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Abstract. The game description language GDL has been develand a decidability result for the model checking problem. Specifi-
oped as a logic-based formalism for representing the rules of arbieally, we provide aemanticharacterisation of GDL-II descriptions
trary games in general game playing. A recent language extensian terms of ATEL models and syntactictranslation of GDL-II de-
called GDL-II allows to describe nondeterministic games with anyscriptions into ATEL formulas, and we prove that these two char-
number of players who may have incomplete, asymmetric informaacterisations are equivalent. We show that model checking in this
tion. In this paper, we show how the well-known Alternating-time setting is decidable and demonstrate how our results allow to verify
Temporal Epistemic Logic (ATEL) can be adapted for strategic andstrategic and epistemic properties of games described in GDL-II.
epistemic reasoning about general games described in GDL-Il. We The paper is organised as follows. Section 2 gives preliminaries on
provide asemanticcharacterisation of GDL-II descriptions in terms GDL-Il and ATEL. Section 3 presents a semantic characterisation of
of ATEL models. We also provide syntactictranslation of GDL-Il  GDL-Il using ATEL models and a syntactic mapping from GDL-II
descriptions into ATEL formulas, and we prove that these two charto ATEL formulas, along with the main equivalence result. Section
acterisations are equivalent. We show that model checking in thid shows the decidability of model checking problem by giving an
setting is decidable by giving an algorithm, and we demonstrate howalgorithm and discusses the strategic and epistemic properties that
our results can be used to verify strategic and epistemic properties afan be used for reasoning about GDL-II games. We conclude with a
games described in GDL-II. discussion on related work. Full proofs of our results can be found in
an accompanying technical report [11].

1 Introduction

The general game description language GDL, which has been estag- Preliminaries

lished as input language for general game-playing systems [5,8], h2.1 Game Description Language GDL-II

recently been extended to GDL-II to incorporate games with non-

deterministic actions and where players have incomplete/imperfedh complete game description consists of the names of (one or more)
information [15]. We have previously analysed the epistemic logicPlayers, a specification of the initial position, the legal moves and
behind GDL-II and in particular shown that the situation at any stagdow they affect the position, and the terminating and winning cri-
of a game can be characterised by a multi-agent epistemic (i.e., S5i§ria. The emphasis of game description languages is on high-level,
model [10]. However, this result merely provides a static characterdeclarative game rules that are easy to understand and maintain. At
isation of what players know (and don’t know) at a certain stagethe same time, GDL and its successor GDL-II have a precise se-
As such it cannot be used to reason about how players’ knowledg@antics and are fully machine-processable. Moreover, background
evolves as the game progresses, nor does it allow to reason abd{itowledge is not required—a set of rules is all a player needs to
the strategic ability of players to reach a desired state (possibly inow to be able to play a hitherto unknown game. The description
cooperation with other players), etc. All these aspects presuppodanguage GDL-Il uses theseywords

the use of an underlying logic that goes beyond standard epistemic

ic i i i i ; ; ; rol e(?r) ?r is a player
e T o e R e e | A bk e st
. ; . ) D true(?f) ?f holds in the current position
sion to Alternating-time Temporal Logic (ATL) [1] with incomplete legal (?r,?m | ?r can do moveém
information, is such a formalism. For strategic reasoning alone, it does(?r,?m) | player?r does movem
has been shown that ATL can be applied to reason about complete- next (?f) ?f holds in the next position

term nal the current position is terminal
goal (?r, ?v) goal value for rol€r is ?v
sees(?r, ?p) | ?r perceive®?p in the next position
random the random player

information games described in the original GDL using model check-
ing methods [12]. Also, model checking for GDL is known to be
EXPTIME-complete [12]. But unfortunately, the addition of incom-
plete information (and perfect recall) in GDL-II renders the model

checking problem of ATL/ATEL undecidable [3]. GDL (without sees andr andom) is suitable for describing fi-

In this paper we provide an adaption of ATEL for strategic andnite synchronous, and deterministieplayer games with complete
epistemic reasoning about general games described in GDL-II. Our, ! y . layer g P

: o L - information about the game state [8]. The extended game description
main results are a characterisation of GDL-II descriptions in ATEL g : (8] : 9 P
language GDL-II allows to specify games with randomness and im-
1 School of Computer Science and Engineering, The Univerélew South  Perfect/incomplete information [15]. Valid game descriptions must
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“F" used in the following definition are finite and decidable; for det

rol e(b). role(randon.

