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Abstract. Action formalisms like the auent calculus have been
developed to endow logic-based agents with the abilities to reason
about the effects of actions, to execute high-level strategies, and to
plan. In this paper we extend the suent calculus by a method for be-
lief change, which allows agents to revise their internal model upon
making observations that contradict this model. Unlike the existing
combination of the situation calculus with belief revision [16], our
formalism satis£es all of the standard postulates for (iterated) belief
change. Furthermore, we have extended the high-level action pro-
gramming language FLUX by a computational approach to belief
change which is provably equivalent to the axiomatic characteriza-
tion in the auent calculus.

1 INTRODUCTION

Logic-based agents and robots reason about actions for many pur-
poses: to verify the executability of actions, to execute complex
strategies, to plan ahead, etc. A variety of versatile theories of actions
exist, among which are the situation calculus [11, 13] or the auent
calculus [18], which have recently evolved into the high-level, logic-
based agent programming languages and systems GOLOG [10, 14]
and FLUX [20], respectively. An important extension of basic ac-
tion theories allows agents and robots to reason about their (incom-
plete) knowledge and knowledge-producing actions (i.e., sensing),
e.g., [7, 2, 19, 15]. A crucial limitation of these approaches, however,
is that they all assume agents and robots to have infallible knowledge.
A sensing action can never result in an observation which contradicts
the current world model, or else the whole theory collapses into an
inconsistency. This does not allow for mistakes in the world model,
e.g., due to unexpected changes in the environment. Under such cir-
cumstances agents should have (more or less strong) beliefs rather
than (strict) knowledge.

A mostly independent branch of Al research is concerned with
just these beliefs and how to revise them in the light of new, possi-
bly conzicting information. While formalisms for belief revision tell
agents how to adjust their beliefs given an observation, they do not
deal with issues such as reasoning about preconditions of actions,
high-level agent programming, or planning.

A £rst combination of belief change with reasoning about ac-
tions has been given in [16] as an extension of the situation calcu-
lus. The basic idea was to rank the set of possible situations. The
agent believes what holds in all situations which are preferred ac-
cording to the ranking. When a new observation contradicts the cur-
rent beliefs, the preferred situations are rendered impossible, and so
other, still possible situations can now become most preferred. This
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revision technique may nonetheless lead to an inconsistent belief
state, namely, when there are no possible situations left: While an
agent could initially believe in some property and then revise this
belief, it cannot happen that later on it makes an observation which
suggests that the property is true after all. From the perspective of
belief revision, this violates the fundamental postulate which says
that consistency is maintained unless the new information is self-
contradictory [1]. The integration of belief change into GOLOG is
also not considered in [16].

In this paper, we integrate belief change into the auent calculus in
a way which overcomes the limitations of [16]. Our axiomatization
is based on rankings of possible states. Generalizing the concept of
knowledge update axioms [19], the effects of actions are specifed
as a modifcation of the ranking. The extended action theory is jus-
tifed in that it satistes all of the standard postulates for (iterated)
belief revision. Furthermore, we have extended FLUX by the con-
cept of entrenchment bases [21] to encode belief states. Revision is
then realized as a rewriting operation on these bases. It is shown that
this computational approach is equivalent to the axiomatic approach
taken in the auent calculus.

2 FLUENT CALCULUS

The auent calculus shares with the classical situation calculus [11]
the basic notion of a situation. The initial situation is usually de-
noted by the constant So. The function Do(a, s) denotes the situa-
tion which is reached by performing action « in situation s. In order
to specify what holds in a situation, the expression Holds(f, s) is
used, where f is a auent (i.e., term of sort FLUENT).

Throughout this paper, we will use the following simple scenario,
which has been adopted from [16]: A robot can be in either of two
rooms, and there is a light in each room which can be on or off. Let
the auent InR; denote that the robot is in room 1, while the ouents
Light, and Light, shall denote whether the light is on in the respec-
tive room. The following axiom, e.g., says that initially the robot is

not in room 1 (hence in room 2) and light is on in the £rst room:

