
Strategy Learning for Reasoning Agents

Hendrik Skubch and Michael Thielscher

Department of Computer Science
Technische Universität Dresden

Germany
hendrik.skubch@inf.tu-dresden.de, mit@inf.tu-dresden.de

Abstract. We present a method for knowledge-based agents to learn
strategies. Using techniques of inductive logic programming, strategies
are learned in two steps: A given example set is first generalized into an
overly general theory, which then gets refined. We show how a learning
agent can exploit background knowledge of its actions and environment
in order to restrict the hypothesis space, which enables the learning of
complex logic program clauses. This is a first step toward the long term
goal of adaptive, reasoning agents capable of changing their behavior
when appropriate.

1 Introduction

Endowing agents with the cognitive capability of reasoning is a major research
topic of Artificial Intelligence [1]. The high-level control of a reasoning agent com-
prises two parts: a background theory which contains knowledge about actions
and their effects, and a goal-oriented strategy according to which the agent rea-
sons and acts. Existing programming methods, such as GOLOG [2] or FLUX [3],
require the programmer to provide both the background theory for the under-
lying domain and strategies in view of specific goals. Learning techniques have
recently been applied to let agents find out the effects of their actions from ex-
periments [4, 5], but the learning of goal directed strategies on top of this has
not yet been considered.

In this paper, we present a method to learn strategy programs from examples
using Inductive Logic Programming (ILP). As the underlying action formalism
we use FLUX, a logic programming method for the design of intelligent agents,
based on the action formalism of the fluent calculus [6]. One of the key advantages
of combining reasoning about actions with learning is that agents can use their
background knowledge to considerably restrict the hypothesis space. Thus it can
become possible to learn rather complex clauses including negated conjunctions.
Strategies are learned in two steps: First, the given examples are generalized
based on the notion of Least General Generalization of [7]. The resulting, overly
general theory is then refined to obtain a strategy program that is sound and
complete wrt. the given example set.

In the next section, we briefly recapitulate the basics and notations of the
agent programming method FLUX. In Section 3, we define the general hypothesis

space for FLUX strategies and show how the background theory of a reasoning
agent can be used to restrict the search space. In Section 4, we present a method
for constructing overly general strategies from examples, and in Section 5 we
then explain how these theories are corrected by specialization. In Section 6, we
present and discuss experimental results. We conclude in Section 7.

2 FLUX

The fluent calculus [6] is an axiomatic approach for representing and reasoning
about actions and change. The basic notion is that of a state and its atomic
components, the so-called fluents. The fundamental predicate holds(F,Z) is used
to express that fluent F is true in state Z. Actions are specified in the fluent
calculus by precondition and effect axioms.

Based on logic programming, FLUX is a method for the design of agents
that reason logically about their actions. The background theory BK of a FLUX
agent consists of a kernel program encoding the foundational axioms of the fluent
calculus, along with domain-dependent knowledge in form of domain constraints,
precondition axioms, and state update axioms. Here, we focus on a simplified
variant of FLUX in which agents have complete state knowledge, called Special
FLUX in the remainder of this paper.

On top of the background theory BK, the behavior of FLUX agents are given
by logic programs that describe acting strategies. The agents use a state as their
mental model of the world, on the basis of which they decide which action to
take. As they move along, the agents constantly update their world model to
reflect changes they have effected and sensor information they have acquired.

As an example, Figure 1 depicts a FLUX control program for a simple eleva-
tor originally formulated in GOLOG [2]. The states in this domain are composed
of the three fluents cur_floor(N), on(M) and opened meaning that the eleva-
tor is at floor N, the button for floor M has been activated, and the door is open,
respectively. The elevator can perform the actions up(N), down(N) of going up
(respectively, down) to floor N; turnoff(N) of turning off the button at floor N;
and open, close of opening and closing the door.

3 Hypothesis Space

The hypothesis space is the space of all programs the Inductive Inference Ma-
chine (IIM) might consider as a solution to a learning problem. A strategy for a
Special FLUX agent is a logic program selecting an action to be executed in each
state. Thereby the strategy relates states to actions. We use a single, recursive
predicate to express strategies:

loop(Z):- strategy(Z,A) ->

(A \= stop, execute(A,Z,Z2), loop(Z2); true).