. 2 isDeal (A K). isDeal (A, Q. isDeal (K A). isDeal (K Q.
tails we have to refer to [8] for space reasons. 3isDeal (QA). isDeal (QK).
A unique game model can be obtained from a valid GDL-Il gamebeats(A, K). beats(K, Q. beats(Q A).

description by using the notion of theable modelsf logic pro- §

grams with negation [4]. The syntactic restrictions in GDL-II ensure

that all logic programs we consider havelraiqueand finite stable 2

init(round(0)).

| egal (random deal (?X, ?Y)) <= true (round(0)),isDeal (?X ?V).
l egal (b, noop) <= true (round(0)).
| egal (random noop) <= true (round(1)).

model [8, 15]. Hence, the game model for GDL-II has a finite set'ofl egal (b, trade) <= true (round(1)).

players, finite states, and finitely many legal moves in each state [
By G + p we denote that ground atomis contained in the uniqueij
stable model, denoted @ (G), for a stratified set of clauses. 1s
In the following definition of a game model for GDL-Istatesare *°

17
identified with the set of atoms that are true in them. 18

19
Definition 1 (GDL-Il Game Semantics)Let G be a valid GDL-Il 2
specification. Thesemanticsof G is the state transition sys-z2
tem(R, so,t,1,u,Z,g) given by 2

24
25
26
27
28
29
30
31

rolesR = {r |rol e(r) € sM(G)};

initial position sg = sM(GU{true(f) | i nit (f) € sM(G)});
terminal positiong = {s | t er m nal € s};

legal moves = {(r,m, s) | | egal (r,m) € s};

state update function(M, s) =

SM(G U {true(f) | next (f) € sSM(G U s U M€Y},

for all joint legal movesV/ (i.e., where each role iR takes one
legal move) and states?

information relationZ =

{(r, M, s,p) | sees(r,p) € SM(G U s U M9°€S)}

goal relationg = {(r,n, s) | goal (r,n) € s}.

Note that a states contains all ground atoms that are true in
the state, which includes the “fluent atontsf ue(f) in, respec-
tively, {true(f) | i nit(f) € sm(G)} (for the initial state) and
{true(f) | next (f) € sM(G U s U M99®)} (for the successor
state ofs and M), and all other atoms that can be derived frGin
andthese fluent atoms.

Different runs of a game can be describeddeyelopmentsvhich

iﬂ egal (b, keep) <= true (round(1)).

next (round(1)) <= true(round(0)).

next (round(2)) <= true(round(1)).

next (hol ds(b, ?X)) <= does(random deal (?X, ?Y)).

next (hol ds(random ?Y)) <= does(random deal (?X, ?Y)).

next (hol ds(b, ?X)) <= does(b, keep), true(holds(b, ?X)).
next (hol ds(b, ?Z)) <= does(b, trade), true(holds(b, ?X)),
true(hol ds(random ?Y)), isDeal (?Z, ?X), isDeal (?Z, ?Y).
next (hol ds(random ?X)) <= true(hol ds(random ?X)).
sees(b, holds(b,?X)) <= does(random deal (?X, ?Y)).
sees(b, holds(random ?X)) <= true(holds(random ?X)),
true(round(1)).
term nal <= true(round(2)).
goal (b, 100) <= true(holds(b, ?X)),
true(hol ds(random ?Y)), beats(?X, ?VY).
goal (b, 0) <= true(holds(b, ?X)),
true(hol ds(random ?Y)), beats(?Y, ?X).
win <= goal (b, 100)
Figure 1. A card trading game in GDL-II
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Figure 2. The game model for the card trading game.

