INTEGRATING REASONING ABOUT ACTIONS AND BAYESIAN
NETWORKS

Yves Martint and Michael Thielschér
1 SAP AG, SAP Research CEC Dresden, Chemnitzer Strasse 48, OEE2R) Germany, yves.martin@sap.com
2 Artifical Intelligence Institute, Technische Unive&iDresden, 01062 Dresden, Germany, mit@inf.tu-dresden.de

Keywords: Knowledge Representation and Reasoning

Abstract: According to the paradigm of Cognitive Robotics (Reiter, 2001a), inteltiggtonomous agents interacting
with an incompletely known world need to reason logically about the effé¢teed actions and sensor infor-
mation they acquire over time. In realistic settings, both the effect of actindsensor data are subject to
errors. A cognitive agent can cope with these uncertainties by maintgngbilistic beliefs about the state
of world. In this paper, we show a formalism to represent probabilistiefseabout states of the world and
how these beliefs change in the course of actions. Additionally, we pecgrogxtension to a logic program-
ming framework, the agent programming language FLUX, to actually this probabilistic knowledge for
agents. Using associated Bayesian networks allows the agents to mairitajleaaad compact probabilistic
knowledge state throughout the execution of an action sequence.

1 Introduction state to the next can then be defined just like stan-
dard Bayesian update. While this approach is similar
One of the most challenging and promising goals to (Bacchus etal., 1999), our notion of state probabil-
of Artificial Intelligence research is the design of au- ity allows for evaluating the likelihood of state prop-
tonomous agents, including robots, that solve com- erties directly in the updated state.
plex tasks in a dynamic world. Achieving a high de- To actually infer new knowledge and reason about
gree of autonomy in partially known environments the execution of actions, we use logic programming
requires the high-level cognitive capability of repre- in the agent programming language FLUX, which
sentation and reasoning. In realistic settings, both is based on our representation formalism, the fluent
the effectors and the sensors of agents will be sub-calculus. In FLUX, atomic properties of states can
ject to uncertainty. The agent can only hold a degree likewise be evaluated directly wrt. a so-called FLUX
of belief about the actual state of the world. Subse- knowledge state. This (incomplete) state represents
guent measurements may then help to decrease thehe set of all states considered possible by the agent.
degree of uncertainty. In this paper, we introduce a From a computational perspective, this is of course
representational formalism —based on tluent cal- the only practical way as it avoids literally computing
culus (Thielscher, 1999)— and a computational ap- with every possible state (Thielscher, 2005a). In this
proach to represent and compute the inferences re-paper, we extend FLUX so as to represent the afore-
quired to update an agent’s beliefs about the world mentioned notion of state probability without losing
in accordance with the effects of the various actions it the merits of having to cope with only one knowl-
performs. edge state rather than all possible states. To achieve
In order to represent the probability of possible this, we associate a Bayesian network with such a
states of an agent’s environment in fluent calculus, in knowledge state. The relationships of the nodes in
this paper we generalize the axiomatization of knowl- such a network denote probabilistic (causal) links be-
edge of an agent (Thielscher, 2000) and its beliefs (Jin tween fluents introduced through the execution of ac-
and Thielscher, 2004), respectively, by introducing a tions. Using the contextual variable elimination al-
new function PState This function assigns a prob- gorithm (Poole and Zhang, 2003), we can infer and
ability to each state. This is accompanied by a tran- update the probabilities of properties after the execu-
sition probability, which denotes the likelihood of a tion of (non-)sensing actions. The associated network
new state relative to a specific action performed in the is updated, too, in order to maintain a compact repre-
preceding state. The probabilistic update from one sentation which allows for efficient inferences. In this

way, we only have to encode the (relatively few, in

a modular domain) local dependencies between prop-

erties of the state in the Bayesian network instead of

following result of how the fundamental frame prob-
lem is solved in the basic fluent calculus (Thielscher,
2005b):

representing the global state space. This contrasts ouiProposition 1 Let =z —z +2z', then the foundational
method to approaches in (Reiter, 2001a; Grosskreutzaxioms of the fluent calculus entail

and Lakemeyer, 2000), where each possible state is
represented by a different sequence of actions, and
searching through the resulting state space can lead

to intolerable computation times.

