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Abstract. The game description language GDL has been devel-
oped as a logic-based formalism for representing the rules of arbi-
trary games in general game playing. A recent language extension
called GDL-II allows to describe nondeterministic games with any
number of players who may have incomplete, asymmetric informa-
tion. In this paper, we show how the well-known Alternating-time
Temporal Epistemic Logic (ATEL) can be adapted for strategic and
epistemic reasoning about general games described in GDL-II. We
provide asemanticcharacterisation of GDL-II descriptions in terms
of ATEL models. We also provide asyntactictranslation of GDL-II
descriptions into ATEL formulas, and we prove that these two char-
acterisations are equivalent. We show that model checking in this
setting is decidable by giving an algorithm, and we demonstrate how
our results can be used to verify strategic and epistemic properties of
games described in GDL-II.

1 Introduction

The general game description language GDL, which has been estab-
lished as input language for general game-playing systems [5, 8], has
recently been extended to GDL-II to incorporate games with non-
deterministic actions and where players have incomplete/imperfect
information [15]. We have previously analysed the epistemic logic
behind GDL-II and in particular shown that the situation at any stage
of a game can be characterised by a multi-agent epistemic (i.e., S5-)
model [10]. However, this result merely provides a static character-
isation of what players know (and don’t know) at a certain stage.
As such it cannot be used to reason about how players’ knowledge
evolves as the game progresses, nor does it allow to reason about
the strategic ability of players to reach a desired state (possibly in
cooperation with other players), etc. All these aspects presuppose
the use of an underlying logic that goes beyond standard epistemic
logic in that it combines both strategic and epistemic reasoning.
Alternating-time Temporal Epistemic Logic (ATEL) [16], an exten-
sion to Alternating-time Temporal Logic (ATL) [1] with incomplete
information, is such a formalism. For strategic reasoning alone, it
has been shown that ATL can be applied to reason about complete-
information games described in the original GDL using model check-
ing methods [12]. Also, model checking for GDL is known to be
EXPTIME-complete [12]. But unfortunately, the addition of incom-
plete information (and perfect recall) in GDL-II renders the model
checking problem of ATL/ATEL undecidable [3].

In this paper we provide an adaption of ATEL for strategic and
epistemic reasoning about general games described in GDL-II. Our
main results are a characterisation of GDL-II descriptions in ATEL
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and a decidability result for the model checking problem. Specifi-
cally, we provide asemanticcharacterisation of GDL-II descriptions
in terms of ATEL models and asyntactictranslation of GDL-II de-
scriptions into ATEL formulas, and we prove that these two char-
acterisations are equivalent. We show that model checking in this
setting is decidable and demonstrate how our results allow to verify
strategic and epistemic properties of games described in GDL-II.

The paper is organised as follows. Section 2 gives preliminaries on
GDL-II and ATEL. Section 3 presents a semantic characterisation of
GDL-II using ATEL models and a syntactic mapping from GDL-II
to ATEL formulas, along with the main equivalence result. Section
4 shows the decidability of model checking problem by giving an
algorithm and discusses the strategic and epistemic properties that
can be used for reasoning about GDL-II games. We conclude with a
discussion on related work. Full proofs of our results can be found in
an accompanying technical report [11].

2 Preliminaries

2.1 Game Description Language GDL-II

A complete game description consists of the names of (one or more)
players, a specification of the initial position, the legal moves and
how they affect the position, and the terminating and winning cri-
teria. The emphasis of game description languages is on high-level,
declarative game rules that are easy to understand and maintain. At
the same time, GDL and its successor GDL-II have a precise se-
mantics and are fully machine-processable. Moreover, background
knowledge is not required—a set of rules is all a player needs to
know to be able to play a hitherto unknown game. The description
language GDL-II uses thesekeywords:

role(?r) ?r is a player
init(?f) ?f holds in the initial position
true(?f) ?f holds in the current position

legal(?r,?m) ?r can do move?m
does(?r,?m) player?r does move?m
next(?f) ?f holds in the next position
terminal the current position is terminal

goal(?r,?v) goal value for role?r is ?v

sees(?r,?p) ?r perceives?p in the next position
random the random player

GDL (without sees andrandom) is suitable for describing fi-
nite, synchronous, and deterministicn-player games with complete
information about the game state [8]. The extended game description
language GDL-II allows to specify games with randomness and im-
perfect/incomplete information [15]. Valid game descriptions must
satisfy certain syntactic restrictions, which ensure that all deductions



“⊢” used in the following definition are finite and decidable; for de-
tails we have to refer to [8] for space reasons.

