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Abstract. General game players can drastically reduce the cost of
search if they are able to solve smaller subproblems individually and
synthesise the resulting solutions. To provide a systematic solution
to this (de-)composition problem, we start off with generalising the
standard decomposition problem in planning by allowing the com-
position of individual solutions to be further constrained by domain-
dependent requirements of the global planning problem. We solve
this generalised problem based on a systematic analysis of compo-
sition operators for transition systems, and we demonstrate how this
solution can be further generalised to general game playing.

1 INTRODUCTION

General Game Playing (GGP) aims at creating Al systems that can un-
derstand the rules of new games and then learn to play them without
human intervention. Fostered by the annual AAAI GGP competition
since 2005, the field has emerged in direct response to specialised
systems that use highly specific algorithms to play only a single type
of game. In contrast, a GGP system must autonomously adapt to new
and possibly radically different problems. Research into GGP can thus
be viewed as part of a broader research agenda to build systems that
exhibit forms of general intelligence [8].

A general game-playing system cannot be endowed with game-
specific algorithms in advance. A key objective of research into GGP,
therefore, is to develop methods for automatically analysing the rules
of a game in order to find structures that help players to construct an
efficient search strategy at runtime [8]. To emphasise this, the AAAI
competition has recently focused on games with an internal structure
that, if recognised, can be utilised to decompose, and hence drasti-
cally reduce, the search space [11].

Despite the recognition of the importance of decomposition in
GGP, competition systems have so far had very limited success in
dealing with such games [11]. Unfortunately, this is also reflected in
the extremely sparse nature of the research coverage of this topic.
Firstly, based on the encoding of games as propositional automata,
Cox et al. [5] provide theoretical conditions under which a global
game can be decomposed into a conjunction of multiple sub-games.
Secondly, Giinther ef al. [12] provide an approach that is based on the
construction of a dependency graph of action and fluent predicates
for single player games, such that disconnected sub-graphs identify
independent sub-games. Finally, Zhao et al. [18] extend the depen-
dency graph approach to the multi-player case.

The apparent lack of effective application to GGP systems despite
these advances is the result of one key failure, namely, the lack of
a strong account of how local sub-game solutions can be combined
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into global game solutions. We refer to this as the composition prob-
lem. While previously identified [12, 18], nevertheless, current ap-
proaches have only been able to deal with it in an ad-hoc algorithmic
manner without providing any theoretical foundations on which to
understand the properties and behaviour of these algorithms.

The composition problem is particularly challenging in GGP due
to the separation of goal and termination conditions, making the sat-
isfaction of global goal conditions highly sensitive to the execution
order of sub-game actions. For example, satisfying the goal of one
sub-game before another may cause the premature termination of the
global game. In fact, it is worth noting that the separation of goal and
terminal conditions is one of the key features that distinguishes GGP
from AI planning and makes GGP a more general and difficult prob-
lem. We shall return to this relationship in the concluding Section 5,
where we discuss the potential application of our decomposition ap-
proach to the problem of factored planning [1].

In this paper we address the composition problem in GGP by de-
veloping a systematic approach based on model checking products
of Transition Systems (TSs). Our main contributions are:

e The reduction of the model checking problem of global TSs to the
model checking of their composed parts.

e The worst-case complexity analysis of standard model checking
algorithms when applied to decomposed problems, establishing
the theoretical advantages of our approach.

e An experimental evaluation with games from past GGP compe-
titions highlighting potential (orders of magnitude) performance
gains of the approach.

It is worth emphasising that the task of identifying and decomposing
games is not within the scope of this paper. Rather we are concerned
with the theoretical foundations of sub-game composition. Fortu-
nately, existing techniques for sub-game identification [12, 17, 18]
can be applied without jeopardising results about the soundness of
the transition systems themselves, and these form the basis for our
experimental results.

The remainder of this paper proceeds as follows. Section 2 pro-
vides the main theoretical contribution, whereby a set of TS compo-
sition operators are defined and the notion of a stability condition
is developed. Section 3 presents the complexity analysis for solv-
ing decomposition problems using common algorithms, highlighting
the advantage of the theory to common special cases. Section 4 pro-
vides an Answer Set Programming based implementation of the the-
ory showing its application to GGP for solving single-player games
and proving desirable game properties. Finally, in Section 5 we sum-
marise and discuss our results in the broader context of related fields
and outline possible directions for future research.



