. Combining these justifications leads to a theorem our 
algorithm is based on. 

4. The formal description 

First of  all, the idea to show that a formula is explainable from every sce- 
nario instead of proving membership in every extension has to be justified. 
The following lemma was originally stated and proven in [6]. 

Lemma 4.1. A closed formula g is in every extension of (~, J, C) iff g is 
explainable from every scenario of ( yr, A, C ). 

The next step towards the algorithm is to find an arbitrary explanation of 
g, and then to examine incompatible scenarios. 

Lemma 4.2. A closed formula g is explainable from every scenario of 
(~,J,C) iff there is some scenario £ explaining g from (.F,3,C) and for 
every scenario 8 of (9r, 3,C) which is incompatible with £, g is explainable 
from (8,3,C). 

Proof. ( ~ )  Suppose g is explainable from every scenario. Then, 

(1) there is an explanation of g from (~r,d,C), since g is explainable 
from ~" U { }, and 

(2) g is explainable from (8,J,C), as 8 is a scenario of (Sv,•,d). 
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(¢=) Let S be a compatible scenario (with respect to £).  Then, £ is a 
scenario of  (S, A, C), as 8 U S U C is consistent. Therefore, g is explainable 
from S by using £. [] 

Our intention is to try to prove that the formula to predict is in every 
extension of  every minimal  incompatible scenario instead of  showing that 
it is explainable from every incompatible scenario. The following lemma 
justifies this. 

Lemma 4.3. Let S be a scenario o f  (~-,3,C). Then, a closed formula g is 
explainable from every scenario S' ~ S o f  (~,  ,t, C) i f f  g is in every extension 

o f  S. 

Proof. Since every scenario S' _~ S of  (~', ,t, C) is also a scenario of  (S, 3,  C ), 
the two statements are equivalent according to Lemma 4.1. [] 

At the heart of our algorithm is the use of  explanations to find incompat- 
ible minimal scenarios. If two scenarios are incompatible, then their union 
and the set of  constraints are inconsistent. Therefore, some part of  this 
union along with the constraints can be seen as an explanation of some 
negated element of one of  these scenarios. 

Lemma 4.4. Let ~ U D and £ = ~ U {e l , . . . , en}  be two scenarios o f  
(~,  A, C). Then, F U D is incompatible with E if f  there is some i E { 1 . . . . .  n} 
such that ~ u D U {el . . . . .  ei- 1 } U C is an explanation of  -~ei from 
(.~'U {el . . . . .  ei-1} U C, zl,O). 

Proof. (=~) Since ~" U D and £ are incompatible, we have 

.~ 'UDU{e l , . . . ,en}Ud k J-. 

Following the deduction theorem, there is some i E { 1 . . . . .  n} such that 

. T r U D U { e l , . . . , e i - l } U C  ~ -~ei 

and 

~" U D U {e l , . . . ,  el- 1 } U C is consistent. 

Using the definition of  explanation, Jr U D U {el . . . . .  ei_ 1 } U C can be seen as 
explaining ~ei from (Y" u {el . . . . .  ei-i } u C, 3, 0). 

( ~ )  Let ~ u D u {el . . . . .  ei_l } U C be an explanation of-~ei, i.e. 

~r U D U {el . . . .  , ei- l } U C k -~ei. 
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FUNCTION predict (g, (S,  3, C) ); 

£ :=  explain (g, ( f , 3 , C ) ) ;  

IF £ = [] THEN RETURN NO "no explanation" 

ELSE 

FOR ALL ei e £ = {el . . . . .  en} DO 

FOR ALL £* := explain (~ei, (~'U {el, . . . ,ei_~} UC, J , ¢ ) )  DO 

L E T Y U D U { o  . . . .  , e i - l } U C  = £* ;  

IF ~predict (g, (.T U D,3 ,C)  ) T H E N  

RETURN NO 

END-IF 

END-FOR 

END-FOR; 

RETURN YES 

END-IF 

END-FUNCTION 

Fig. 1. This algorithm tries to determine whether or not a formula can be predicted in a 
Theorist world. 

Then, 

f U D U { e l  . . . . .  ei}UC ~ ± 

and therefore 

~ - u D u { e l  . . . .  ,en}UC ~ ± .  

Hence, ~v U D and £ are incompatible. [] 

Combining the statements above leads to the following theorem. 

Theorem 4.5. A closed formula g is in every extension of  (U, 3, C) if f  there is 
some explanation Yru {el . . . . .  en} explaining g from (Yr,3,C) such that for 
all i E { 1 . . . .  , n} and every minimal 3 r u D u {el . . . . .  ei_ 1 } U C explaining -~ei 
from (SrU {el . . . . .  e l_ l }  UC, d,¢) ,  g is in every extension o f  (Yru D,3,C).  

If we assume that we have a function explain (g, W) which generates all 
minimal explanations of  g from W, then the algorithm extracted from this 
theorem is shown in Fig. 1. 
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5. Discussion 

We have presented an algorithm for implementing skeptical reasoning 
in Theorist. We have defined the notion of incompatibility as a principle 
underlying prediction. The notion of incompatibility is related to the notion 
of  commitment to assumptions in default logic. Default logic as defined in [9] 
lacks commitment as pointed out in [7 ]. Since commitment seems to be 
an intuitively indispensable property of nonmonotonic reasoning, recently a 
number of variants of default logic have been developed (cf. [3]). Some of 
these variants turned out to be closely related to Theorist with constraints. 
For example, a transformation from semi-normal prerequisite-free default 
theories to Theorist worlds including constraints is given in [3], and it is 
shown that every so-called constrained extension corresponds to a Theorist 
extension. Because of this transformation, we can use our algorithm for 
skeptical reasoning in default logics such as [1,2]. 

Moreover, we believe that our algorithm can be generally modified to 
implement skeptical reasoning within default logics which consider com- 
mitment. In [9], an algorithm solving the extension membership problem 
for closed normal default theories is given. This algorithm generates default 
proofs, which resembles generating explanations in Theorist. We think that 
combining default proof algorithms with the result presented in this paper 
would straightforwardly lead to a procedure for skeptical reasoning in many 
variants of default logic. 

6. Conclusion 

We have developed an algorithm for prediction within the entire Theorist 
framework and we have shown that this algorithm is correct. 

In addition, we have implemented our algorithm within the current im- 
plementation of Theorist which is written in Prolog [4]. The system now 
gives correct answers in any case using prediction together with constraints. 

The extended code is available from the author and described in [10]. 
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