A unique game model can be obtained from a valid GDL-II game
description by using the notion of thestable modelsof logic pro-
grams with negation [4]. The syntactic restrictions in GDL-II ensure
that all logic programs we consider have auniqueandfinite stable
model [8, 15]. Hence, the game model for GDL-II has a finite set of
players, finite states, and finitely many legal moves in each state [15].
By G ⊢ p we denote that ground atomp is contained in the unique
stable model, denoted asSM(G), for a stratified set of clausesG.
In the following definition of a game model for GDL-II,statesare
identified with the set of atoms that are true in them.

Definition 1 (GDL-II Game Semantics). LetG be a valid GDL-II
specification. Thesemanticsof G is the state transition sys-
tem(R, s0, t, l, u, I, g) given by

• rolesR = {r | role(r) ∈ SM(G)};
• initial positions0 = SM(G∪ {true(f) | init(f) ∈ SM(G)});
• terminal positionst = {s | terminal ∈ s};
• legal movesl = {(r,m, s) | legal(r,m) ∈ s};
• state update functionu(M, s) =

SM(G ∪ {true(f) | next(f) ∈ SM(G ∪ s ∪Mdoes)}),
for all joint legal movesM (i.e., where each role inR takes one
legal move) and statess;2

• information relationI =
{(r,M, s, p) | sees(r, p) ∈ SM(G ∪ s ∪Mdoes)};

• goal relationg = {(r, n, s) | goal(r, n) ∈ s}.

Note that a states contains all ground atoms that are true in
the state, which includes the “fluent atoms”true(f) in, respec-
tively, {true(f) | init(f) ∈ SM(G)} (for the initial state) and
{true(f) | next(f) ∈ SM(G ∪ s ∪Mdoes)} (for the successor
state ofs andM ), and all other atoms that can be derived fromG
and these fluent atoms.

Different runs of a game can be described bydevelopments, which
are sequences of states and moves by each player up to a certain
round. A playercannot distinguishtwo developments if he makes
the same moves and perceptions in the two.

Definition 2. [15] Let 〈R, s0, t, l, u, I, g〉 be the semantics of a
GDL-II descriptionG, then adevelopmentδ is a finite sequence

〈s0,M1, s1, . . . , sd−1,Md, sd〉

such that for alli ∈ {1, . . . , d} (d ≥ 0), Mi is a joint move and
si = u(Mi, si−1).

Thelengthof a developmentδ, denoted as len(δ), is the number of
states inδ. ByM(j) we denote agentj’s move in the joint moveM .
Let δ|i be the prefix ofδ up to lengthi ≤ len(δ).

A playerj ∈ R \ {random} cannot distinguishtwo developments
δ = 〈s0,M1, s1, . . .〉 andδ′ = 〈s0,M

′

1, s
′

1 . . .〉 (written asδ ∼j δ
′)

iff len(δ) = len(δ′) and fori = len(δ)− 1:

• {p | (j,Mi, si−1, p) ∈ I} = {p | (j,M ′

i , s
′

i−1, p) ∈ I},
• Mi(j) =M ′

i(j), andδ|i ∼j δ
′|i.

As an example, Figure 1 provides a GDL-II description of a card
trading game adapted from [6]. In this game, player Bob (abbreviated
as b) plays against therandom player (line 1). The deck consists
of Ace, King and Queen(A,K,Q); it is assumed thatA beatsK,

2 For a joint moveM where playersr1, . . . , rk take movesm1, . . . ,mk,

we defineMdoes def
= {does(r1,m1)., . . . ,does(rk,mk). }.

1 role(b). role(random).
2 isDeal(A,K). isDeal(A,Q). isDeal(K,A). isDeal(K,Q).
3 isDeal(Q,A). isDeal(Q,K).
4 beats(A, K). beats(K, Q). beats(Q, A).
5 init(round(0)).
6

7 legal(random,deal(?X,?Y)) <= true (round(0)),isDeal(?X,?Y).
8 legal(b, noop) <= true (round(0)).
9 legal(random, noop) <= true (round(1)).