2 COMPOSITION OF TRANSITION SYSTEMS

Partial order reduction, a major breakthrough in the software ver-
ification community, allows efficient model checking of “next-free
LTL” formulas on asynchronous products of Transition Systems [2].
We draw inspiration from the verification community and share the
TS formalism, but our target application has different assumptions: in
verification, systems typically do not terminate or consider timesteps,
whereas in GGP, local games terminate and interactions between
server and agents constitute timesteps. We thus focus on another class
of specifications, called stability conditions. Our approach handles
specific time steps as well as sequential and synchronous products,
while partial order reduction allows for nested “until” operators.

First we recall the definition of TSs and the composition opera-
tors on them. Next we define stability conditions to formally express
queries on TSs. Finally, we show how these conditions can be decom-
posed, by translating model checking problems on products of TSs to
sets of model checking problems on the factors.

By way of motivation, and to more clearly illustrate the theory, we
consider the game of Incredible. This game has been used as the key
example in discussions of decomposition in GGP [12].

Example Incredible is a single-player game that combines three un-
derlying sub-games: the well-known blocks world (or blocks) con-
struction game, a maze game requiring the player to carry a piece
of gold from an initial position to a home position, and a wait game
consisting of a set of superfluous transitions. The player earns points
for solving the blocks world and maze sub-games and has to per-
form these task within 20 steps. Importantly, the game is terminated
immediately on the completion of the maze sub-game.

There are a number of interesting aspects of decomposition that
are highlighted by this game. In the first place, the wait sub-game
is redundant if decomposed correctly, but dramatically increases the
search space if this fact remains unrecognised. Secondly, while the
sub-games can be solved independently there are subtleties of ter-
mination that impose restrictions on how their solutions should be
combined. For example, the early termination condition of the maze
sub-game means that in order to maximise the final score a player
should make the last step of the maze only after the blocks sub-game
has been completed.

Composition Operators

We now formalise the precise style of Transition Systems (TSs) on
which our theory operates and introduce the composition operators
that can be used to combine these TSs. For further details on the pre-
cise notion used to describe TSs we refer to Baier and Katoen [2].

Definition 1 A Transition System (TS) is a tuple T = (3, —, P, \)
where: ¥ is a set of states; —C X X X is a transition relation; P is
a set of atomic propositions; and X : ¥ — 2F is a labelling function.

We are now ready to introduce our three composition operators—
synchronous, asynchronous, and sequential. The first, synchronous
case represents two systems proceeding in lockstep, for example an
array of coordinated traffic lights.

Definition 2 The synchronous composition of two 7Ss T1 and Tz is
anewTsTi || T2 = (Z1 x B2, —, P1 11 P2, \) with:?

o (s51,82) — (sh,8h) <= 51 —1 5] Asa —a sh

2 We use 11 to denote the disjoint union.
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Figure 1. Composed Transition System for Incredible

o A((s1,82)) = A1(s1) L Az(s2)

With asynchronous composition the lockstep restriction is re-
moved and the two systems progress completely independently. This
interleaving can model multi-threaded programs on a uniprocessor.

Definition 3 The asynchronous composition of two TSs T1 and T is
anew 1S Ti 0 To = (X1 X Yo, —, P1 I P, \) with:

o (s1,82) — (s1,82) <= s1 —1 8]
o (s51,82) — (51,85) <= S2 —2 S
o A((s1,82)) = A1(s1) IT Xa(s2)

The third form of synchronisation is sequential. Transitions in the
second system can only occur after the first system has reached a
terminal state. This case is useful for modelling phase changes.

Definition 4 The sequential composition of two TSs T1 and Tz is a
new 7S T1; T2 = (X1 X Xa, —, P1 11 Po, \) with:

o (s1,82) = (s1,82) <= s1 —1 8]
o (s1,82) = (s1,8) <= —3s’.s1 =1 8" Asa —ra sh
o A\((s1,82)) = Ai(s1) IT A2(s2)

It is easy to prove that these operators are all associative, so they
naturally generalise beyond the binary composition case. The syn-
chronous and asynchronous operators are also commutative mod-
ulo isomorphism so the ordering of multiple similar compositions
is unimportant. The sequential composition, however, is not commu-
tative since the construction order introduces an implicit dependence.