K beatsQ, but @ beatsA (lines 2—4). The game starts at round O
(line 5). Lines 7-11 describe the possible moves for the players in

are sequences of states and moves by each player up to a cer@j#erent rounds: Firstrandom deals one card th and one card to

round. A playercannot distinguisitwo developments if he makes
the same moves and perceptions in the two.

Definition 2. [15] Let (R, so,t,l,u,Z,g) be the semantics of a
GDL-Il descriptionG, then adevelopmend is a finite sequence

<S(),]\/[1,817 . .,84_1,Md,sd>

such that for alli € {1,...,d} (d > 0), M; is a joint move and
S; = U(Mi, 82;1).

Thelengthof a development, denoted as lef@), is the number of
states ind. By M (j) we denote agents move in the joint mové/.
Letd|; be the prefix 0b up to lengthi < len(d).

A playerj € R\ {random} cannot distinguistwo developments
§ = (so, M1, s1,...yandd’ = (so, M1, s} ...) (written asd ~; ')
iff len(8) = len(¢’) and fori = len(§) — 1:

b {p ‘ (ijizsi—hp) EI} = {p ‘ (j7Mil75;;—l7p) € I}’
o M;(j) = M;(j), andd|; ~; d':.

itself. Thenb decides whether to trade his card for the one in the
deck or to keep the current one. The player with the better card wins
the game. Lines 13-20 define what will be true in the next state. For
example, ifrandom doesdeal ( ?X, ?Y), thenb will hold ?Xin

the next state (line 15). Lines 22—-24 specify whatan see in the
next state: ifrandom doesdeal (?X, ?Y), thenb will see that it
holds card?Xin the next state (line 22), anditindom holds ?Xin
round 1, therb sees this in the next state (i.e., in round 2) (lines 23—
24). Line 26 specifies when the game is terminal, and lines 27-31
give the goal values of playér(wheregoal (b,100) implies awin

for b). The corresponding game model is sketched in Figure 2. Due
to limited space, theoop actions are not shown in the joint actions;
e.g., for{noop, deal(A, K)) we only showdeal(A, K). States that
playerb cannot distinguish are connected by a dashed line.

2.2 ATEL with Finite Computations
Definition 3 (Language of ATEL, [16]) The language of ATEL (with

As an example, Figure 1 provides a GDL-II description of a card'®SPect to a set of agentty and a set of atomic propositior), is
trading game adapted from [6]. In this game, player Bob (abbreviatediven by the following grammar:

asb) plays against theandom player (line 1). The deck consists
of Ace, King and Queeli4, K, Q); it is assumed thatl beatsK,

2 For a joint moveM where players-, .. .,r, take movesni, ...
we defined790€s £ { does (r1,mq).,. .., does (ry, my). .

s M,

pu=p| =@ eVY [ (X)NOe [ (X)Oe | (X)eU v |
Kip | Cxe
wherep € @ is an atomic proposition and C Ag is a set of
agents. Other logic constants and connectiviesL, v, — are de-
fined as usual.



Intuitively, (X)) O ¢ means a coalition of agen#§ can ensure that
o will hold in the next state{(X))(0¢ means a coalition of agents
X can ensure that will always hold; (X)) U ¢ means a coalition
of agentsX can ensure thap will hold until ¢ holds; K;o means
agenti knows ¢; and C'x ¢ means thatp is common knowledge
among the agents iX. For example, “agent knows that agenj
knowsp” can be expressed ds; K;p.

We will interpret ATEL formulas on finite tree-like structures

(game trees) derived from GDL-Il games (such as shown in Fig-

ure 2). A game is well-formed if it terminates after finite steps and
if all players have at least one legal move in non-terminal states [8].
In addition, the setup of general game playing competitions is suc
that all agents are aware of the time progressByn¢hronicity and
remember what they have seen and done in the [Resfect Re-
call) [15]. For this reason, we adapt the ATEL models from [16, 6]
by adding an explicit set of terminal states. These terminal states co
respond to those games states in whielminal holds.