10 legal(b, trade) <= true (round(1)).
11 legal(b, keep) <= true (round(1)).
12

13 next(round(1)) <= true(round(0)).
14 next(round(2)) <= true(round(1)).
15 next(holds(b, ?X)) <= does(random, deal(?X,?Y)).
16 next(holds(random, ?Y)) <= does(random, deal(?X,?Y)).
17 next(holds(b, ?X)) <= does(b, keep), true(holds(b, ?X)).
18 next(holds(b, ?Z)) <= does(b, trade), true(holds(b, ?X)),
19 true(holds(random, ?Y)), isDeal(?Z, ?X), isDeal(?Z, ?Y).
20 next(holds(random, ?X)) <= true(holds(random, ?X)).
21

22 sees(b, holds(b,?X)) <= does(random, deal(?X,?Y)).
23 sees(b, holds(random, ?X)) <= true(holds(random, ?X)),
24 true(round(1)).
25

26 terminal <= true(round(2)).
27 goal(b, 100) <= true(holds(b, ?X)),
28 true(holds(random, ?Y)), beats(?X, ?Y).
29 goal(b, 0) <= true(holds(b, ?X)),
30 true(holds(random, ?Y)), beats(?Y, ?X).
31 win <= goal(b, 100)

Figure 1. A card trading game in GDL-II
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Figure 2. The game model for the card trading game.

K beatsQ, butQ beatsA (lines 2–4). The game starts at round 0
(line 5). Lines 7–11 describe the possible moves for the players in
different rounds: First,random deals one card tob and one card to
itself. Thenb decides whether to trade his card for the one in the
deck or to keep the current one. The player with the better card wins
the game. Lines 13–20 define what will be true in the next state. For
example, ifrandom doesdeal(?X, ?Y), thenb will hold ?X in
the next state (line 15). Lines 22–24 specify whatb can see in the
next state: ifrandom doesdeal(?X, ?Y), thenb will see that it
holds card?X in the next state (line 22), and ifrandom holds?X in
round 1, thenb sees this in the next state (i.e., in round 2) (lines 23–
24). Line 26 specifies when the game is terminal, and lines 27–31
give the goal values of playerb (wheregoal(b, 100) implies awin
for b). The corresponding game model is sketched in Figure 2. Due
to limited space, thenoop actions are not shown in the joint actions;
e.g., for〈noop, deal(A,K)〉 we only showdeal(A,K). States that
playerb cannot distinguish are connected by a dashed line.

2.2 ATEL with Finite Computations

Definition 3 (Language of ATEL, [16]). The language of ATEL (with
respect to a set of agentsAg and a set of atomic propositionsΦ), is
given by the following grammar:
ϕ ::= p | ¬ϕ | ϕ ∨ ψ | 〈〈X〉〉 fϕ | 〈〈X〉〉�ϕ | 〈〈X〉〉ϕU ψ |

Kiϕ | CXϕ

wherep ∈ Φ is an atomic proposition andX ⊆ Ag is a set of
agents. Other logic constants and connectives⊤,⊥,∨,→ are de-
fined as usual.



Intuitively, 〈〈X〉〉 fϕ means a coalition of agentsX can ensure that
ϕ will hold in the next state;〈〈X〉〉�ϕ means a coalition of agents
X can ensure thatϕ will always hold;〈〈X〉〉ϕU ψ means a coalition
of agentsX can ensure thatϕ will hold until ψ holds;Kiϕ means
agenti knowsϕ; andCXϕ means thatϕ is common knowledge
among the agents inX. For example, “agenti knows that agentj
knowsp” can be expressed asKiKjp.

We will interpret ATEL formulas on finite tree-like structures
(game trees) derived from GDL-II games (such as shown in Fig-
ure 2). A game is well-formed if it terminates after finite steps and
if all players have at least one legal move in non-terminal states [8].3

In addition, the setup of general game playing competitions is such
that all agents are aware of the time progressing (Synchronicity) and
remember what they have seen and done in the past (Perfect Re-
call) [15]. For this reason, we adapt the ATEL models from [16, 6]
by adding an explicit set of terminal states. These terminal states cor-
respond to those games states in whichterminal holds.

Definition 4 (Model of ATEL). An Action-based Alternating Epis-
temic Transition System(AAETS) is a tuple

〈Q, s0, T,Ag , {Aci | i ∈ Ag}, ρ, τ, {∼i: i ∈ Ag},Φ, V 〉

where

• Q is a finite, non-empty set ofpossible states;
• s0 ∈ Q is the initial state;
• T ⊆ Q is a non-empty set of terminal states;
• Ag is a finite, non-empty set ofn agents;
• Aci is a finite, non-empty set ofactionsfor eachi ∈ Ag ;
• ρ : AcAg → 2Q is an action precondition function, which for

each actiona ∈ AcAg (=
⋃

i∈Ag Aci) defines the set of statesρ(a)
from whicha may be executed (for any actiona it is assumed
that T ∩ ρ(a) = ∅, which means that no actions are possible in
terminal states);

• τ : Ac1 × · · · × Acn × Q → Q is a partial system tran-
sition function, which defines the stateτ(M, s) that would re-
sult from agents’ actionsM (= a1, . . . , an) on states, given
that s ∈ ρ(M(i)) for all agent i ∈ Ag (i.e., agenti’s action
M(i) = ai can be executed at states);

• Φ is a finite, non-empty set ofatomic propositions;
• each∼i⊆ Q × Q is an equivalence relation (called theaccessi-

bility relation) for agenti;
• V : Q 7→ 2Φ is a valuation functionthat assigns each state a set

of atomic propositions (said to betrue in that state).