Example Using the defined composition operators we can now for-
mally express the Incredible 7S in terms of atomic T1Ss (Figure 1):
incredible = ((wait o blocks) o maze) || count The wait TS
corresponds to the sub-game containing the superfluous transitions,
blocks encodes the blocks world puzzle, and maze encodes the gold
delivery task. Additionally a count TS encodes the requirements of
the game’s step counter. This TS is combined synchronously to ensure
that all sub-games adhere to the same counter:

Stability Conditions

While TSs are a natural modelling analogue for many domains, the
application of these systems can vary wildly. Planning systems typ-
ically want to find a path to a labeled goal state. Verification tasks
are often the dual—the non-existence of a path with undesired ef-
fects. Game players seek a path to a labeled goal state that cannot be
blocked by an opposing agent.

A natural mechanism for generalising these different use cases is
to consult a domain-specific “stability condition”. This condition is
a (possibly infinite) sequence of formulas that constrains acceptable
trajectories through the corresponding TS. We now provide a precise
formalisation of these intuitive concepts.

Definition 5 A stability condition ® is a sequence of propositional

Sformulas: ® = (¢n)o<n<n with N € NU {oo}. It is conjunctive if

every formula is conjunctive. The length of ®, N, is also written |D|.



Before considering stability conditions in a TS (X, —, P, \), we
recall that a state s € X satisfies a propositional formula ¢ ranging
over P, written s |= ¢, if A(s) = ¢ where the satisfaction of ¢ by a
set of atomic propositions is defined as usual.

Definition 6 A state sg in a system T satisfies a stability condition
® = (¢n)o<n<n, written T,s = D, if there is a sequence of N
states So — $1 — S2..., suchthatV0 <n < N, T, sn E ¢n.

We may omit the TS or the initial state when it is obvious from the
context and simply write s = ® or 7 |= .

The GGP context helps to clarify the concept of stability conditions.
In particular, a stability condition to solve a game constrains the tra-
jectories through that game’s TS such that all intermediate states in
the trajectory are non-terminal while the final state is both terminal
and goal satisfying.

Example The termination condition of Incredible is satisfied when
the gold is dropped at the home destination or after a timeout of
twenty steps. The goal condition is to have constructed two specific
towers and retrieved the gold. Hence, the stability condition T is a
Sfinite sequence {yp, ..., @, 1) where ¢ = —(gold V timeout) and
1 = (gold V timeout) A (gold A towers)

We now establish properties of how the stability conditions of a
composed TS relate to the stability conditions of its components. This
is the crucial element if sub-game solutions are to be combined to
provide global game solutions.

Theorem 1 Let @ be a stability condition. There exists a set D(®D)
of conjunctive stability conditions, such that for any TS and state s,
s = @ ifand only if 3V € D(®) such that s = V.

If ® is of finite length, then we have the bound |D(®)| < K!®!,
where K is the maximum size of a disjunctive normal form in ®, and
forany ¥ € D(®), |[¥| = |D|.

Proof: Assume that ® = (¢n)o<n<n. For every n, construct the
Disjunctive Normal Form (DNF) of ¢n: ¢ = V/, <i, <K, Pniin
where ¢, ;, is a conjunctive formula, for all i,,. Let K = Zg, X
Zi, X ...ZLKk, X ... whereZy is the set {0, 1, ...,k —1}. For any
i = (i0,..,in,...) € K, we define ®(i) = (¢n,i, Jo<n<n. Let
D(®P) be defined as {P (i), € K}.

Let so be a state of a TS 7. Then so = @ iff (3so — s1 — ...
St.V0<n < N,sp |E dn)iff (3so = s1 = ... st.V0 < n <
N, Fin, $n = On,i,) iff (3t € Ks.t. so = ©(7)). O

Example Putting the formulas in our running example into DNF,
we obtain that incredible ': <<p7 e, ’(/)) iff incredible 'Z
<(]517 ceey gf)l, ¢2> Or incredible ': <q51, ey ¢1, ¢3>, where @, ’LL’
are as above and ¢1 = —gold A —timeout, ¢p2 = gold A towers,
and ¢3 = timeout A gold A towers. Note that we did not simplify 1
or prune ¢s3 for the sake of exposition.