Definition 4 (Model of ATEL). An Action-based Alternating Epis-
temic Transition SysterfAAETS) is a tuple

<Q7507T7 Ag:{Aci ‘ (RS Ag}avaa {Nl (XS Ag}7¢7v>
where

Q is a finite, non-empty set pbssible states

so € @ is the initial state;

T C Q@ is anon-empty set of terminal states;

Ag is a finite, non-empty set afagents

Ac; is a finite, non-empty set @fctionsfor eachi € Ag;

p : Acay, — 29 is anaction precondition functigrwhich for
each actiomu € Acag(=U;¢ », Aci) defines the set of statpéa)
from whicha may be executed (for any actienit is assumed
thatT N p(a) = B, which means that no actions are possible in
terminal states);

T 1 Acp X -+ X Acp, X Q — Q is a partial system tran-
sition function which defines the state()M, s) that would re-
sult from agents’ actions\/ (= a1,...,a,) ONn states, given
thats € p(M(¢)) for all agenti € Ag (i.e., agenti’s action
M (i) = a; can be executed at stat

e dis afinite, non-empty set @tomic propositions

e each~,C @ x @ is an equivalence relation (called tteecessi-
bility relation) for agenti;

V : Q — 2% is avaluation functiorthat assigns each state a set
of atomic propositions (said to keuein that state).

A computationof an AAETS is a finite sequence of states=
s051...8% € @7 such that for each < u < k, there is a joint action
M’ such thats,, = 7(M’, s,—1). A computation\ starting in state
s is referred to as ap-computationIf 0 < u < |\| (the size of)),
then we denote b}[u] theu-th state in\, by A0, u] the finite prefix
s0...8, Of A, and bylast()\) the last state ok.

In addition to finiteness, we stipulate the following three properties

for our AAETS in accordance with the general game playing setting
as discussed above.

Definition 5 (Tree, Synchronicity and Perfect Recallh\n AAETS
A hastree propertyff any states is reached from initial state, via
a unique computation. We denote such a computatiok(by, s).

3 In general, termination is not guaranteed as GDL-II can desgames that
run forever, but all games considered in general game playingpetitions
are required to be well-formed [5, 8]. Some games (such as Tic&c
terminate naturally, and in other games (such as Chess) a@tepec can
be added to enforce termination after finitely many moves.

h

An AAETS A hassynchronicityiff for all s,¢ € A and agents
i, s ~; t implies that the computations from the initial stateto s
(i.e., A\(so0, 8)) and fromso to ¢ (i.e., A(so, t)) have the same length,
i.e.,|A(s0,8)| = [A(s0,t)|.

An AAETS A has perfect recalliff for all finite computations
A, N € QT and agents, A ~; X implies thatlast(\) ~; last(\)
andA[0, [A| — 2] ~; N[0, |N| — 2.

Given an agent € Ag and a states € Q, we denote thep-
tions available to: in s—the actions that may perform ins—by
options(i,s) = {m | m € Ac;ands € p(m)}. We then de-
fine aperfect recall strategyor an agent € Ag to be a function
0; : QT — Ac; that must satisfy

o thelegality constraint that; (\) € options(i,last(\)) for all fi-
nite computations\ € Q*, and

& the uniformity constraint that for any two finite computations
/\17 A2 € Q+, if A1~ A2 thenai(/\l) = 0'7;()\2).

A perfect recall strategyor a coalitionX = {i1,...,ix} C Ag
is a tuple of strategieés1, ..., ox), one for each agerite X. We
denotei’s component ofox by o%. The outcomeof applying a
strategy for coalitionX on a finite computation\ is defined as
out(ox,\) = {s | IM such thatM (s) = o’ (\) for i € X, and
s =71(M,last(\)}.