The rest of the paper is organized as follows: In
the next section, we briefly review the fluent calculus
and extend it with the notions of state probability and
probabilistic state update axioms. In Section 3, we
give a brief introduction to FLUX and then show how
to associate a Bayesian network to a FLUX knowl-
edge state and to efficiently infer the updates. A sum-
mary and discussion on related and future work con-
cludes the paper in Section 4.

2 Representing Probabilistic
Knowledge in the Fluent Calculus

2.1 The basic fluent calculus

Fluent calculus uses atomic properties of states, calle
fluents, to represent the internal structure of the do-
main. Fluents are represented as terms of sQrenT
and, semantically speaking, a state is the collection
of all fluents that hold in a situation. Formally, every
term of sortFLUENT is also of sortsTaTe, and if z;, 2,

are states, then soigoz. A fluent is defined to hold

in a state just in case it is contained in it:

Holds(f : FLUENT,z: STATE) &' (37)z= f o7

The foundational axioms of the fluent calculus (see,
e.g., (Thielscher, 2005b)) ensure that, essentially,

states are interpreted as non-nested sets of fluents

The term Statés: siT) denotes the state at a situ-
ation, where a situation is the sequence of actions
that has been performed by the agent.
cial constantg denotes the initial situation and the
constructor Do(a,s) then maps an actiora and a
situation s to the situation after the performance
of the action. Statds: siT) allows to define the
expression Holdg(f,s : siT) as an abbreviation for
Holds(f,Statés)). The basic fluent calculus thus al-
lows to represent incomplete knowledge of a situation
by means of standard first-order logic.

The use of states in the fluent calculus allow the
fundamental frame problem to be solved on the basis
of an axiomatic characterization of two functions,
and +, for removal and addition of sub-states. Due to
lack of space, we omit the details and just mention the

The spe-

Holds(f,zp) = Holds(f,z")v

[Holds(f,z) A —Holds(f,z7)]
So-called state update axioms define the effects of
doing an actiona in situation s by specifying the
difference between the state of the successor situa-
tion Do(a,s) and the state of the preceding situa-
tion s and allow to infer from an incomplete speci-
fication what follows of a resulting situation.

2.2 State probability

In (Thielscher, 2000), the basic fluent calculus
has been extended by an explicit representation of
both the knowledge of an agent and the effect of
knowledge-producing actions. A different extension
has been developed in (Jin and Thielscher, 2004) for
representing beliefs of an agent. In this paper, we
generalize these two approaches by a representation
of the probability (any real-valued number from the
interval [0,1]) of a state in a situation. For this we

dintroduce the function

PState SIT x STATE+— [0,1]

A foundational domain constraint stipulates that the
state probabilities add up to 1 in every situatfon:

z PStatés,z) = 1
4

As an example, consider a domain with the only flu-
ents Fragile(x) and Broken(x) where x € {VaseBox}
and fluentsFragile(x) and Broker(x) shall denote the
property of an object to be fragile and broken, respec-
tively, along with the following axiomatization of the
probability distribution at the initial situatiosy:
(3x) Holds(Broker(x),z) O PStat¢Sy,z) =0
Holdg(Fragile(Vasg, z) A —(3x) Holds(Broker(x),z) D
PStatéS),z) = 0.4
@
Based on the representation of a probability distribu-
tion for a situations, we can define the likelihood of

afluent f to hold in s as follows?

IThroughout the paper, free variables are assumed to be
universally quantified.

2For the sake of simplicity, we assume discrete probabil-
ity distributions, which allows to sum over possible states;
otherwise, an integral must be used.