‘We can now focus on solving the model checking problem for con-
junctive stability conditions. Unless mentioned otherwise, the stabil-
ity conditions in the rest of this section will always be assumed to be
conjunctive.

Theorem 2 Let ® be a stability condition over Py 11 Ps. There ex-
ists a pair of stability conditions, (®1,®2), such that for any syn-
chronous composition T1 || T2 = T, and for any state (s1,s2) of T,
we have that (s1, s2) = @ iff s1 |E ©1 and s2 = Pa.

If ® is of finite length, then |®1| = |P2| = |D|.

Proof: For all n, let ¢;,,, be the projection of ¢,, over the atoms in P;:
Dn = P10 A p2,n. We define D; = (pj.n)o<n<n, for j € {1,2}.
(s1,82) = @ iff 3 <s?,58> — <s%,s%> — ... st (s1,82) =
(s9,89) and VO < n < N, (s}, s8) |= ¢n) iff 3s) — s — ...
stY0<n <N, st Eprnand3sy = s3 = ... st.V0<n<
N, 53 ): (pg,n) iff (81 ': d1 and so ': @2). Od

Example Applying Theorem 2 to the {(¢1,...,¢1,P2) condition
in Incredible gives that incredible = (P1,...,¢1,¢2) iff wait o
blocks Omaze ): <ﬁgold, ...,7gold,gold A towers> and count ':

<—\timeout, ..., timeout, T>

Theorem 3 Let @ be a stability condition over Py 11 P> then there
exists a set A(®) of pairs of stability conditions, such that for any
asynchronous composition T1 o To = T, and for any state (s1, s2)
of T, we have that T, (s1, s2) = @ iff 3(P1, ®2) € A(DP) such that
7’1, S1 'Z ¢‘1 andTQ, S2 'Z CI)Q.

If @ is of positive finite length, then we have the bound |A(®)| <
212171 and for any (®1, ®2) € A(®), |®1] + |P2| = |®| + 1.

Proof: For all n, let ;,,, be the projection of ¢,, over P;. Let ZY ~*
be the set of sequences of integers in {1,2} of length N — 1. Let
(un)o<n<n—1 be such a sequence. For j € {1,2}, we construct the
sequence (77 )o<n<n Where 75 = 3", [us];, that is, 7] is the
number of occurrences of j in the sequence v up to index n.

Foru € ZY "' and j € {1, 2}, and for all n, we define ¢; » (u) =
/\z:Tg:n ;- and ®;(u) = (¢j,n(u))0Sn<T{V. Finally, we define
A(®) = {(®1(u), ®2(w)) ,u € Z3' '}

The rest of the proof is similar to that of Theorem 1 and 2. a

Theorem 4 Let O be a stability condition over Py 11 P then there
exists a set S(P) of pairs of stability conditions, such that for any
sequential composition T1; T2 = T, and for any state (s1,s2) of
T, we have that T, (s1,s2) E @ iff 3(®1,P2) € S(P) such that
Ti,s1 |E 1 and Tz, s2 = Po.

If ® is of finite length, then we have the bound |S(®)| < |®| + 1,
and if 0 < |®| then for any (@1, P2) € S(®), |D1|+|D2| = |P|+1.

Proof: For all n, let ¢; ,, be the projection of ¢,, over P;.

Let ¢1,,(7) be defined for 0 < n < ¢ < N as ¢1,,(4) = ¢1,» and
for0<n=1i< Nasoin(i) = /\i<m<N ©1,m.

We define ¢, (i) for0 < ¢ < Nand 0 < n < N — i, with the
constraint n < N.

If 0 = n then g2, (7)) = /\ogmgi Y2,m else ¢2.n (i) = P2,n+ti.

For0 <4 < Nandn < N, we define ®1(i) = (¢p1,n(%))o<n<i
and ®2(i) = (¢2,n(?))o<n<n—;. Finally, we define S(®) =
{(@1(3), P2(3)) ,0 < i < N}

The rest of the proof is similar to that of Theorem 1 and 2. m|

Theorems 1, 2, 3, and 4 provide a policy for solving composed
problems based on solutions for the local problems.