A computationof anAAETS is a finite sequence of statesλ =
s0s1...sk ∈ Q+ such that for each0 < u ≤ k, there is a joint action
M ′ such thatsu = τ(M ′, su−1). A computationλ starting in state
s is referred to as ans-computation. If 0 ≤ u < |λ| (the size ofλ),
then we denote byλ[u] theu-th state inλ, byλ[0, u] the finite prefix
s0...su of λ, and bylast(λ) the last state ofλ.

In addition to finiteness, we stipulate the following three properties
for ourAAETS in accordance with the general game playing setting
as discussed above.

Definition 5 (Tree, Synchronicity and Perfect Recall). An AAETS

A hastree propertyiff any states is reached from initial states0 via
a unique computation. We denote such a computation byλ(s0, s).

3 In general, termination is not guaranteed as GDL-II can describe games that
run forever, but all games considered in general game playing competitions
are required to be well-formed [5, 8]. Some games (such as TicTacToe)
terminate naturally, and in other games (such as Chess) a step counter can
be added to enforce termination after finitely many moves.

An AAETS A hassynchronicityiff for all s, t ∈ A and agents
i, s ∼i t implies that the computations from the initial states0 to s
(i.e.,λ(s0, s)) and froms0 to t (i.e.,λ(s0, t)) have the same length,
i.e., |λ(s0, s)| = |λ(s0, t)|.

An AAETS A has perfect recalliff for all finite computations
λ, λ′ ∈ Q+ and agentsi, λ ∼i λ

′ implies thatlast(λ) ∼i last(λ
′)

andλ[0, |λ| − 2] ∼i λ
′[0, |λ′| − 2].

Given an agenti ∈ Ag and a states ∈ Q, we denote theop-
tions available toi in s—the actions thati may perform ins—by
options(i, s) = {m | m ∈ Aci ands ∈ ρ(m)}. We then de-
fine aperfect recall strategyfor an agenti ∈ Ag to be a function
σi : Q

+ → Aci that must satisfy

• the legality constraint thatσi(λ) ∈ options(i, last(λ)) for all fi-
nite computationsλ ∈ Q+, and

• the uniformity constraint that for any two finite computations
λ1, λ2 ∈ Q+, if λ1 ∼i λ2 thenσi(λ1) = σi(λ2).

A perfect recall strategyfor a coalitionX = {i1, . . . , ik} ⊆ Ag

is a tuple of strategies〈σ1, . . . , σk〉, one for each agenti ∈ X. We
denotei’s component ofσX by σi

X . The outcomeof applying a
strategy for coalitionX on a finite computationλ is defined as
out(σX , λ) = {s | ∃M such thatM(i) = σi

X(λ) for i ∈ X, and
s = τ(M, last(λ)}.

Given a perfect recall strategyσX for some coalitionX, and a
states ∈ Q, we definecomp(σX , s) to be the set of all finite compu-
tations that may occur if every agenti ∈ X follows the correspond-
ing strategyσi, starting when the system is in states ∈ Q and ending
with a terminal state inT : comp(σX , s) = {λ | λ[0] = s, last(λ) ∈
T and∀0 ≤ u < |λ| − 1 : λ[u+ 1] ∈ out(σX , λ[0, u])}.

Note that herein lies the major difference between our models and
the models defined in other ATL/ATEL papers [1, 16, 6]. In our case,
all the computations incomp(σX , s) are finite in accordance with
well-formed GDL-II games, whereas they are infinite in other papers.
This results in the following modified semantics.