3For the possibility of an infinite number of possible
states the summations can be defined using a second-order
formula. For the definition, a fluent calculus axiomatization
with axiom schemata is used in order to have only countable
many infinite states.

o From our foundational axiom it follows additionally
{5

Bel(f,s) = PStatés, 2) that within each condition the probabilitigs sum to
{zHolds(f,2)} 1. As an example, consider the following effect spec-
For example, axioms (1) imply ification for a noisy variant of &Drop action:
Bel(Broken(Vasg,S) = 0 and Bel(Fragile(Vase,S) = :
0.8.4 The exact degree of belief ir_ﬁragilg(Bo_x) is [T;Id:s(zlz_ralggz(irg&g J?Broker(x) 5
unknown, but it follows from the axiomatization that P(z,Drop(x),Z) = 0.9ACaséds,Z) = 1)
0.4 < Bel(Fragile(Box), S) < 0.6.5 Macro Bel(gp,s) can N (Z =22 P(Z,Drop(x),Z) = 0.1ACasds,Z) = 2)]
be straightforwardly extended to the definition of the A
likelihood of more complex fluent formulag to [~Holds(Fragile(x),z) >
hold in a situations. (Z’ =ZD P(Z/7 Drop(x),z’) = l.O/\CBSQS,Z’) = 3)]

o . Put in words, ifx is fragile, then it will break with

2.3 Probabilistic state update axioms a probability of 0.9, otherwise the state, or more pre-
cisely the probability distribution, remains the same.

The solution to the frame problem can be extended Applied to the axiomatization of the initial probabil-

to the fluent calculus with probabilities if the Markov ity distribution specified in (1), the probabilistic state

assumption holds, that is, the (possibly noisy) effects update axioms entails, witB; = Do(Drop(Vase, %) ,°

of an action are !nerendent of previous actions. The —Holds(Fragile(Vasg,Z) A

general probabilistic state update axiom is as follows: [Holds(Broker(x),Z) = x = Vasé

> PStatéS;,7) = 0.36

Since all other states containirngroker(Vasg have
probability 0, and because there are two states satis-

state z results in stateZ. The state transition prob- fying the condition of the implication above, it fol-

o i X lows that Bel(Broker(Vasg,S;) = 0.72. Due to space
ability does not need to be specified for every smgle_ limitations, we omit the other probabilities.

state, instead a succinct, factorized representation is he eff f ibl . : . :
sufficient. In order to facilitate a mapping to FLUX The e ec_t of (possi y_nqlsy) sensing actions s
' represented in the probabilistic fluent calculus as stan-

later on, we introduce the functioBasés,Z) in the . . .
specification of probabilistic effects. Each different dard Bayesian update (the details have to be omitted).

“case” of an actionA(X) executed in situatiors will
be assigned a different number. A general effect spec-

PStatéDo(a,s),Z) = PStatés,2)-P(za2)

whereP(z,a,7) is the probability that executing in

ification for a noisy actiomA(x) is of the form, 3 Inferring Probabilistic Knowledge
(31 in FLUX
(®P1(2D> (Z=z-7Z +Z >
P(z,a,Z) = pyACas€s,Z) =1)A... A Our logical specification presented above exhibits
(Z=z2-7 +z D nice properties, like e.g., the factorized representa-
o P(za,Z) = pcACasds,Z) =k)) tion. We now describe our computational approach,

G i) (Pa() > where we keep these a_dvanta_ges and are able to in-
' fer the result of executing action sequences always

where @j(z) is a state formula inz with free vari- using only a single and compact probabilistic knowl-

ables amongz, X,y ; and ps,...,px are probability edge state.

values. We require that the conditions(z) are ex-

haustive and mutually exclusive for each actia(x) . 3.1 The basic fluent calculus executor