3 SOLVING FINITE COMPOSED MODEL
CHECKING PROBLEMS

In this section we consider the application of two simple model
checking algorithms to checking composed finite TSs, and show how
decomposition changes the worst-case complexity of these algo-
rithms. Both algorithms are based on the simple observation that a
state s satisfies a stability condition (¢n )o<n<n, with 0 < N, if and
only if s satisfies ¢o and a successor of s satisfies (¢n)1<n<n.

3 We assume co — co = 0 and co — co + 1 = 1 for notational convenience.



Dynamic Programming The most popular CTL model checking
algorithm is a form of Dynamic Programming (DP) which can be
naturally adapted to our setting when the condition to be checked
is finite [2]. Algorithm 1 shows pseudo-code for the DP approach
to model checking stability conditions. Given a stability condition
(¢n)o<n<n, DP computes for each depth k and each state s whether
s = (¢n)k<n<n. This allows us in particular to answer whether a
particular query state s satisfies the full condition. If b is the branch-
ing factor of the system, that is the maximum number of outgoing
transitions in any given state, then the worst-case complexity of this
algorithm is O(Nb|X)).

Algorithm 1: Dynamic Programming model checking.

dp (S0, (Pn)o<n<n)

Let M and M’ be two maps from states to booleans
foreach s € ¥ do M(s) < true
fork =N —1downto k = 0do

foreach s € ¥ do M’(s) + M(s) ; M(s) < false

foreach s € X do

if s = ¢ then
foreach s — s’ do
if M'(s") then M(s) < true

return M (so)

Depth-First Search A Depth-First Search (DFS) traversal of the
state space looking for a path that satisfies the stability condition is
a simple alternative to DP. The basic idea here is to check at each
level of a DFS that the state satisfies the corresponding formula as
described in Algorithm 2. For a DFS, if the formula has length /N and
the system has branching factor b, then we need b™ ~' time in the
worst case.

Algorithm 2: Depth-First Search model checking.
dfs (8, (¢n)k<n<n)
if £ = N then return rrue
else if s = ¢, then
foreach s — s’ do
if dfs (s, (Pn)k+1<n<n) then return true
return false

Worst-case Analysis Given a TS and a stability condition, we can

use DP or DFS to directly solve the associated model checking prob-
lem. Alternatively, we can try to decompose the system into local
ones and use the theorems of the previous section to obtain an equiv-
alent set of local model checking problems. Assuming a conjunctive
stability condition, Table 1 compares the worst-case complexity of
both approaches for the three types of composition, in terms of the
branching factor and the number of states of the system, and the size
of the decomposition of the condition, |.A| and |S].

Table 1. Worst-case complexity of the model checking of a stability
condition of length N + 1 for composed TSs. We assume that for
J € {1,2}, T; has 0; = |¥,] states and a branching factor of b;.

Dynamic programming Depth-First Search

Original Composed Original Composed
H N(a’1 +0’2) (blbg)N b{v -‘rbév
o Noioz |A|N(o1 + 02) (b1 +b2)N AN + b))
; ISIN(o1 +02)  max{bi, b2} [S]|(b) +b3)

The worst-case benefits of decomposition are clear for syn-
chronous systems for both algorithms. For asynchronous and sequen-
tial systems using the DP algorithm, the 2" and N + 1 bounds on |.A|
and |S| from Theorem 3 and 4, already provides better complexity
when the state space is large and the condition is relatively short.
This analysis, however, does not show any improvement for DFS in
those types of systems.

In the asynchronous case, the computation of the bound on the
size of A made no restrictions on the number of distinct for-
mulas that could appear in ®. A more refined approach looks
at the blocks of consecutive formulas that constitute ®. If & =
(Yo, Yo,y Ym—1,...,%m—1), where formula ; appears
N; consecutive times, then we obtain the tighter bound |A| <
Nm-1Tlo<icm_1(Ni + 1). In particular, in planning as well as in
GGPwe havem = 2, No = N—1,and N1 = 1,leadingto |A| < N.