Given a perfect recall strategyx for some coalitionX, and a
states € Q, we definecomp(ox, s) to be the set of all finite compu-
tations that may occur if every agene X follows the correspond-
ing strategy;, starting when the system is in state @ and ending
with a terminal state iff": comp(ox,s) = {\ | A\[0] = s,last()\) €
Tandv0 < u < |A] = 1: Alu+ 1] € out(ox, A[0,u])}.

Note that herein lies the major difference between our models and
the models defined in other ATL/ATEL papers [1, 16, 6]. In our case,
all the computations iromp(ox, s) are finite in accordance with
well-formed GDL-Il games, whereas they are infinite in other papers.
This results in the following modified semantics.

Definition 6 (Semantics of ATEL) For a finite AAETS A and a
states, let A(so, s) denote the finite computation starting from
and ending withs. The truth of ATEL formulas is inductively defined
as follows:

A s Epiffpe V(s)
A, s E —piff A, s b o;
AsEeVyiff AisiEpor A s =,

A, s E (X)Oyiff Jox, such thatvA € comp(ox, s) we have
[A| > 1and A, A[1] = ¢;

A, s = (X)Og iff Jox, such thatvA € comp(ox, s) we have
A ANu] Epforall 0 <u < |A;

A, s E (X)eU iff Jox, such thatvA € comp(ox, s) there
exists some < |A| suchthatd, Alu] = ¢, andforall0 < v < u
we haved, A[v] & ¢;

A, s = K, iff Vs’ such that\(so, 5) ~i A\(so, "), A, s" = ¢;
A, s = Cxpiff Vs' such that\(so, s) ~% A(so0,s), A, s E ¢
where~% is the transitive and reflexive closure Ofc x ~;.

(wherep € ?);

3 Mapping GDL-Il into ATEL

GDL-Il serves as a language to describe games, while ATEL is for
reasoning about such games. We build two links between GDL-Il and
ATEL:

e On thesemanticlevel, every GDL-II descriptiorG' induces an
AAETS modelAg.



e On thesyntacticlevel, every GDL-Il descriptiory can be trans- e
lated into an ATELtheoryGarec (defined asl,» (G) below).

Thus, we are able to interpret ATEL formulasover G either
via ATEL semantics, i.e., defin€ = ¢ asAg |=ateL @. Or, we
can use the syntactic characterisation, i.e., define: ¢ asf=arteL
Tsyn(G) — . As our main result, we will prove that these two 4
characterisations are equivalent. The following diagram depicts the
main idea, and we are now going to present it in detail.

G Tsyn GaTEL

’
7
/
Ve

has a derived has isomorphic
AAETS model AAETS models

~;C @Q x Q is the accessibility relation for agentc Ag given by
(s,s") € ~; (also written ass ~; s') iff role ¢ cannot distinguish
any two developmentsandd’ such thaty = (so...s) andd’ =
(so0...s") (cf. Definition 2);

® C AtareL is a set of atomic propositions translated byand
tpre from the atoms iMtgpL-ii;

V : Q — 2% is an interpretation function which associates with
each states the set of atoms that satisfies the following require-
ments: ifp € s thent(p) € V(s); if s = u(M,s’) then for any
agenti we havedone(i, M (i)) € V(s), and for anyp € s’ we
havet,..(p) € V(s); and pinit € V(s0).

The interpretation function requires that if there is a transition

from s’ to s, then the moves that were made gnare recorded in
V (s) and the atoms true is are also recorded inusing the corre-

sponding atoms labelled wighre. The accessibility relation of states

s
7/
7/
/

Ac

is given according to the developments that end with such states. This
ensures thatl; always has synchronicity and perfect recall.

Next, we give the full syntactic translation of GDL-II descriptions

Since ATEL does not support first-order predicates, we follow!Nto ATEL formulas.

[13, 12] in applying a pre-processing step to GDL-1I descriptions by
replacing all predicates with variables, suchiadeal ( ?X, ?Y),

by all relevant instances (also called ground atoms), such as
i sdeal (A, K). This maps an arbitrary GDL-II description into an

equivalent variable-free specification. We then translate such ground

atoms to atomic propositions in ATEL.