Definition 6 (Semantics of ATEL). For a finite AAETS A and a
states, let λ(s0, s) denote the finite computation starting froms0
and ending withs. The truth of ATEL formulas is inductively defined
as follows:

A, s |= p iff p ∈ V (s) (wherep ∈ Φ);
A, s |= ¬ϕ iff A, s 6|= ϕ;
A, s |= ϕ ∨ ψ iff A, s |= ϕ or A, s |= ψ;
A, s |= 〈〈X〉〉 fϕ iff ∃σX , such that∀λ ∈ comp(σX , s) we have
|λ| > 1 andA, λ[1] |= ϕ;
A, s |= 〈〈X〉〉�ϕ iff ∃σX , such that∀λ ∈ comp(σX , s) we have
A, λ[u] |= ϕ for all 0 ≤ u < |λ|;
A, s |= 〈〈X〉〉ϕU ψ iff ∃σX , such that∀λ ∈ comp(σX , s) there
exists someu < |λ| such thatA, λ[u] |= ψ, and for all0 ≤ v < u

we haveA, λ[v] |= ϕ;
A, s |= Kiϕ iff ∀s′ such thatλ(s0, s) ∼i λ(s0, s

′), A, s′ |= ϕ;
A, s |= CXϕ iff ∀s′ such thatλ(s0, s) ∼∗

X λ(s0, s
′), A, s′ |= ϕ

where∼∗

X is the transitive and reflexive closure of∪i∈X ∼i.

3 Mapping GDL-II into ATEL

GDL-II serves as a language to describe games, while ATEL is for
reasoning about such games. We build two links between GDL-II and
ATEL:

• On thesemanticlevel, every GDL-II descriptionG induces an
AAETS modelAG.



• On thesyntacticlevel, every GDL-II descriptionG can be trans-
lated into an ATELtheoryGATEL (defined asTsyn(G) below).

Thus, we are able to interpret ATEL formulasϕ overG either
via ATEL semantics, i.e., defineG |= ϕ asAG |=ATEL ϕ. Or, we
can use the syntactic characterisation, i.e., defineG |= ϕ as|=ATEL

Tsyn(G) → ϕ. As our main result, we will prove that these two
characterisations are equivalent. The following diagram depicts the
main idea, and we are now going to present it in detail.

AG

G GATELTsyn

has a derived
AAETS model

has isomorphic
AAETS models

Since ATEL does not support first-order predicates, we follow
[13, 12] in applying a pre-processing step to GDL-II descriptions by
replacing all predicates with variables, such asisdeal(?X,?Y),
by all relevant instances (also called ground atoms), such as
isdeal(A,K). This maps an arbitrary GDL-II description into an
equivalent variable-free specification. We then translate such ground
atoms to atomic propositions in ATEL.

Definition 7 (Translationt and tpre). Let AtGDL-II be the set of
ground atoms in GDL-II, andAtATEL be the set of atomic propo-
sitions in ATEL. The translationtmaps every GDL-II formulas to an
ATEL formula as follows.

Base case:

t(p) = p for all p ∈ AtGDL-II

wherep ∈ AtATEL.
Extended cases:

t(not p) = ¬t(p);
t({p1, . . . , pk}) = {t(p1), . . . , t(pk)} for all literals pi.

Note that a literal is eitherp or not p for all p ∈ AtGDL-II . Fur-
thermore, lettpre be defined bytpre(p) = t(p)pre for the base case
(and similar tot for the extended cases). An atomppre will represent
the value of atomp in the previous state (in ATEL). For convenience,
we abbreviatedoes(i,m)pre bydone(i,m).

We define how to induce anAAETS from a GDL-II description.

Definition 8 (Semantic interpretation of GDL-II in ATEL). Given
a GDL-II descriptionG with semantics〈R, s′0, t, l, u, I, g〉, an
AAETS for G (denoted asAG) is a tuple

〈Q, s0, T,Ag , {Aci | i ∈ Ag}, ρ, τ, {∼i| i ∈ Ag},Φ, V 〉

where

• Q is the set of states ofG;
• s0 ∈ Q is the initial game states′0;
• T is the set of terminal states ast;
• Ag is the set of rolesR \ {random} (assumen agents);
• Aci = {m | (i,m, s) ∈ l, s ∈ Q} is the set of moves of agenti;
• τ : Ac1 × · · · × Acn × Q 7→ Q is a partial function that maps

a set of action and a state to another state such thatτ(M, s) =
u(M, s);

• ∼i⊆ Q×Q is the accessibility relation for agenti ∈ Ag given by
(s, s′) ∈ ∼i (also written ass ∼i s

′) iff role i cannot distinguish
any two developmentsδ andδ′ such thatδ = 〈s0 . . . s〉 andδ′ =
〈s0 . . . s

′〉 (cf. Definition 2);
• Φ ⊆ AtATEL is a set of atomic propositions translated byt and
tpre from the atoms inAtGDL-II ;

• V : Q → 2Φ is an interpretation function which associates with
each states the set of atoms that satisfies the following require-
ments: ifp ∈ s thent(p) ∈ V (s); if s = u(M, s′) then for any
agenti we havedone(i,M(i)) ∈ V (s), and for anyp ∈ s′ we
havetpre(p) ∈ V (s); andpinit ∈ V (s0).