—Holds(InR1, So) A Holds(Light,, So) (1)
The ouent calculus extends the situation calculus by the notion
of a state. The term State(s) denotes the state (of the environment
of an agent) in situation s. By defnition, every FLUENT term is
a state (i.e., term of sort STATE), and if z; and 2 are states then
S0 is z1 o z2, Where “o” is a binary function written in in£x nota-
tion. The foundational axioms of the auent calculus stipulate that
this function shares essential properties with the union operation for
sets (see, e.g., [20] for details). This allows to defne the expres-
sion Holds as a mere macro by Holds(f, s) “ Holds( f, State(s))
and Holds(f, z) £ (3z') z = f o 2’. With this, speci£cation (1) en-
tails the following equation for State(.Sy):

(3z) (State(So) = Light, o z A =Holds(InRy, z)) (2)



Based on the notion of a state, the frame problem is solved in the
auent calculus by state update axioms, which de£ne the effects of an
action A in situation s in terms of the difference between State(s)
and the successor State(Do(A4, s)). Consider, for example, the action
Leave of our robot to leave the current room and enter the adjacent
one. This action has a conditional effect: If the robot starts in room 1,
then it will no longer be there after the action. Conversely, if the robot
starts in the other room, then it will end up in 1. This is expressed by
the following state update axiom:

Poss(Leave, s) D
Holds(InR1, s) A State(Do(Leave, s)) = State(s) — InRy  (3)
Vv —Holds(InR1, s) A State(Do(Leave, s)) = State(s) + InRy

The standard predicate Poss(a, s) means that action « is possible in
situation s. The functions “—" and “+4” denote, respectively, removal
and addition of ruents to states. They have a purely axiomatic char-
acterization in the suent calculus (we again refer to [20] for details).
For example, tacitly assuming Poss(Leave, Sy) and uniqueness-of-
names for the auents InR; and Light,, the instance {s/Sy} of state
update axiom (3) applied to equation (2) yields, with the help of the
foundational axioms, (3z) State(Do(Leave, So)) = InR; oLight; oz.

Representing State Knowledge

The knowledge that an agent has of its environment can be repre-
sented in the ouent calculus via the notion of possible states. The
predicate KState(s, z) has been introduced in [19] with the intended
meaning that, according to the knowledge of the agent, z is a possible
state in situation s. The following axiom, for example, says implic-
itly that in the initial situation the robot knows that it is in room 1
and that the light in room 1 is off, but it does not know whether light
is on in room 2:

(Vz) (KState(So, z) = Holds(InRy, z) A =Holds(Light,, z)) (4)

Formally, a property is defned to be known in a situation just in case
it holds in all possible states:

Knows(p, s) £ (Vz)(KState(s, z) D HOLDS(¢p, z))

Here, ¢ is a knowledge expression, which is composed of ou-
ents and the standard logical connectives. The macro HOLDS(¢, z)
stands for the auent calculus formula which is obtained by replacing,
in o, every occurrence of a auent f by Holds(f, z). For example,
(4) entails Knows(InR; A —Light,, So) but not Knows(Light,, So) V
Knows(-Light,, So).

The effects of actions, including knowledge-producing actions, on
the knowledge of an agent are specifed by knowledge update ax-
ioms. These relate the possible states between successive situations.
Consider, e.g., the action Sense_InR of our robot to sense whether it
is in room 1:

Poss(Sense_InRy, s) D (KState(Do(Sense_InRy, s), z) = ®)
KState(s, z) A [Holds(InR+1, z) = Holds(InR1, s)] )

Put in words, a state z is possible after Sense_InR; just in case z was
possible beforehand and InR holds in z iff it actually holds in s.

The auent calculus provides the formal underpinnings of FLUX,
which is a method based on logic programming for the design of
agents that reason about their actions and sensor information in the
presence of incomplete knowledge [20]. Knowledge states of agents
are represented in FLUX by open-ended lists of auents along with
constraints, as, e.g., in this encoding of (2):

Z0 = [light1]Z], not_holds(inRl, Z)

Agent programs in FLUX are constraint logic programs consisting
of three components Pygrngt U Poomain U Patrategy providing, respec-
tively, a domain-independent encoding of the foundational axioms
and macros of the ruent calculus, an encoding of the domain ax-
ioms, and a specifcation of the task-oriented behavior of the agent,
according to which it reasons, plans, and acts.