Definition 7 (Translationt and¢,,.). Let AtgpL.; be the set of
ground atoms in GDL-II, anddtate. be the set of atomic propo-
sitions in ATEL. The translationmaps every GDL-Il formulas to an
ATEL formula as follows.

Base case:

t(p) = p forallp € AtgpL

Wherep € AtaTeL.
Extended cases:

t(not p)
t({ph cee 7Pk})

Note that a literal is eithep or not p for all p € Atgpy.. Fur-
thermore, let,,,.. be defined by,..(p) = ¢(p)pr. for the base case
(and similar tot for the extended cases). An atpps. will represent
the value of atorp in the previous state (in ATEL). For convenience,
we abbreviateloes(i, m)pre by done(i, m).

—t(p);
{t(p1),...,t(px)} for all literals p;.

We define how to induce ahAETS from a GDL-II description.

Definition 8 (Semantic interpretation of GDL-Il in ATEL) Given
a GDL-Il description G with semantics(R, s, t,1,u,Z, g), an
AAETS for G (denoted asd¢) is a tuple

<Q7805T7 Ag7{AC7~ ‘ i€ Ag}avav{Ni| i€ Ag}yq)av>
where

Q is the set of states @f;

s0 € Q is the initial game statay;

T is the set of terminal states &3

Ag is the set of role? \ {random} (assume: agents);

Ac; = {m | (i,m,s) € I, s € Q} is the set of moves of ageint
T:Ac1 X --- X Acp, X Q — Q is a partial function that maps
a set of action and a state to another state such that, s)
u(M, s);

Definition 9 (Syntactic Translatioff,,»). Given a game description
G, we define its ATEL theoateL = Tsy» (G) as a conjunction:

F'Lni A Fno'rm A 1-‘leg A 1—‘act A 1—"me'm A Fnezt A Fsees-
These conjuncts are described in detail as follows.

T'ini. Theinitial state is captured by a conjunction of: all the fluent
atoms that are initially true plus the extra atomic propositign:
(which is only true insg). Formally,

= Ninieyec true(f) A (pinie A O () D—pinit)-

Thorm- FOr normal rules (i.e., rules without any of the keywords
role, init, next or sees in the head), we group those by heads:

Tini

r: p < bdy
Tk: P < bdg

Such rules decide whethgris true in the current state. L&, =
{r1,...,7x}, H be the heads of all such rules, aAd{ be the set

of atoms that do not appear in the heads of any rules and are not
“does” atoms, then:

Lrorm = (VO Ape s (CP(Rp) ALF(Rp)) A Ape s —t(P))

whereCP(Ry) = t(p) <> (V.4 (A t(bd)))), andLF(R;) is
aloopformula (see below). Notice thad; (a set of literals) is the
body of rulei. Specially, ifbd; is empty, then/ ¢(bd;) is T, and

if p does not appear in the head of any rules and is ndioe$”
atom, then it must be false, which is captured-ayp).
FormulaCP(R;) applies Clark’s completion [2] to a given set
of GDL-II rules R,. An example from the card trading game is:
CP(Ruin) = win < goal(b,100). But in general the semantics
of the completion of a (stratified) logic program is too weak to
fully characterise the standard model in the presence of redundant
rules likep <= p. The standard model remains the same when such
“superfluous” clauses are added, but Clark’s completion is weak-
ened by them [7]. This issue is solved by a propositional formula
denoted a&F(R;) (which is also called a loop formula); we refer
to [7] for a detailed algorithm to compute such a formula.



e I';y. In all non-terminal states, each agent must make one legaDefinition

move. This means that ikgal(i, m) is true in the current state,
then agent can enforcelone(i, m) to be true in a next state and
on the other hand iflone(i, m) is true in the current state, then
legal(i,m), must be true in the previous state, ilegal (i, m)pre
is true in the current state. This is captured by the following:
Dieg = (HO(—terminal —

Nic agmeac, (legal (i, m) > (i) O done(i, m))A

ic Ag.meAc, (done(i,m) — legal(i, m)pre)).