Here, the predicate strategy/2 selects the action to be executed. Given that
the program does not change for any Special FLUX problem, this is the only
predicate to be learned.

main(Z) :- serve_a_floor(Z,Z1) -> main(Z1) ; park(Z).

serve_a_floor(Z,Z1) :- holds(cur_floor(N),Z), holds(on(M),Z),

\+ (holds(on(M1),Z), closer(M1,M,N)),

serve(M,Z,Z1).

serve(M,Z,Z4) :- go_floor(M,Z,Z1), execute(open,Z1,Z2),

execute(turn_off(M),Z2,Z3), execute(close,Z3,Z4).

go_floor(M,Z,Z1) :- poss(up(M),Z) -> execute(up(M),Z,Z1) ;

poss(down(M),Z) -> execute(down(M),Z,Z1) ;

Z1=Z.

park(Z) :- execute(down(1),Z,Z1), execute(open,Z1,_).

closer(M1,M2,N) :- abs(M1-N)<abs(M2-N).

Fig. 1. A simple FLUX strategy for elevator control.

The elements of hypothesized programs are called strategy-clauses. A strategy-
clause is a non-recursive Prolog clause having an instance of strategy(Z,A) as
head and a body containing atoms and negated conjunctions of atoms. These
atoms are defined in BK. With this definition, we assume that the relation be-
tween states and actions is functional, i.e., the action to be executed can be
uniquely identified by the current state. Moreover, the absence of state update
axioms and recursive definitions of strategy-clauses prohibits learned programs
from looking ahead and plan.

The set of all examples E provided for the IIM contains pairs (z, a) of a
state z and an action a, meaning the agent has to execute action a in state z.
In this way, every example is positive. However, given the functional nature of
the mapping from states to actions, an example (z, a) implicitly entails negative
examples for every action other than a. This treatment of positive-only examples
has already been applied in the system FILP [8].

In order to restrict the hypothesis space by expressing additional knowledge
about specific domains, we use sorts, modes and occurrence restrictions, de-
scribed subsequently. Moreover, we restrict the hypotheses space by a maximum
newsize [9] to achieve finiteness.

Sorts Since the fluent calculus uses a sort signature to categorize terms, it is
quite natural to use this information in a corresponding learning algorithm,
too. We developed constraint handling rules to restrict variables to be of
a certain sort. A relation �sort spans a tree in the set of sorts having the
universal sort ANY as root. This relation enables us to compute a least
general sort roughly following [10].

Modes have been used with success in a variety of ILP systems [11]. They
are used to reflect the computational behavior of predicates. Arguments of

predicates can be either of input or output mode. Hypothesized clauses are
required to obey mode declarations. Put simply, a variable occurrence in an
input argument has to be preceded by an occurrence of the same variable in
an output argument.

Occurence restrictions are used to rule out certain combinations of literals
in the body of hypothesized clauses. These restrictions can be drawn from
domain specific knowledge. For instance, we can express that the arguments
of a predicate encoding a binary, irreflexive relation should be different.

4 Generalization

Examples, understood as pairs (z, a) of a state z and an action a, can trivially be
transformed into strategy-clauses. An example ([f1, . . . , fn], ae) corresponds to
the clause strategy(Z, ae)← holds(f1, Z), . . . , holds(fn, Z). This transformation
can be understood as adding background knowledge to unit clauses, in order
to compute a relative least generalization. The clauses serve as the input of a
generalization procedure based on a sorted version of Plotkin’s Least General
Generalization [7], where a generalized term lggs(t1 : s1, t2 : s2) is of the smallest
sort s wrt. �sort such that s �sort s1 ∧ s �sort s2.

Since the lggs of a set of clauses grows exponentially with the size of the set,
we define a generalization operator gs on top of the lggs producing generaliza-
tions of constant size. Literals in bodies of strategy-clauses directly or indirectly
express properties of the state. This state is represented by a list. Our general-
ization operator is motivated by the idea that the quality of a generalization of
two lists representing states depends on the order of the fluents inside the lists.
This order, however, has no semantical meaning1 and thus ordering can be seen
as a task of the generalization algorithm.

Definition 1. A generalization of two strategy-clauses using sorts:
Let c1 = p1 ← l1 ∧ . . . ∧ ln and c2 = p2 ← k1 ∧ . . . ∧ km be two strategy-clauses
without negations such that n ≤ m then a generalization is given by:

gs(c1, c2)
def
= lggs(p1, p2)←

∧
W

where W satisfies

– W ⊆ {lggs(li, kj)|1 ≤ i ≤ n ∧ 1 ≤ j ≤ m ∧ lggs(li, kj) is defined}
– (∀li, 1 ≤ i ≤ n) lggs(li, x) ∈W ∧ lggs(li, y) ∈W ⊃ x = y
– (∀ki, 1 ≤ i ≤ m) lggs(x, ki) ∈W ∧ lggs(y, ki) ∈W ⊃ x = y

The choice of W is determined by a heuristic function g(W,a), with a being the
action occurring in the head of the clause gs(c1, c2). W is chosen to maximize g.

g(W,a)
def
=

∑
l∈W

(∑
k∈W\{l}

1
2
σlink(l, k)

)
+ σlink(l, a) +

1
1000

σcomp(l)

1 State composition is commutative and associative in the fluent calculus.

with

σlink(x, y)
def
= Number of variables not of sort STATE shared between x and y

σcomp(x)
def
= Number of subexpressions of x−Number of variables in x

In this way, we maximize the number of variable occurrences in multiple liter-
als, while constraining the generalized clause to the size of the smallest clause
involved. Variables of sort STATE are ignored, since the variable Z, denoting
the current state, occurs in the head of every strategy-clause and in every literal
of the form holds(F,Z).