3 AFLUENT CALCULUSAXIOMATIZATION
OF BELIEF CHANGE

The concept of knowledge in the ouent calculus presupposes that
new information must be consistent with what is previously known.
Recall, for example, axiom (4), which entails Knows(InR1, So). Tac-
itly assuming Poss(Sense_InR1, So), the knowledge update axiom for
Sense_InR1, (5), implies that if the robot were to sense that it is actu-
ally notin room 1 (i.e., =Holds(InR1, So)), then no state z would sat-
isfy KState(Do(Sense_InR1, So), z). In other words, the robot would
be left with an inconsistent knowledge state. In this section, we de-
velop an axiomatic approach to the representation of belief rather
than irrefutable knowledge in the auent calculus.

3.1 State Ranking

To begin with, the underlying signature is modifed by replacing
predicate KState by the function

BState : SIT x STATE — N

Our intention is to represent the belief state of an agent in a situation
by a ranking of states. Intuitively, a high value of BState(s, z) indi-
cates that state z is considered less plausible (in violating a strongly
held belief) in situation s. The most plausible states are therefore
those of rank 0, and the agent is said to believe a property ¢ just in
case ¢ holds in all 0-states:

Believes(p, s) £ (Vz) (BState(s, z) = 0 O HOLDS(¢, z))

For later purposes, we defne a macro which can be used to deter-
mine the maximal rank of a state in situation s: MaxRank(s) = n e
(3z) BState(s, z) = n A (Vz)BState(s, z) < n.? Consider, for ex-
ample, the following specifcation of an initial belief state:

BState(So, z) = 0 = Holds(InRy, z) A Holds(Light,, z)
BState(So, z) = 1 = Holds(InRy, z) A —=Holds(Light,,z) (6)
BState(So, z) = 2 = —Holds(InRy, z)

Put in words, the robot believes that it is in room 1 and that light is
on there. The belief in the former is stronger. This is indicated by the
fact that every state which violates Holds(InR1, z) is of rank 2, while
there are states for which Holds(Light,, z) is false whose rank is just
1. Axioms (6) entail, for example, Believes(InR; A Light,, So) but
not Believes(Light,, So) V Believes(—Light,, So).

Given a specifcation of a belief state, agents and robots can use
the standard features of the auent calculus to reason about whether
an action can be believed to be executable, whether they believe that
a goal condition has been satis£ed, etc.

3.2 Bedief Change Axioms

Next, we introduce the central notion of belief change axioms as a
means to specify the effects of actions on the belief state of an agent.
We distinguish between sensing actions and actions with physical ef-
fects. In general, sensing actions require agents to revise their beliefs
according to the newly acquired information.

2The use of this macro stipulates that all situations have a maximal rank.



Belief Revision in the Fluent Calculus

The axiomatization of belief change relies on the notion of the rank
of a knowledge expression ¢ in a situation s. Intuitively, the higher
the rank the stronger the belief in ¢. Formally,

def

Rank(p, s) = n =(Vz) (BState(s, z) < n D HOLDS(y, 2))
A

[(3z) (BState(s, z) = n A =HOLDS(¢, 2))
V(Vz) HOLDS(¢p, z) A MaxRank(s) = n — 1]

Put in words, the rank of a formula is the lowest rank of a state
which violates this formula. If no such state exists (that is, ¢ is a
tautology), then the rank of ¢ is defned as the maximal state rank
plus one. It is easy to verify that a formula has rank 0 iff it is not
believed in s. For instance, belief state speci£cation (6) from above
entails that Rank(InR1) = 2 and Rank(InR1 A Light,, So) = 1 while
Rank(Light,, So) = Rank(—Light,, So) = 0.

We are now prepared to defne belief change axioms for sensing
actions. From Spohn’s ordinal conditional function [17], we have
learned that a general theory of belief revision requires to supply a
reliability degree to the new formula.® Let Sense_¢ denote the action
by which an agent learns with reliability e (of sort N) whether or not
knowledge expression ¢ holds. Prior to the formal de£nition, let us
give an informal justi£cation for the axiomatization of the effect of
Sense_p: Suppose m is the rank of some state z in situation s, in
which sensing takes place. Assume, for the sake of argument, that
has been sensed to be true.

1. If =HOLDS(, z), then z must be “upgraded” wrt. the reliability
of the sensing, because it violates what has just been sensed. The
revised rank of z is therefore m + e.

2. If HOLDS(, z), then z must be “downgraded,” because ~ com-
plies with what has just been sensed. The revised rank of z is
m — Rank(—, s). Note that this ensures that the agent gives up a
possible belief in —.