T.ct. For all non-initial states, each agent should have done ex

actly one action in the previous state, and agents always kno/

what they did:

Toct = ()O(—pinit — /\iEAg XORmeac; done(i, m))A
OVB(Aicagmeac, (done(i,m) <> Kidone(i,m))).

whereXOR is theexclusive OPperator.

T'mem. FOr non-terminal states, we use the atgm (p) to record

the truth-value ot (p) for it to be used in the next states. Lét

be Atgp. but without “does” atoms, then:

Timem = (()}D(ﬁterminal —

Npear((t(P) < (DOtpre(p)) A (St(p) <> (DO —tpre(p)))-
T'next. Suppose these are all the rules with headt (£):
r1: next(f) < bd:

rp: mnext(f) < bdy

There are two alternatives for translating these rules into ATEL

formulas. From the perspective otarrent statethe truth off in

the next state is determined by the truth of the propositions in th
bodies of rules, ..., rx in the current state and the actions that
are chosen by the agents for the transition. From the perspecti
of a next state the truth off in this state is determined by the
previous truth of the propositions in the bodies of rutes..., rx

e

10 (AAETS Isomorphism) Let A
(@, s0,T,Ag,{Ac; | i € Ag},p,7,{~i| i € Ag},®,V) and
A =(Q, 56, T', Ag, {Ac; | i € Ag},p', 7', {~i] i € Ag},®, V")
be twoAAETSs, then they are isomorphic (denoted.4s> A') iff
there is a functiorf such that:

e f maps every state ip to a state inQ’ and it is a bijection; in
particular f(so) = sy, and for alls € T, f(s) € T;

f maps every acton idc; to an action inAc; and it is a bijection;
for every states and actionm, s € p(m) iff f(s) € p’(f(m));

for every states, s’ and joint actionM, s = 7(M, s') iff f(s) =
7 (F(M), £(s'));

for every states and agent, s ~; s’ iff f(s) ~} f(s');

for every propositionp and states € Q, p € V{(s) iff p €
V'(f(s)).

The existence of an isomorphism between tWBETSs implies
that they satisfy the same formulas.

Proposition 2. Given twoAAETSs A and A’ along with an arbi-
trary ATEL formulayp,

A= A implies(A = o iff A’ = ).

Proposition 3. LetG be a game description andan ATEL formula,
then the following holds

'ZGATEL — L,Dif'f .AG ': ®.

Proof. (Sketch) The direction from left to right follows from Propo-
sition 1. The direction from right to left is proved by showing that
for any AAETS A with synchronicity and perfect recall such that

Vﬁ = GareL, there is an isomorphism betweghand. A ; the result

then follows from Proposition 2. See [11] for details. O

perspective. Lefi N be the heads of all such rules, and define
Theat = (NO(—pinie —

/\next(f)GHN(tTue(f) < (Vje[L.k] (Atpre(bd;))))).
T'sees. The rules with Sees” are similar to those with fiext”,
but instead of defining what will be true they specify what will be

characteriseé&’ in ATEL in the sense that it entails any formula that
is satisfied in thAAETS derived fromG directly, and vice versa.

4 Model Checking Strategic and Epistemic

seen by the agents next. Suppose these are all the rules with head Properties

sees(i,x):
r1: sees(i,x) < bd:

ri: sees(i,x) < bdy.
Again we adopt the perspective of a next state. Heéf be the
heads of all $ees” rules, and define
Fsees - <<>>D(“p1nzt —
/\sees(i,x)eHS((Kisees(i7 l') x4 (Vje[l..k] (/\ tprc (bd]))))/\

(Kimsees(i, ©) < 2(V e (Atore(bd;)))))).