Because maximizing the number of links does not necessarily lead to a unique
solution, we incorporate other syntactic information into the heuristic function as
well. Intuitively, from two literals which yield the same amount of links, we want
to choose the more specific one. Function σcomp allows comparison of literals
which are not comparable using θ-subsumption, but does not contradict it. To
search for the optimal W efficiently, we use A* [12]. Note that this approach is
not limited to strategy-clauses, but can be applied to arbitrary horn clauses. In
particular, it is designed to deal with clauses build from extensive background
knowledge which usually contain many redundant literals.

The Generalization Loop

Initially, for every function symbol a into sort ACTION the corresponding set of
examples {(z, a(x))|(z, a(x)) ∈ E} is generalized. If a heuristic quality threshold
finds the result too general, the corresponding set of examples is split into disjoint
subsets. Splitting is done by either instantiating a variable in the corresponding
action or by using a fluent as classificator. The first possibility yields a subset
for every possible substitution of the chosen variable. The second one yields
two sets of examples, one with all examples in whose state the fluent holds and
one with all examples in whose state the fluent does not hold. Thus, splitting
is a heuristic way of specializing the initial clauses, before the actual top-down
search takes place. Generalization, evaluation and splitting are repeated until the
quality threshold is reached or no further splitting is possible. The conditions
under which splitting is possible also ensure that this process terminates.

5 Specialization

The specialization process searches for a correct program consisting of clauses
which are each subsumed by one of the computed generalizations. To be able
to introduce negations inside bodies of clauses while still maintaining top-down
behavior of the search, we need a way to group multiple literals in a meaningful
way. We therefore introduce computation chains.

Definition 2. A computation chain is a conjunction l1, . . . , ln of at least one
positive literal, such that for every li with i < n at least one output argument of
li also occurs as input argument in a literal lj with j > i.

The notion of computation chains, together with sort constraints, allows to add
multiple literals to a clause at once in a meaningful manner. This reduces the
effects of the plateau problem and enables the use of negated conjunctions as
an expressive part of our language. The employed refinement operator ρ : H 7→
P(H) computes specializations by either

– unifying two variables of the same sort
– substituting a variable with a function of distinct new variables into the right

sort
– adding a computation chain to the body of the clause
– adding the negation of a computation chain to the body of the clause

Note that after addition of a computation chain, the refined clause is still subject
to mode restrictions. Therefore, if a variable occurs in an input argument in the
chain and not in an output argument, it is bound to a variable occurring in the
body of the clause. To maintain the top-down manner of the search, it is neither
allowed to instantiate a variable occurring only negated nor to unify it with any
other variable, when refining clauses containing negations.

The Specialization Loop

Each of the initial schemes becomes the root node of a search tree. The search
trees are searched in parallel in a greedy manner, similar to the covering algo-
rithm, which was first used in the AQ system [9].

In each search iteration, the clause with the highest heuristic evaluation in
each search tree is refined and replaced by its specializations. A subsequent goal
test identifies correct clauses. If a correct clause is found, it is asserted and the
corresponding examples are removed.

A post-processing step is applied to both asserted clauses and the final pro-
gram to remove redundant literals and clauses. A top level loop over general-
ization and specialization ensures completeness, if a finite hypotheses space is
specified.

6 Experimental Results

We first applied the learning algorithm to the elevator control program, originally
written in GOLOG [2]. Examples were generated by the strategy depicted in
Figure 1. We provided predicates encoding the binary relations unequal and less-
than, and the ternary relation closer in BK. To restrict the hypothesis space,
we only used knowledge automatically derivable from a domain axiomatization.

If at least one example indicated that the elevator sometimes has to leave
the first floor, a program was learned which is semantically equivalent to the one
which generated the examples, otherwise learned programs always terminated
once they reached the first floor. This result was stable throughout all tests.