4To see why, note that with the additional fluent -
Fragile(Box) there are four states with probability greater The flient calculus eacutor (FLUX) is an agent pro

zero and exactly two of them satisfy the condition of the gramming language which is formally grounded in

second implication in (1). Our approach would also allow the theory of the fluent calculus and has been for-
for the direct specification oBel(Fragile(Vasg,S) = 0.8 mulated as Constraint Logic Program (for details see
instead of the second implication in (1). Together with the (Thielscher, 2005a)). The incomplete knowledge that

first implication in (1) this specification would imply the an agent has of the state of its environment, is encoded
same conclusions regarding the belief of fluénagile . -

5This can be seen from the fact that there is a state To verify the resulting probability values, the reader
with probability 0.4 in whichFragile(Box) does not hold, may calculate the updated probability for each of the four
and also a state with probability 0.4 in whidfragile(Box) possible states in situatiolyy in which no instance of
does hold. Broker(x) holds.

in FLUX by open lists (i.e., lists with a variable tail) of CPTs. For the moment, we make the following re-
of fluents. These lists are accompanied by constraintsstrictions for the encoding in FLUX, which we would
for negated or disjunctive state knowledge, as well as like to lift in the future?

for variable range restrictions.

Just like in the fluent calculus, the effects of ac-
tions are encoded as state update axioms. For this
purpose, the auxiliary predicatgdat e(Z1, P, N, Z2)
has been defined in FLUX, whose semantics is given 2. We assume only finitely many possible states. For

1. We are only using ground fluents in the networks.
To arrive at ground fluents from a given domain
description, we ground out all variabl@s.

by the fluent calculus update equatian= (21 —N)+ continuous values we would employ discretiza-
P. On this basis, the agent programmer can eas- tion.
ily implement the individual, domain-dependent up- Gjyen the above restrictions and a situation, we

date axioms by clauses which define the predicate -5, give a mapping from the full joint probability
state_update(Zl, A 22, S), where the last argumeBt gistribution over possible states in the fluent calculus
denotes the returned sensing value. This parametekg 5 FLUX probabilistic state: Given a situatian the
can be empty for non-sensing actions. _ function m(z) : STATE — [0,1] with (Vz)(PStatés,z) =
The foundational predicates for knowledge in r)) defines an full joint probability over all possi-

FLUX have been carefully designed in such a way pje statesz in s. The probability is defined over
that every condition can be immediately evaluated in {he |iterals contained in the possible state(z) —

the current state while allowing for efficient constraint p(, o . a1,) with I; = f; if Holds(fi,z) and I = - f;

solving without the need to represent every possible it _oidgf,,z). By the product rule, the function
state in FLUX. Instead, one knowledge state suffices ;; can also be written as:m(z) = P(l1]l2 A ... A ln)

(Thielscher, 2005a). .P(illisrA...Alp)...-P(ln). From a given function

. . m(z) we can induce a FLUX probabilistic state by let-
3.2 Adding probability to FLUX ting 2
Existing FLUX constraints are not sufficient to de- U(M2) =[f1: P, fn: Pnlzl]

fine arbitrary probabilistic dependencies among flu- where everyp;, = ¥ (zHolds .2} T(2) , the conditional
ents. In order to encode both the probability of state probabilities P(I1[lo A ... Aln),...,P(lillis1 A... Aln),. ..
properties to h0|d' as in Section 2.2 and_ prqbabilistic are represented by the network associatedltpand
state updates as in Section 2.3, probabilistic (causal)the marginal probability of literalP(l;) = P(pi) if I;
relations between fluents must be contained in the s true and otherwiseP(lj) = 1—P(p;) . The literals
encoding of the knowledge of an agent. To achieve in n(z) are ordered in an alphabetic order before the
this while retaining the computational advantages of mapping to avoid cycles in the network.