This intuition is axiomatized as follows:

BState(Do(Sense_p, s),2) = n =
(3m, r) (BState(s, z) = m A Rank(—¢, s) = r A R
[FHOLDS(p,2) Dn=m+e]A (Re)
[HOLDS(p, z) D n=m—])

Let R-, be the exact same formula but with ¢ replaced by —¢
(de£ning the case where ¢ is sensed to be false). The two cases are
combined in this central de£nition of the belief change axiom for
sensing actions:

Poss(Sense_p, s) D (Fe) (R, V R-y) ©)

Put in words, the effect of sensing is that the agent obtains a relia-
bility degree e and updates its belief state accordingly, depending on
whether ¢ or —¢ has been sensed.

Theorem 1 The axioms (7) U {Poss(Sense_y, s) } for all knowledge
expressions ¢ together are consistent with the foundational axioms.

Agents can execute several sensing actions in sequence, which
corresponds to iterated belief revision [4]. As the main result, it can
be shown that our axiomatization in the suent calculus satis£es the
standard postulates.

Theorem 2 The suent calculus axiomatization of (iterated) belief
revision satisEes the modifed AGM postulates of [4] as well as the
postulates of iterated belief revision of [4].

31f this information is not available, it can be uniformly set to 1 as in [4].

Recall, for example, belief state speci£cation (6) for our robot. Sup-
pose Sense_InR; results in the observation, with reliability 3, that the
robot is in fact not in room 1. Then R_nr, entails,
BState(S1, z) = 3 = Holds(InRy, z) A Holds(Light,, z)
BState(S1,z) = 4 = Holds(InRy, z) A —=Holds(Light,,z) (8)
BState(S1,2) = 0 = —Holds(InR4, z)

where S; = Do(Sense_InRy, Sy). Hence, the robot now believes
that it is not in room 1. Moreover, the belief in Light, is given up
because it was weaker than the belief in InR;.

Belief Update in the Fluent Calculus

Belief change as a consequence of a non-sensing action A is defned
as the usual state update according to the effects of A. Since sev-
eral states may lead to the same updated state, the rank of an up-
dated state is, in general, defned as the minimum of the ranks of all
states that map onto it. Moreover, some states may not be reachable
at all, in which case their rank is defned as the maximum rank in
the preceding situation plus one, thus indicating that they are highly
implausible.

The axiomatization of actions with unconditional effects can be
proved to satisfy the KM postulates for belief update [9]. Due to lack
of space, here we just give the simple example of an action whose
effect defnes a one-to-one mapping on states. The action Leave of
our robot (c.f. (3)) gives rise to this belief change axiom:

Poss(Leave, s) D (BState(Do(Leave, s),z) =n =
(37')(BState(s, 2’) = n A [Holds(InRy, 2') A 2 = 2" — InR;
V=Holds(InR1,2") A 2 = 2’ + InRy]))
Recall, say, initial belief (6) of our robot and suppose that
Poss(Leave, So). Let S; = Do(Leave, So), then

BState(S1,2) = 0 = —Holds(InR+, z) A Holds(Light,, z)
BState(S1,2) = 1 = —Holds(InR1, z) A =Holds(Light,, z)
BState(S1, z) = 2 = Holds(InRy, z)
Hence, the robot now believes that it is no longer in room 1. Unlike
in (8), however, the belief in Light, is still maintained.

4 BELIEF CHANGE IN FLUX
4.1 Computational Bdief Revision

Extending FLUX for belief change requires a computational account
of belief revision, which furthermore needs to be equivalent to the
axiomatization in the nuent calculus. To this end, we adopt an ap-
proach originating in [6]. The basic idea is to consider some beliefs
more important than others. We say that these beliefs have higher
degree. When a belief change occurs, the agent prefers to give up
beliefs with lower degree instead of those with higher degree.

Defnition 4.1 A belief set is a deductively closed set of formulas.
An epistemic entrenchment (EE) relation <x wrt. a belief set K is
a total pre-order over all formulas, which obeys the postulates given
in [6]. If « <k (3, then S is as epistemically entrenched as «, and
a <k fmeansa <k Bandnot 8 <k a.

Given an EE relation <k, the result K, of revising K with a
formula « can be uniquely determined by the following condition:

(Cx) B € K, iff either -~ or~a<gaDf 9)

The EE relation model is constructive in the sense that it uniquely
determines belief change operations which satisfy all corresponding
AGM postulates [1]. However, as it stands it is not suitable for com-
putation, for two reasons.