The interpretation function requires that if there is a transition
from s′ to s, then the moves that were made ons′ are recorded in
V (s) and the atoms true ins′ are also recorded ins using the corre-
sponding atoms labelled withpre. The accessibility relation of states
is given according to the developments that end with such states. This
ensures thatAG always has synchronicity and perfect recall.

Next, we give the full syntactic translation of GDL-II descriptions
into ATEL formulas.

Definition 9 (Syntactic TranslationTsyn). Given a game description
G, we define its ATEL theoryGATEL = Tsyn(G) as a conjunction:

Γini ∧ Γnorm ∧ Γleg ∧ Γact ∧ Γmem ∧ Γnext ∧ Γsees.

These conjuncts are described in detail as follows.

• Γini. The initial state is captured by a conjunction of: all the fluent
atoms that are initially true plus the extra atomic propositionpinit

(which is only true ins0). Formally,

Γini =
∧

init(f)∈G true(f) ∧ (pinit ∧ 〈〈〉〉 f〈〈〉〉�¬pinit).

• Γnorm. For normal rules (i.e., rules without any of the keywords
role, init, next or sees in the head), we group those by heads:

r1 : p ⇐ bd1
. . . . . . . . . . . .

rk : p ⇐ bdk

Such rules decide whetherp is true in the current state. LetRp =
{r1, ..., rk}, H be the heads of all such rules, andAH be the set
of atoms that do not appear in the heads of any rules and are not
“does” atoms, then:

Γnorm = 〈〈〉〉�(
∧

p∈H
(CP(Rp) ∧ LF(Rp)) ∧

∧
p∈AH

¬t(p))

whereCP(Rp) = t(p) ↔ (
∨

j∈[1..k](
∧
t(bdj))), andLF(Rp) is

a loop formula (see below). Notice thatbdi (a set of literals) is the
body of rulei. Specially, ifbdi is empty, then

∧
t(bdj) is ⊤, and

if p does not appear in the head of any rules and is not a “does”
atom, then it must be false, which is captured by¬t(p).
FormulaCP(Rp) applies Clark’s completion [2] to a given set
of GDL-II rulesRp. An example from the card trading game is:
CP(Rwin) = win ↔ goal(b, 100). But in general the semantics
of the completion of a (stratified) logic program is too weak to
fully characterise the standard model in the presence of redundant
rules likep ⇐ p. The standard model remains the same when such
“superfluous” clauses are added, but Clark’s completion is weak-
ened by them [7]. This issue is solved by a propositional formula
denoted asLF(Rp) (which is also called a loop formula); we refer
to [7] for a detailed algorithm to compute such a formula.



• Γleg. In all non-terminal states, each agent must make one legal
move. This means that iflegal(i,m) is true in the current state,
then agenti can enforcedone(i,m) to be true in a next state and
on the other hand ifdone(i,m) is true in the current state, then
legal(i,m), must be true in the previous state, i.e.,legal(i,m)pre
is true in the current state. This is captured by the following:
Γleg = 〈〈〉〉�(¬terminal →∧

i∈Ag,m∈Aci
(legal(i,m) ↔ 〈〈i〉〉 fdone(i,m))∧∧

i∈Ag,m∈Aci
(done(i,m) → legal(i,m)pre)).

• Γact. For all non-initial states, each agent should have done ex-
actly one action in the previous state, and agents always know
what they did:
Γact = 〈〈〉〉�(¬pinit →

∧
i∈Ag XORm∈Acidone(i ,m))∧

〈〈〉〉�(
∧

i∈Ag,m∈Aci
(done(i,m) ↔ Kidone(i,m))).

whereXOR is theexclusive ORoperator.
• Γmem. For non-terminal states, we use the atomtpre(p) to record

the truth-value oft(p) for it to be used in the next states. LetAt
beAtGDL-II but without “does” atoms, then:
Γmem = 〈〈〉〉�(¬terminal →∧

p∈At
((t(p) ↔ 〈〈〉〉 ftpre(p)) ∧ (¬t(p) ↔ 〈〈〉〉 f¬tpre(p))).