knowledge states in FLUX, we associate a Bayesian To answer queries to a Bayesian network, we use
network, which has possibly disconnected subgraphs,a variant of the well-known variable elimination (VE)

to such a state and define a FLUX probabilistic state algorithm, the contextual VE algorithm (Poole and
as: Zhang, 2003). This algorithm works with so-called
Definition 1 A FLUX probabilistic statepz is a list confactors which can be seen as branches of a deci-
)] sion tree. Due to lack of space, we have to omit the
[f= Py, fo - palL] details here.
of pairwise different fluentsn > 0), each with its

corresponding probability, along with a Bayesian net- 3.3 Probabilistic state update in FLUX
work associated tal. This network represent condi-

tional probabilities between the fluents. O As already noted in (Boutillier et al., 1999), a
Bayesian networks are an efficient way to represent Bayesian net representation is equivalent in expres-
(conditional) independence between variables (Pearl,sive power to a general stationary transition matrix
1988). Since we only have to encode the (relatively — . S

few, in a modular domain) local dependencies be- 'For the sake of easier exposition in this paper, we as-
tween fluents in a FLUX probabilistic state, we can SUMe complete information about the probabilities of the
avoid the need for an explicit representation of the possible states. We can handle incompletely specified prob-

- abilistic state knowledge using intervals.
global state space. To denote the conditional proba- 8In the fluent calculus axiomatization, we use an appro-

bility _tables (CPTS) iﬁ our networl_<, we aCt_U?"y US€ priate domain closure axiom and restrict the number of ob-
decision trees in our implementation. Decision trees jects to finitely many.

can often avoid the local exponential representation °Itis also possible to give a mappirg * .

model. We use so-called two-stage Bayesian net
works (2TBN) for the representation of our actions in
FLUX, where there are pre-action variables and cor-

P(FV) P(BY)
0.8 (BV) 0.0

responding post-action variables. Directed arcs be- FV

tween those types of variables indicate probabilistic I\
dependencies. Every 2TBN has a natural interpreta- 109 1:0.0 C

. . . . 2:0.1 2:0.0 13
tion as a stationary Markov chain, where the condi- 3:0.0 3'1.0 2

tional distributions in the network are state-transition
probabilities and the marginal distributions are initial
state distributions. Furthermore, if a network repre- FV’
senting an action contains a case node to distinguish
the individual conditional outcomes of an action as
defined in Section 2.3, it suffices to have a 2TBN
without any arcs between the post-action variables
(Boutillier et al., 1999).

State updates for non-senstfigctions in FLUX
require updates of the 2TBN. The probabilistic effect
specifications in the fluent calculus (see Section 2.3)
contain all necessary information to construct in a
general way an equivalent 2TBN representation:

10 gy BV
NN
1.0 0.01.0 0.0

Figure 1: The nodes FV, BV and C stand, respectively, for
Fragile(Vase , Broker(Vasg and Case. The primed nodes
are the post-action variables.

obtain the reduced network, we have to compute the
conditional probabilities between the fluents in the
new state. This can be achieved using our imple-
mented contextual variable elimination algorithm and
appropriate fluent nodes of the new state as evidence
1. The probabilities of all the cases have to be in- variables. The computation is possible as long as cy-
ferred and represented in a case node in the net-cles are avoided in the construction of the new, re-
work. These probabilities depend only on the con- duced network. The resulting network contains only
ditions @; and can easily be represented by a de- fluents of the new state. Furthermore, we can infer all
cision tree. The value is given by the state transi- marginal probabilities for the nodes in the new net-
tion probabilitiesP(z,a,Z) . work. As the reduced network and the updated belief

2. The probability of every post-action variable now Of the fluents represent the same information about
only depend on the case and (possibly) on whether the new state, we can now dispose of the old, initial
its corresponding pre-action variable was true or Network. The resulting FLUX probabilistic state in-
false. Once the case is known, this deterministic cluding the updated network now determines a func-

effect can also be represented by a decision tree. tion PStatéDo(a,s),z) which corresponds exactly to
the result of applying the general probabilistic state