1. An EE relation <g in general is inEnite.
2. Condition (C'x) may have to be checked against infnite number
of formulas.

To tackle the £rst problem, we adopt a model due to Wobcke [21],
who has suggested to represent an EE relation by a £nite base. The
full EE relation can then be induced via the so-called most construc-
tive entrenchment construction.

Defnition 42  An epistemic entrenchment base B is a set
{F1 :e1,...,F, : en}, where each F; is a non-tautologous formula
and e; € N is its (explicit) belief degree. B™ is the set of formulas
of B which have at least belief degree m, that is,

B™ ={F|F:ec Bande>m}

Note that B is the set of all formulas in B. The corresponding
belief set Bel(B) of B is the deductive closure of B°. A EE base
is consistent iff its corresponding belief set is consistent. From now
on, we only consider consistent EE bases. For any formula ¢, its
belief degree (also called rank) wrt. a given EE base B is defned as
follows:

0 if B £ ¢
n+1 i
maz({m|B™ = ¢})

where n is the maximal belief degree in B. Any EE base B in-
duces a binary relation <g over all formulas by letting o <p g iff
Rank(B, o) < Rank(B, 3). The following result is due to [21]:

Rank(B, ) =
otherwise

Theorem 3 Given an EE base B, the induced binary relation <p
is an EE relation wrt. Bel(B), that is, it satis£es all postulates for
epistemic entrenchment relations.

In addition to the remaining second problem, there is another well-
known problem: Condition (Cx) only tells us what formulas are in
the revised belief set. It does not impose any constraints on the poste-
rior EE relation. This means that we lose extra-logical information by
carrying out a belief contraction; hence, iterated belief change cannot
be handled [4]. Since an EE relation conveys valuable information,
we would like to keep as much EE information as possible. On the
other hand, the change of the EE base should not be minimal in the
sense of [3], in order not to have the undesired properties thereof (see
[4]).

Motivated by the application of FLUX to the control of au-
tonomous agents in dynamic environments, we consider the new for-
mula ¢ and its supplied degree e as additional evidence. Hence, the
revised rank of ¢ is the summation of its old rank and e. We assume
that the revising formula is consistent. Algorithm 1 shows how we
can do belief revision by modifying an EE base. For iterated belief
revision, the algorithm is repeatedly applied.

Input :B=[B1:€1,...,0n:€en], €
Output : By suchthat B; = B, .
begin

By =1[];

7 = Rank(B, —);

r = Rank(B, ¢);

fori=1...ndo
Bi1 = B1U{B;:e; —min(e;,T),3: Vo :e +e};
end
By =B U {go : e}
end
Algorithm 1: Algorithm of the EE base revision

The resulting EE base B . may be redundant in the sense that
some formula « : e in it has an induced rank which is greater than e.
Such redundant formulas can be detected and removed.

The theorem below says that Algorithm 1 indeed de£nes a ratio-
nal iterated belief revision operation (for arbitrary e and consistent

B, ).

Lemma43 Let By = B . and 7 = Rank(B, —y), then for any
formula 3,

ift' =t
otherwise

t—T
Rank(Bi, 8) = { min(t' —7,t+ e)

where t = Rank(B, 3) and t' = Rank(B, ¢ D 3).

Lemma4.4 For any formula 3, we have Rank(B;, .,3) > 0 iff
Rank(B, —¢) < Rank(B, ¢ D ).

Theorem 4 The belief revision operation on EE bases satistes all
AGM postulates, provided that both the formula being revised and
the original EE base alone are consistent.

Belief Revisionin FLUX

The integration of the computational approach to belief revision
into FLUX requires a decision procedure for the underlying log-
ical language. For the sake of effciency, we restrict ourselves
to propositional logic and employ an effcient decision procedure
called non-clausal Davis-Putnam [12]. An EE base is encoded as
[F1@l, . .., Fn@en], where Ei € N. Here is an example of re-
vision (where “- " denotes “—"):

?- B=[inRl @2, lightl @1],
revise(B, (-inRl) @3, Bl).