• Γnext. Suppose these are all the rules with headnext(f):

r1 : next(f) ⇐ bd1
. . . . . . . . . . . .

rk : next(f) ⇐ bdk

There are two alternatives for translating these rules into ATEL
formulas. From the perspective of acurrent state, the truth off in
the next state is determined by the truth of the propositions in the
bodies of rulesr1, ..., rk in the current state and the actions that
are chosen by the agents for the transition. From the perspective
of a next state, the truth off in this state is determined by the
previous truth of the propositions in the bodies of rulesr1, ..., rk
and the actions that have just been done. We adopt the second
perspective. LetHN be the heads of all such rules, and define
Γnext = 〈〈〉〉�(¬pinit →∧

next(f)∈HN
(true(f) ↔ (

∨
j∈[1..k](

∧
tpre(bdj))))).

• Γsees. The rules with “sees” are similar to those with “next”,
but instead of defining what will be true they specify what will be
seen by the agents next. Suppose these are all the rules with head
sees(i, x):

r1 : sees(i, x) ⇐ bd1
. . . . . . . . . . . .

rk : sees(i, x) ⇐ bdk.

Again we adopt the perspective of a next state. LetHS be the
heads of all “sees” rules, and define
Γsees = 〈〈〉〉�(¬pinit →∧

sees(i,x)∈HS((Kisees(i, x) ↔ (
∨

j∈[1..k](
∧
tpre(bdj))))∧

(Ki¬sees(i, x) ↔ ¬(
∨

j∈[1..k](
∧
tpre(bdj)))))).

Note that the size of the ATEL theory is polynomial in the size
of a variable-free GDL-II description. Our translation is correct in
the sense that the resulting ATEL formula is satisfiable in the ATEL
model derived from the same game description.

Proposition 1 (Correctness). For a GDL-II game descriptionG,

AG |= GATEL.

To show thatTsyn is an adequate syntactic characterisation of
GDL-II descriptions, we define an equivalence relation onAAETSs.

Definition 10 (AAETS Isomorphism). Let A =
〈Q, s0, T,Ag , {Aci | i ∈ Ag}, ρ, τ, {∼i| i ∈ Ag},Φ, V 〉 and
A′ = 〈Q′, s′0, T

′,Ag , {Ac′i | i ∈ Ag}, ρ′, τ ′, {∼′

i| i ∈ Ag},Φ, V ′〉
be twoAAETSs, then they are isomorphic (denoted asA ∼= A′) iff
there is a functionf such that:

• f maps every state inQ to a state inQ′ and it is a bijection; in
particular f(s0) = s′0, and for alls ∈ T , f(s) ∈ T ′;

• f maps every acton inAci to an action inAc′i and it is a bijection;
• for every states and actionm, s ∈ ρ(m) iff f(s) ∈ ρ′(f(m));
• for every states, s′ and joint actionM , s = τ(M, s′) iff f(s) =
τ ′(f(M), f(s′));

• for every states and agenti, s ∼i s
′ iff f(s) ∼′

i f(s
′);

• for every propositionp and states ∈ Q, p ∈ V (s) iff p ∈
V ′(f(s)).

The existence of an isomorphism between twoAAETSs implies
that they satisfy the same formulas.

Proposition 2. Given twoAAETSs A andA′ along with an arbi-
trary ATEL formulaϕ,

A ∼= A′ implies(A |= ϕ iff A′ |= ϕ).

Proposition 3. LetG be a game description andϕ an ATEL formula,
then the following holds

|= GATEL → ϕ iff AG |= ϕ.

Proof. (Sketch) The direction from left to right follows from Propo-
sition 1. The direction from right to left is proved by showing that
for any AAETS A with synchronicity and perfect recall such that
A |= GATEL, there is an isomorphism betweenA andAG; the result
then follows from Proposition 2. See [11] for details.

This is a main result in this paper. It shows thatGATEL completely
characterisesG in ATEL in the sense that it entails any formula that
is satisfied in theAAETS derived fromG directly, and vice versa.

4 Model Checking Strategic and Epistemic
Properties

Our main result in this paper allows us to consider the following
model checking problem:given a game represented by GDL-II, and a
property represented by an ATEL formula, decide whether the prop-
erty is true for the game description. If the agents have incomplete in-
formation and perfect recall, the model checking problem for ATEL
in traditional semantics is undecidable (see [3]). Hence, had we used
the standard semantics, the above problem would also be undecid-
able since we can reduce the problem by deriving an ATEL model
from a GDL-II description and then perform the ATEL model check-
ing. However, with our new ATEL semantics—overAAETS models
with finitecomputations—the model checking problem becomes de-
cidable as we can give an algorithm for it.