As an example, recall the noisy variant of the ,,qate axiom of the fluent calculus as defined in Sec-
Drop(x) action defined in Section 2.3, which, if in- ion 2.3, As we use the contextual VE algorithm on
stantiated by{x/Vasg_in situation S, gives rise o 5 nework with possibly disconnected subgraphs, our
the net depicted in Figure 1. The initial probabili- 5 orithm can have exponential time and space com-
ties for the fluentsBroker(Vasg and Fragile(Vasg are hjeyity in the size of the network in the worst case.
given as in the example initial situatio® . Forthis gre “the size of the network is defined as the num-
example situation, the induced initial FLUX prob- - per of gecision trees. In practice, as we always reduce
abilistic state does not have to contain any initial e network after each action and each of our agent's
Bayesian network as an independence between the,q(iong only affect few fluents in our application do-

fluents is assumed. In general, there may be anetworkyains, our algorithm can compute the necessary in-
with initial conditional probabilities between the flu- forances efficiently.

ents. We can now answer the example query from Sec-

Since we do forward reasoning for probabilistic o 2 3in FLUX (here presented in standard Prolog
projection and for planning, the dependencies of the notation)

fluents in the old state (pre-action) can be ignored af-

ter the execution of an action. Only the causal rela- ?- state_update(Z0, drop(vase), Z1,[]).

tions among the fluents in the new state (post-action) gg: : ZI :2 ﬁ 8; Hgg;'ﬂ?\s;g;ﬂi ;500'728

need to be kept. In this way, the associated network '

is kept small for the sake of efficient inferencing. To The computed answer shows the expected likelihood

10sensing actions do not change the network structure, 11For the sake of simplicity in this paper, we show only
they only update the likelihood of fluents according to stan- the inferences for the objeafase here and assume a degree
dard Baysian update. of belief for Fragile(Box) of 0.5.

P(FV’)

0.08 EFV’ probabilities between them. The computed condi-

FV’ }/\1 tional probabilities are again represented in FLUX

0.0 0.783 by confactors. Only the result of these computations

Figure 2: NodeFragile(Vasg has causal influence on flu- is integrated into the new FLUX probabilistic state
ent Broker(Vasg . (M (2)) .

The state update of actios, was correctly com-
puted in FLUX and together with the induction hy-
of the fluents and associates the new, reduced networkpothesis this implies the claim. []
depicted in Figure 2 to stat®d and disposes the net-
work in Figure 1. This answer represents the same
function PStatéS;,z) as in the fluent calculus with
S) = Do(Drop(Vase, S) -

Suppose, for example, that now the action
Drop(Vasg were executed a second time, leading to
the situationS, = Do(Drop(VaseDo(Drop(Vass,S))) ,
then we would use the network in Figure 2 to infer
the updated probabilities fostatdS,) . In this way,
the network can be reduced after any further applica-
tion of this action, so that we always obtain a network
containing no more than two nodes.

4 Conclusion

We have presented a formalism and a logic pro-
gramming approach for agents to represent and rea-
son with probabilistic knowledge. Our computational
approach combines knowledge states with Bayesian
networks and allows to do all inferences with a sin-
gle such state rather than an explicit encoding of the
entire space of all possible states. For each projected
action execution, we only have to update the degree of
belief for the fluents involved in this action and those
fluents connected to the former within the same sub-

As a consequence of the mappings described in Sec_graph of the network. As we have a small Bayesian

tions 3.2 and 3.3, we have the following correctness network, this can be computed efhm_ently. Addition-
result. ally, we update the network to keep it small. We can

also express, and reason with, incompletely specified
Proposition 2 For an arbitrary situation s, let state probabilities.
(V7)(PStatgs,z) = m(z)) and the induced FLUX Other logic programming approaches for agent
probabilistic state bet(my(z)). Let [as,....dn] be a nogramming, e.g., (Reiter, 2001b; Shanahan and

sequence of ground actions where for every actignwe
have a corresponding 2TBN representation obtained as Witkowski, 2000), lack an explicit notion of a state.

described above. Let the FLUX probabilistic state(z)) Knowledge of the current state is represented indi-
be the result of computing with FLUX the state updates of rectly via the initial conditions and the actions which
a; until ap starting in the initial statet(m(z)). Then the agent has performed up to now. As a consequence,