In the sequential composition case, the reason for the unfavourable
worst-case complexity is that we may have to search for very asym-
metric subplan lengths. In practice, though, the problem may have the
following favourable property: “if there exists a solution, then there
exists a solution making at least No moves in both subproblems”. In
that case the resulting complexity is 2(b) V0 4 b2 o),

4 ANSWER SET PROGRAMMING

We now consider a practical implementation of our theory as a
general Answer Set Program (ASP). ASPs are compact logical de-
scriptions used for efficiently generating models. They have a logic
programming-like syntax, but can have more exotic elements in the
head of their horn clauses. An empty head indicates a constraint:
the body of the rule should not hold. If the head has one or more
atoms inside curly braces then it is a “generator”—it indicates that
the solver can make arbitrarily many of the atoms true, provided the
body holds. If numbers appear to the left or right of the curly braces,
then these are additional cardinality constraints that require a min-
imum and maximum of these head atoms to hold, respectively. For
further details we refer to Gebser et al. [10].

The principle TSs from planning and GGP are routinely represented
in ASP [15, 17]. The target domain must be temporalised to allow for
a state space exploration. This essentially just adds a time parameter
to time-dependent operators, particularly for state-update.

For the following we assume that ® is a stability condition on a
composed Transition System 7 with a given initial state s. We pro-
vide a generic ASP module based on the theory described in Section 2
to decide whether 7, s = ®. We further assume an ASP representa-
tion of ® where every formula is in DNF (predicate phi), and an ASP
representation of the atomic systems composing 7 .

Our module searches for a global plan satisfying ® by solving
local model checking problems as per Theorems 1-4. It does so by
non-deterministically generating instances of predicates require and
pickT. They respectively represent conditions on and transitions to
be taken in the local systems at given timepoints. If the ASP solver
finds a model, it outputs a sequence of global transitions (predicate
plan) satisfying ®. If the program is unsatisfiable then 7T, s [~ ®.

Finally, note that our encoding is compatible with infinite stability
conditions which may be checked with an incremental ASP solver [9].

The module The generic module is given in Fig. 2. It should be
noted that the module described here is not GGP specific and refer-
ences to “games” are purely a notational convenience. This module



applies equally to planning and other TS encoded problems. The vari-
ables T, U, and v stand for timepoints, ¢ and c denote games. Variable
A represents a transition label and 1 represents a formula label.

1{ pickD(I,T) : phi(I,T) } :—- time(T).
{ pickA(G,T) }1 :- act(G,T),asyn(G).
1{ pickS(G,T) : act(G,T) }1 :- sequ(G).
:— pickS(G,T), legals(C,T,_), child(G,C,_).
1{ pickT(G,T,A):legals(G,T,A) }1 :— act(G,T),leaf(G).

map (G,0,0,0) :- child(G,_,_).

map (G, T+1,U+1,V+1l) :-map (G, T,U,V),act (G, T),sync(G) .

map (G, T+1,U0+1,V) :
map (G, T,U,V

map (G, T+1,U,V+1) :
map (G, T,U,V

map (G, T+1,U+1,V) :
map (G, T,U,V

map (G, T+1,U,V+1) :
map (G, T,U,V

ct (G, T),sequ(G),pickS(G,I),T<I.
ct (G, T),sequ(G),pickS(G,I), I<T.
ct (G, T),asyn(G),pickA(G,T).
(

),a
),a
),a
;,act G,T),asyn(G),not pickA(G,T).

gmap (G, T,T) :— root(G),time(T).
gmap (C,T,V) :- gmap(G,T,U),child(G,C,_),map(G,U,V,_).
gmap (C,T,V) :- gmap(G,T,U),child(G,_,C),map(G,U,_,V).

act (G,0..N-1)
require (I, G,U)
plan(A,T) :- pickT(G,U,A),

:— gmap (G, T,N) .
:— pickD(I,T),gmap(G,T,U).
gmap (G, T, U),

Figure 2. The decomposition framework expressed as ASP code.

The predicates root, child, and leaf describe the structure of the
composed game, represented as a binary tree. Each internal node is
labelled sync, asyn, or sequ. The legals predicate indicates legal
transitions in a given leaf subgame at a given local time. The act
predicate indicates the set of timepoints for which the subgame is
active, that is, the timepoints at which a transition may be applied.