[inRL @2, lightl @1]
[-(inRl) @3, -(inRl) v lightl @4]

4.2 EQUIVALENCE OF AXIOMATIC AND
OPERATIONAL BELIEF REVISION

The de£nition of how to change an EE base in the presence of new
information is essentially equivalent to the axiomatizations of belief
revision in the auent calculus. The formal proof is based on a map-
ping from EE bases onto axioms of the form BState(s, z) = ¥(z):
LetB = {F1:e1,...,Fn : en} bean EE base, then ¥ defnes each
state which satistes all formulas in B to have value 0. Each other
state z gets the maximal degree e, for which formula F; does not
hold in z. For example, the EE base {InR: : 2,Light; : 1} maps
onto belief state specifcation (6).

Due to lack of space we can only state the crucial intermediate results
which lead the correctness theorem.

Lemma4.5 Let B be an EE base and X the auent calculus axio-
matization for belief including the belief state BState(s, z) = ¥(z)
determined from B. For any knowledge expression g and n € N,

Y E Rank(B, s) = n iff Rank(B,3) =n

What remains to be shown is that belief update axioms character-
ize exactly the way an EE relation is changed in FLUX. Since the
condition in Lemma 4.3 determines uniquely the revised EE base, it
sufces to show that the same condition holds in the auent calculus.



Lemma4.6 Let s be asituation and p a knowledge expression. Let
s’ = Do(Sense_y, s) and e € N, then (R,,) entails, for any 3,

ift' =t
otherwise

W[ t-7
Rank(8, ) = { min(t' —7,t +e)

where t = Rank(83, s),t’ = Rank(yp D (3, s),and 7 = Rank(—, s).

Theorem 5 Let B be an EE base, X the auent calculus axiomatiza-
tion for belief including the belief state BState(s, z) = ¥(z) deter-
mined from B, and ¢ a knowledge expression being sensed to be true
with degree e. Forany S and n € N,

¥ = Rank(3, Do(Sense_g, s)) = n iff Rank(B; ., ) =n

5 DISCUSSION

We have presented an integration of belief change into the ouent
calculus. In contrast to the approach of [16], our axiomatization of
sensing actions satisfes all standard postulates of (iterated) belief
revision. Furthermore, the axiomatization of non-sensing (uncondi-
tional) actions satis£es all standard postulates of belief update. The
underlying idea for our belief change axiom can be considered a gen-
eralization of Spohn’s ordinal conditional functions [17]. There, the
resulting rank of the revising formula ¢ is set to the reliability value
e,* whereas with our belief change axiom ¢ will obtain the summa-
tion of its old rank and e. Another difference is that in general ordi-
nal conditional functions do not satisfy the DP postulates in general.
It is worth mentioning that our belief change axiom can be slightly
modifed (with a provably correct computational account) in such a
way that o obtains the maximum of its old rank and e and such that
the AGM and DP postulates are still satisEed. If the reliability value
is £xed to 1 (e.g., in cases where such reliability information is not
available), then our approach is equivalent to the one proposed in [4].
Actually, the idea of our approach has already been informally hinted
at in [4]. So we have not defned a completely new scheme of belief
revision and have rather chosen an existing one which turned out to
be suitable for integration into the auent calculus and for extennding
FLUX.

In the literature, belief change has been studied in mainly two
ways. One approach is to de£ne the class of so-called rational belief
change operations and properties they should satisfy (that is, postu-
lates), e.g., [1, 9]. The other approach is to give explicit constructions
of belief change operations with desirable properties. Approaches
of the latter kind can be further classifed as either model-based or
computational: In the former, a current belief state is represented us-
ing models or deductively closed sets of formulas, as in [6, 8]. This
makes it easy to study formal properties of particular belief change
operations, but is less suited for direct implementation. In computa-
tional approaches to belief change, therefore, a concrete belief state is
represented by a £nite base of formulas, and belief change is defned
as rewriting this base, e.g., [5]. We have applied the computational
approach to belief revision to develop an extension of FLUX and
proved its equivalence to the axiomatic approach. As a by-product
we have obtained a model-based characterization of a computational
approach to belief change; or, the other way round, we have imple-
mented effciently a possible world-based approach of belief revi-
sion.

While the axiomatization in the suent calculus allows belief states
to be axiomatized using full £rst-order logic, our current extension of

4Hence, s prior rank is simply ignored. Furthermore, consecutive obser-
vations of ¢ do not reinforce the belief in ¢.

FLUX is restricted to propositional entrenchment bases. Future work
will be to lift this restriction to cover the £rst-order features of the
standard FLUX state representation [20].
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