Soundness of the FLUX encoding

from the fluent calculus axiomatization it follows: the entire history of actions is needed when evaluat-
(V2)(PStatés, 2) = T (2)) > ing a probability of a property in an agent program.
(Vz)(PStatéDo([ax, .., 0n],S),2) = To(2)) Moreover, the entire state space of all the resulting

states has to be considered when inferring probabil-

Proof Sketch: The proof is by induction om. ities in (Reiter, 2001a; Grosskreutz and Lakemeyer,

If n=0, then 1(m(2)) = 1(m(2)) . As no action 2000; Baier and Pinto, 2003) or assessing plans in
is executed, from the fluent calculus axiomatization it (Kushmerick et al., 1995), which easily leads to long
follows that m (z) = T, (2) . computation times even for small examples.

Suppose the claim holds far— 1. We are given Alternative approaches to combine reasoning
a FLUX probabilistic state and have to infer the ef- about actions and probability include (Pearl, 2000;
fects of actiona,. It is easy to verify that we can Tran and Baral, 2004; Gardiol and Kaelbling, 2004),
transform both the probabilistic state and the action but they either cannot deal with action sequences, or
an in a multiset of confactors. The correct contextual stay entirely within propositional logic, or cannot ex-
variable elimination algorithm of (Poole and Zhang, press uncertainty over the state probability distribu-
2003) can be employed to infer the answer to arbitrary tion. Moreover, none of these approaches has been
gueries about probabilistic dependencies between theembedded in a general agent programming language
random variables. like FLUX.

We restrict our attention to the post-action vari- Decision theoretic regression with 2TBN and in-
ables in the multiset of confactors and apply the fluence diagrams based on such networks (Boutillier
contextual variable elimination algorithm to com- et al., 1999) are also concerned with expressing tem-
pute their marginal probabilities and the conditional poral probabilistic dependencies. However, there are

some important differences to our approach. Except de Salvo Braz, R., Amir, E., and Roth, D. (2007). Lifted
for a preliminary treatment in (Boutilier and Poole, first-order probabilistic inference. In Getoor, L. and
1996), all the literature concerns only fully observ- tT_aSk‘l"‘E B., _edlt’\C/)IIi_Srll‘llDtl’OduCtlon to Statistical Rela-
able MDPs while our approach represents POMDPs, - on& Learning Mit Fress.

There is no notion of a precondition of an action in Gardgjlgrln\lr{i:'gj ?nn?elfaatﬁalgg??v’llﬁbz (lzuggc;{niggei:?pNzggsled
(Boutillier et al., 1999). In our approach, we can de- . ; ;

' : . ' i Information Processing Systems 16 (NIPS;08)n-
fine states for which certain actions in a future plan- couver, CA. 9>y (0%

ning extens_lon Shpuld r_10t even be Cons_ldered for_se'Grosskreutz, H. and Lakemeyer, G. (2000). Turning high-
Iectlor_L Whlle_ we inherit the representational and in- level plans into robot programs in uncertain domains.
ferential solution to the frame problem from the solu- In Proceedings of the European Conference on Atrtifi-
tion in the standard fluent calculus, using only 2TBN cial Intelligence (ECALI)

as in (Boutillier et al., 1999) one must explicitly as- Jin, Y. and Thielscher, M. (2004). Representing beliefs in
sert that fluents unaffected by a specific action persist the fluent calculus. IfProceedings of the European

in value, although the representational frame problem Conference on Artificial Intelligence (ECAlpages

(but not the inferential one) can be solved by auto- 823_‘827v Valencia, Spain. IOS Press.