Line 1 to 5 are non-deterministic choice points. pickD corresponds
to the existential quantifier in Theorem 1 where, for every timepoint,
at least one minterm has to be satisfied (note: a minterm is a con-
junction of literals). An upper bound is not needed since multiple in-
dividual minterms may legitimately hold simultaneously. picka cor-
responds to Theorem 3, such that for every active timepoint T in an
asynchronous product G, we may act in the first subgame picka (G, T)
or in the second subgame not picka(G,T). picks corresponds to
Theorem 4, for every sequential product, we choose a local timepoint
to switch from the first to the second subgame. pickT corresponds to
Definition 6, we select exactly one transition for every leaf game and
every non-final (active) timepoint.

The map predicate records the time correspondence between an
internal node and its children (Line 7 to 16). map (G, T, U, V) means
that the timepoint T in game ¢ maps to the timepoint v in the first
subgame of ¢ and to v in its second subgame.

For each game, the gmap predicate maps between global and local
times (Line 18 to 20). gmap (G, T, U) means that the global time T
corresponds to the local time u in game . This predicate can be based
on map and the tree structure of the composition. For the root game,
the global and local time are identical. If a game is not root, then the
correspondence can be derived via the correspondence of its parent.

require (I,G,U) means that the (projection of) minterm I needs
to hold at local time u in game G (Line 23).

Finally, p1an (A, T) outputs the global solution found by the ASP
solver, if any. Action a needs to happen at global time T (Line 24).

Example The domain-specific model checking code for Incredi-
ble is presented in Fig. 3. The factorization of the global game
in terms of local ones is given by the composition tree (Line 1
to 4). Recall that the stability condition for Incredible is of the form
D = (¢1,...,P1,P2 V ¢3). Lines 6-11 specify ® where ends (1) is

not gmap (G, T+1,0U) .
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such that |®| =t. Lines 12—18 ensure that the local conditions set by
the Fig. 2 module are met.

root (incredible) . sync (incredible) .

child (incredible, a0, count) . asyn(a0). leaf (count) .
child(a0,al,maze) . asyn(al) . leaf (maze) .
child(al,wait,blocks). leaf (wait) . leaf(blocks).
1 { ends(0..max_time) } 1.

time (0..T) :— ends(T).

phi(1,T) :- time(T), not ends(T).

phi(2,T) :- ends(T).

phi(3,T) :- ends(T).

:— require(l,maze, T), gold(T) .

:— require(l,count,T), timeout (T) .

:— require(2,maze, T), not gold(T).

:— require(2,blocks,T), not tower(T).

:— require(3,maze, T), not gold(T).

:— require(3,blocks,T), not tower(T).

:— require(3,count,T), not timeout(T).

Figure 3. ASP code for model checking Incredible.

Experimental results To test the practicality of our ASP encod-
ing we considered a number of past GGP competition games that
have been designed to be decomposed by suitably sophisticated play-
ers. Existing techniques [12, 17] were used to detect and decompose
each game and we therefore do not present this code here. The ex-
periments were run on a laptop with an Intel Core i5 2.6GHz pro-
cessor with 8GB RAM using version 4.2.1% of an off-the-shelf ASP
solver [10]. No specific solver configuration options were enabled.

Firstly, we considered the problem of finding winning solu-
tions for single-player decomposable games: Incredible (the exam-
ple throughout this paper) and Multiplehunter (from the 2013 AAAI
GGP competition). Multiplehunter is a pawn capturing board game
played over nine boards where only one board matters. Due to its
own time constraints the original game is in fact unsatisfiable. Con-
sequently, we created two satisfiable variants: one that captures 13
pawns within the required time limit and the other that increases the
time limit to capture all 14 pawns.

Secondly, we considered the multi-player context where model
checking techniques have traditionally been used to prove game
properties such as playability [16]. A playable game is one where
every player can make at least one legal move in every non-terminal
game state. This can be encoded using an alternative stability con-
dition. In particular, assuming a state is playable iff each player
has a legal move in that state, then construct a stability condition
(p,..., e, 1), such that ¢ encodes that the state is not terminal
and playable, and v encodes that the state iS not terminal and
not playable. This stability condition guarantees unsatisfiability of
a playable game and any solution will represent a counter-example.
Here we considered the game of Dualrainbow, a two-player graph
colouring game where each player races to colour their own graph.’.

The results of our experiments are presented in Table 2. They show
timing results for the games solved with and without decomposi-
tion. To serve as a benchmark we also considered hand optimised
versions: for Incredible the superfluous contemplate moves were re-
moved and the blocks world and maze were serialised, for Multiple-
hunter the eight superfluous boards were removed, and for Dualrain-
bow one of the players was similarly removed.