Note that the size of the ATEL theory is polynomial in the size
of a variable-free GDL-II description. Our translation is correct in

Our main result in this paper allows us to consider the following
model checking problengiven a game represented by GDL-II, and a
property represented by an ATEL formula, decide whether the prop-
erty is true for the game descriptiolfithe agents have incomplete in-
formation and perfect recall, the model checking problem for ATEL
in traditional semantics is undecidable (see [3]). Hence, had we used
the standard semantics, the above problem would also be undecid-
able since we can reduce the problem by deriving an ATEL model
from a GDL-II description and then perform the ATEL model check-
ing. However, with our new ATEL semantics—oweAETS models
with finite computations—the model checking problem becomes de-
cidable as we can give an algorithm for it.

We only sketch the algorithm below for the casg(df )) O ¢ due

the sense that the resulting ATEL formula is satisfiable in the ATEL, space limitations. This algorithm terminates because only a finite

model derived from the same game description.
Proposition 1 (Correctness) For a GDL-II game descriptioid,
Ac = Gatel.

To show that7sy. is an adequate syntactic characterisation of
GDL-II descriptions, we define an equivalence relatiomrA&ETSs.

number of strategies and computations needs to be checked.

ncheck(A, s,
found : = True;
foreach sigma(X) do {

<<X>> O Phi) {

foreach ¢ in comp(sigma(X), A s) do {
if | cl[:l or ntheck(A, c[1],Phi) == Fal se
then Tound : = Fal se;
if found == True then return True; }
return False; }




How complex is the problem? We know for sure that the problemversion of ATEL for this purpose. Our characterisation formula is
is at least 2EXPTIME-hard due to [9], which shows that the outcomenspired by the one given in [12], but we make these improvements:
problem of the Private-PEEK game is complete in double exponen¢l) we can deal with imperfect-information games; (2) we show that
tial time (2EXPTIME-complete). The Private-PEEK game can bethe models that satisfy this formula are isomorphic4g, rather
rather straightforwardly specified in GDL-II and the outcome prob-than a weaker relation as alternating bisimulation given in [12]; (3)
lem can be equivalently expressed as deciding whehgK>win; we do not require an extra “sink” state as there is no need to make
is true in the initial state of the game. Finding an upper bound for thecomputations infinite with our new semantics.
complexity, however, is left for future work. In [14], itis shown how GDL-II can be formally translated into the

In [12], ATL is used to characterise some interesting playability Situation Calculus as a first-order axiomatisation that allows players
properties for the original GDL games. With ATEL being the lan- to reason about their percepts and what they know about the legality
guage to express properties for GDL-Il games, we can now not onhand effects of moves based on the game description. In [10], the epis-
express the above properties but also a new class of properties thamic structure and expressiveness of GDL-II is analysed in terms of
are not expressible in ATL. We discuss two kinds of such propertiesepistemic modal logic. It was shown that the operational semantics

) . of GDL-II entails that the situation at any stage of a game can be
Coherence Knowledge Properties. There are some properties o racterised by a multi-agent epistemic (i.e., S5-) model and GDL-
that_lnvolve pure knowledge, i.e., where no temporal modalities ocy, is sufficiently expressive to model any situation that can be de-
curin. For suchp, we call{()) [y acoherence knowledge property  gcyined by a (finite) multi-agent epistemic model. Our work extends
We know thatA, s = (()Dp iff @istrueinall reachable states from o static epistemic model into a dynam&ETS, and therefore a

0- ) lager class of strategic and epistemic properties can be addressed by
In GDL-II, agents may not always know their legal moves. In order approach.

to check this, we can express the property that “if a move is legal for

an agent then the agent knows it” as a formula:
VD Aseng.mene, (legal(i,m) — Kilegal(i,m)). helpful comments. This research was supported under Australian
’ ¢ Research Council's (ARCPDiscovery Projectsfunding scheme
The following is not necessarily true for a GDL-II game: if the (project DP 120102023). Michael Thielscher is the recipient of an
game has terminated, then this is common knowledge, ARC Future Fellowship (project FT 0991348). He is also affiliated
with the University of Western Sydney.
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