mated assertions (Boutilier and Goldszmidt, 1996). Kushmerick, N., Hanks, S., and Weld, D. S. (1995). An
Our approach should be extended in future work algorithm for probabilistic planningAtrtificial Intelli-

to allow for planning under uncertainty. To construct . genceH76(;;)20)5:239F);286.. i a g
plans which achieve a specic condiion wih a prob- LEVESde, . (2005, Flannng i oons oceedge
ability above a threshold, we could apply conditional telligence (IJCAI) Edinburgh, Scotland
planning as defined in (Thielscher, 2005b) or use it Pearl, J. (1988)Probabilistic Reas’oning in Ir-ltelligent Sys-
erative planning with loops in t.he Sens? of (Levesque, t’erﬁs: Networks of Plausible Inferenddorgan Kauf-
2005). It would also be possible to give plan skele- mann, San Mateo, CA.
tonsin FLUX similar to ((_Brosskreutz and Lakeme_yer, Pearl, J. (2000)Causality: Models, Reasoning, and Infer-
2000), which can drastically reduce planning time. ence Cambridge University Press.
The Ver'.flcatlon that a plan SatISfle.S a goal Wlt.hlsome Poole, D. and Zhang, N. L. (2003). Exploiting contextual
probability threshold can then be inferred efficiently independence in probabilistic inferencdournal of
with our approach. Artificial Intelligence Research8:263-313.

For additional future work, we intend to investi- Reiter, R. (2001a)Knowledge in ActionMIT Press.
gate to which extent we can avoid groundlng a first- Reiter, R. (2001b). On knowledge-based programming with
order knowledge state as much as possible and use & sensing in the situation calculuA\CM Transactions
first oder algorithm to query our Bayesian networks on Computational Logic2(4):433-457.

(de Salvo Braz et al., 2007). Shanahan, M. and Witkowski, M. (2000). High-level robot
control through logic. InProceedings of the Inter-
national Workshop on Agent Theories Architectures

and Languages (ATALYyolume 1986 oL NCS pages
REFERENCES 104-121, Boston, MA. Springer.

Bacchus, F., Halpern, J., and Levesque, H. (1999). Reason-Th'E|SCTerj '\g (19992:1' From situation calclulgs to ﬂuk(]ent. C?"
ing about noisy sensors and effectors in the situation cu l.Js‘l'f tate up t;sllte azp?_ws_ "ﬁ a s”o ution tgltlelln er
calculus.Atrtificial Intelligence 111(1-2):171-208. en.tla rame problem.Artificial Intelligence (1-

2):277-299.

. : Thielscher, M. (2000). Representing the knowledge of a

tlaé?dt})/ggf_ Zlgg programsl. Exp. Theor. Artif. Intel. robot. InProceedings of the International Conference
:) on Principles of Knowledge Representation and Rea-

Boutilier, C. and Goldszmidt, M. (1996). The frame prob- soning (KR) pages 109-120, Breckenridge, CO. Mor-

lem and Bayesian network action representations. In gan Kaufmann.

Proceedings of the Canadian Conference on Atrtificial Thielscher, M. (2005a). FLUX: A logic programming

Intelligence (CSCSI) method for reasoning agentSheory and Practice of
Boutilier, C. and Poole, D. (1996). Computing optimal poli- Logic Programming5(4-5):533-565.

cies for partially observable decision processes using Thielscher, M. (2005b).Reasoning Robots: The Art and

compact representations. Rroceedings of the 13-th Science of Prograhming Robotic Agémelume 33

National Conference on Artificial Intelligence (AAAI) of Applied Logic SeriesKluwer

pages 1168-1175, Portland, Oregon, USA. T N. and Baral, C. (2004). Encod babilst |
. - ran, N. and Baral, C. . Encoding probabilistic causal
Boutillier, C., Dean, T., and Hanks, S. (1999). Decision- model in probabilistic action language. Rvoceed-

'Cl':heoreiict_ Plalnlr_ling: S‘f]ructuralll]ﬁ:\st%mpﬁi?nf Iand ings of the 19-th National Conference on Artificial In-
omputational LeverageJournal of Artificial Intel- telligence (AAAI)pages 305310,

ligence Researghil:1-94.

Baier, J. A. and Pinto, J. (2003). Planning under uncer-