As a more complex scenario, we chose the mailbot example, described in [13].
The main difference to the elevator scenario lies in the action related to move-
ment. In the elevator scenario, this action has a destination as argument, while

Example Set Solved (%) Completeness (%)

Large Search Space

Optimal 23 0

Good 23 0

Naive 47 25

Medium Search Space

Optimal 24 2

Good 31 2

Naive 61 44

Small Search Space

Optimal 18 0

Good 64 37

Naive 92 84

Fig. 2. Results in the Mailbot Scenario

the mailbot can only choose to go up or down, without initially knowing a rela-
tion between destinations and directions. Moreover, the mailbot’s movement is
motivated by two state properties, namely packages to be picked up and packages
to be delivered.

Figure 2 shows the results of nine different experiments in the mailbot sce-
nario. We conducted tests using different example sets and hypothesis spaces.
“Optimal” denotes example sets generated by an optimal strategy which mini-
mizes the number of actions to solve the problem. “Good” denotes example sets
generated by a suboptimal, but sophisticated program, described in [13], while
“naive” refers to example sets generated by a very simple strategy.

Each test was repeated using different hypothesis spaces. “Large Search
Space” refers to a hypothesis space restricted only by domain dependent knowl-
edge, i.e., sorts, modes and occurrence restrictions are direct consequences of the
scenario. We provided the same predicates as we did in the elevator scenario.
In the “medium search space”, we removed the inequality relation and prohib-
ited instantiations of bags and rooms in the top-down search. The “small search
space” is very artificial, as we used additional restrictions not corresponding to
any domain property.

Each row in Figure 2 corresponds to the evaluation of hundred learned pro-
grams. The learned programs were tested against 200 instances of the problem.
A program solved the problem instance if it delivered all initial packages and ter-
minated, otherwise the test was considered a failure. “Solved” refers to the ratio
of solved problem instances by the learned programs. “Completeness” indicates
the ratio of learned programs solving all test cases confronted with.

7 Summary

In this paper, we have shown a way to apply ILP techniques to learn simple Spe-
cial FLUX strategies. The learning algorithm makes strong use of background

knowledge to learn programs complete and consistent with the given examples.
The approach benefits from the combination of top-down and bottom-up tech-
niques, as the top-down search does not start from unit clauses, but from a set
of rather specific clauses, situated nearer potential solutions in the subsumption
lattice. The techniques presented here do not depend on specific FLUX char-
acteristics and it should be easy to adopt it to other action formalisms such as
GOLOG.

This work is a first attempt to learn strategies for FLUX agents. It is strongly
affected by local optima due to the rather wide search trees, i.e., the size of ρ(C).
This size leads to comparatively large programs incomplete wrt. the correspond-
ing problems and is the main reason for the bad results in the mailbot scenario
(see Figure 2). Reducing the influence of local optima will therefore be one of
the main aspects of continuative work.

References

1. McCarthy, J.: Programs with Common Sense. In: Proc. of the Symposium on the
Mechanization of Thought Processes. Volume 1., London (1958) 77–84

2. Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.: GOLOG: A logic
programming language for dynamic domains. Journal of Logic Programming 31
(1997) 59–83

3. Thielscher, M.: FLUX: A logic programming method for reasoning agents. Theory
and Practice of Logic Programming (2005) Available at: www.fluxagent.org.

4. Hume, D., Sammut, C.: Applying inductive logic programming in reactive envi-
ronments. In Muggleton, S., ed.: Inductive Logic Programming. Academic Press
(1992) 539–549

5. Moyle, S., Muggleton, S.: Learning programs in the event calculus. In: ILP ’97:
Proc. of the 7th Int. Workshop on Inductive Logic Programming, Springer-Verlag
(1997) 205–212

6. Thielscher, M.: From situation calculus to fluent calculus: State update axioms
as a solution to the inferential frame problem. Artificial Intelligence 111 (1999)
277–299

7. Plotkin, G.: Automatic Methods of Inductive Inference. PhD thesis, Edinburgh
University (1971)

8. Bergadano, F., Gunetti, D.: An interactive system to learn functional logic pro-
grams. In Bajcsy, R., ed.: Proc. of the 13th Int. Joint Conference on Artificial
Intelligence. (1993) 1044–1045

9. Nienhuys-Cheng, S.H., de Wolf, R.: Foundations of Inductive Logic Programming.
Springer (1997)

10. Jr., C.D.P., Frisch, A.M.: Generalization and learnability: A study of constrained
atoms (1992)

11. Lavrač, N., Džeroski, S.: Inductive Logic Programming - Techniques and Applica-
tion. Ellis Horwood (1996)

12. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics
4 (1968) 100–107

13. Thielscher, M.: Reasoning Robots The Art and Science of Programming Robotic
Agents. Kluwer Academic Publishers (2005)