We only sketch the algorithm below for the case of〈〈X〉〉 fϕ due
to space limitations. This algorithm terminates because only a finite
number of strategies and computations needs to be checked.

mcheck(A, s, <<X>> O Phi) {
found := True;
foreach sigma(X) do {
foreach c in comp(sigma(X), A, s) do {
if |c|=1 or mcheck(A,c[1],Phi) == False
then found := False; }

if found == True then return True; }
return False; }



How complex is the problem? We know for sure that the problem
is at least 2EXPTIME-hard due to [9], which shows that the outcome
problem of the Private-PEEK game is complete in double exponen-
tial time (2EXPTIME-complete). The Private-PEEK game can be
rather straightforwardly specified in GDL-II and the outcome prob-
lem can be equivalently expressed as deciding whether〈〈1〉〉♦wini

is true in the initial state of the game. Finding an upper bound for the
complexity, however, is left for future work.

In [12], ATL is used to characterise some interesting playability
properties for the original GDL games. With ATEL being the lan-
guage to express properties for GDL-II games, we can now not only
express the above properties but also a new class of properties that
are not expressible in ATL. We discuss two kinds of such properties.

Coherence Knowledge Properties. There are some propertiesϕ
that involve pure knowledge, i.e., where no temporal modalities oc-
cur inϕ. For suchϕ, we call〈〈〉〉�ϕ acoherence knowledge property.
We know thatA, s0 |= 〈〈〉〉�ϕ iff ϕ is true in all reachable states from
s0.

In GDL-II, agents may not always know their legal moves. In order
to check this, we can express the property that “if a move is legal for
an agent then the agent knows it” as a formula:

〈〈〉〉�
∧

i∈Ag,m∈Aci
(legal(i,m) → Kilegal(i,m)).

The following is not necessarily true for a GDL-II game: if the
game has terminated, then this is common knowledge,

〈〈〉〉�(terminal → CAg terminal).

If we want to ensure that a GDL-II descriptionG has this prop-
erty, then we can either verifyAG, s0 |= 〈〈〉〉�(terminal →
CAg terminal), or prove

|= GATEL → 〈〈〉〉�(terminal → CAg terminal).

Properties with knowledge and strategic power. This class of
properties mixes knowledge and coalition modalities, allowing us to
talk about the agent’s knowledge and power simultaneously.

The following property says that ifi has a winning strategy, then
he knows it:

〈〈i〉〉♦wini → Ki〈〈i〉〉♦wini.

Suppose that in the current stateA, s |= Ki〈〈i〉〉♦wini. This does
not give a winning strategy for agenti explicitly. But agenti can
check the following on any state that he cannot distinguish froms

(i.e.,s ∼i s
′):

A, s′ |= 〈〈i〉〉 f(done(i,m) ∧ 〈〈i〉〉♦wini).

If the above holds, then agenti can safely choosedoes(i,m), and
it still guarantees him a winning position in the next state.

We conclude with the following strategic property, which says that
if i knowsϕ, then he can ensure that agentj knowsψ next:

Kiϕ→ 〈〈i〉〉 fKjψ.

5 Related Work and Conclusion

There are just a few papers on reasoning about games in GDL and
its extension GDL-II. In [12], a method based on ATL is given to
verify properties of general games, but this is restricted to original
GDL and hence to games where players can maintain complete state
information. Our paper extends this approach to GDL-II and uses a

version of ATEL for this purpose. Our characterisation formula is
inspired by the one given in [12], but we make these improvements:
(1) we can deal with imperfect-information games; (2) we show that
the models that satisfy this formula are isomorphic toAG, rather
than a weaker relation as alternating bisimulation given in [12]; (3)
we do not require an extra “sink” state as there is no need to make
computations infinite with our new semantics.

In [14], it is shown how GDL-II can be formally translated into the
Situation Calculus as a first-order axiomatisation that allows players
to reason about their percepts and what they know about the legality
and effects of moves based on the game description. In [10], the epis-
temic structure and expressiveness of GDL-II is analysed in terms of
epistemic modal logic. It was shown that the operational semantics
of GDL-II entails that the situation at any stage of a game can be
characterised by a multi-agent epistemic (i.e., S5-) model and GDL-
II is sufficiently expressive to model any situation that can be de-
scribed by a (finite) multi-agent epistemic model. Our work extends
the static epistemic model into a dynamicAAETS, and therefore a
lager class of strategic and epistemic properties can be addressed by
our approach.
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