The results are dramatic—queries on decomposed systems can
be orders of magnitude faster than their original versions, even ap-

4nttp://potassco.sourceforge.net/
5http://gamemaster.stanford.edu



proaching benchmark performance. Note that ASP solvers ground do-
mains first, then solve the propositional translation. Our composed
times indicate that this grounding process is the new bottleneck. The
benchmarks have an advantage here since they have irrelevant in-
formation physically removed from their descriptions. However, it
is worth observing that as problems become harder the grounding
time typically becomes insignificant in comparison to solving. Con-
sequently, the comparison of solving times can be viewed as a more
accurate indicator of performance, further highlighting the benefits
of our decomposition technique.

Finally, it should be noted that as we are concerned only with solv-
ing composed subgames, Table 2 does not present the decomposition
times. However, for completeness we can report that the decomposi-
tion of Incredible and Dualrainbow took 1.9 and 3.2 seconds respec-
tively, while the Multiplehunter variants took 38 seconds. Despite
these times being based on a naive and unoptimised implementation,
the combined times show that there is still a distinct advantage to
decomposing games so that they can be solved more efficiently.

Table 2. Results of ASP experiments, expressed in seconds. The number in
parentheses is the solving component.

Domain Original ~ Composed Benchmark
Incredible 6.11(5.87) 1.94 (1.60) 0.63 (0.46)
M.hunter 13 49.17 (43.66)  1.32(0.38) 0.05 (0.01)
M.hunter 14 >1hr 1.96 (1.03) 0.33 (0.28)
M.hunter (unsat) 2201 (2196)  1.31(0.37) 0.19 (0.14)
Dualrainbow 19.04 (18.46)  3.52(2.78)  10.50 (10.19)

5 CONCLUSION

In this paper we have provided a theoretically sound and compre-
hensive basis to reduce the model checking of products of TSs to the
model checking of the factors. As well as providing a strong foun-
dational theory and complexity results, we further showed how this
theory can be applied in a practical GGP setting. In particular we pro-
vided concrete experimental results showing that an ASP encoding of
decomposable games using our approach can provide for dramatic
performance gains for solving and proving properties of games.

Our theoretical results provide avenues for future research both
within the GGP domain and further afield. Within the GGP domain,
while we have shown how to solve decomposable single-player
games, the path is less clear for multi-player games. Indeed, how to
generalize the stability conditions and their decomposition to express
common multi-player solution concepts remains an open problem.

Beyond the GGP domain, an important direction for future research
would be to consider the applications of our approach to the field of
Al planning, and in particular, factored planning [1]. Factored plan-
ning involves the decomposition of a domain into multiple factors
(sub-domains) as a means of reducing the global search space of
plans. However, there are key differences between factored planning
and our composed TS based approach.

Most obviously the general setting of Al planning has no corre-
spondence to multi-player games where each player is competing to
maximise its own goal. Furthermore, planning does not consider the
separation of goals from termination conditions, which has been a
key challenge for GGP decomposition to ensure that games are not
prematurely terminated due to sub-optimal interleaving of sub-game
actions. Consequently, when considered with respect to these two
differences GGP problems represent a more general class with plan-
ning being one particular specialisation.

On the other hand there is also a sense in which factored planning
is the more general approach. In particular, we require that fluents
and actions be associated with only one sub-game, while factored
planning typically allows for overlapping sub-domains where both
fluents and actions can be shared [1, 3, 14].

These differences raise a number of avenues for future research.
Firstly, it would be useful to consider the extent to which our ap-
proach can be directly applied to factored planning problems with
non-overlapping sub-domains. Secondly, further work is required
to determine whether factored problems, or a sub-class such as
stratified decompositions [4], with overlapping sub-domains can
be mapped into equivalent problems with non-overlapping sub-
domains. It would then be necessary to establish the theoretical and
practical consequences of such a transformation.

Finally, there is further scope to explore the broader relationship
between the theory of composed transition systems developed here
to other areas of AI research that similarly employ some form of
decomposition. For example, the decomposition of a Markov Deci-
sion Process (MDP) into hierarchies of smaller MDPs is an important
attribute of hierarchical reinforcement learning [6, 13].
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