
In D. Miller, ed., Proc. of the Int. Symp. on Log. Prog., 164–180. Vancouver, 1993.

Actions and Specificity

Steffen Hölldobler and Michael Thielscher
Intellektik, Informatik, TH Darmstadt
Alexanderstraße 10, D–64283 Darmstadt, Germany
E-mail: {steffen,thielscher}@intellektik.informatik.th-darmstadt.de

Abstract

A solution to the problem of specificity in a resource–oriented deductive
approach to actions and change is presented. Specificity originates in the
problem of overloading methods in object oriented frameworks but can be
observed in general applications of actions and change in logic. We give a
uniform solution to the problem of specificity culminating in a completed
equational logic program with an equational theory. We show the soundness
and completeness of SLDENF–resolution, ie. SLD–resolution augmented by
negation–as–failure and by an equational theory, wrt the completed program.
Finally, the expressiveness of our approach for performing general reasoning
about actions, change, and causality is demonstrated.

1 Introduction

Logic plays a fundamental role for intelligent behavior. Especially the pio-
neers in Artificial Intelligence realized the importance of logic and deduction
for their field. However, classical logic seems to lack some properties to ade-
quately represent human thinking. The examination of the ability of humans
to reason about actions and change is one of the major parts of interest in
Intellectics, ie. Artificial Intelligence and Cognitive Science [4]. A particular
description of the world consists of facts (or fluents) which are believed to be
true. An important property of these facts is that they are time–dependent,
ie. the truth value of a proposition may change from time to time. In con-
trast, classical logic seems to have difficulties in changing logical values. For
example, one may try to formalize the situation where a gun is unloaded
by the negative literal ¬loaded and the execution of an action called load
which loads the gun, by the implication execute(load)→ loaded . Then, un-
fortunately, classical logic tells us that the action load can never be executed
since otherwise the world becomes inconsistent.

The problem of classical logic is that propositions are not treated as
resources [15]. A proposition cannot be produced and consumed in the
course of time. To overcome these difficulties, John McCarthy and Pat
Hayes [25, 23] defined the situation calculus which mainly consists of using
an additional argument to state that a particular fact only holds in a par-
ticular situation. However, this formalization leads to the well–known frame
problem. In general, the technical frame problem is the question of how to
express that a particular fact which is not affected by an action continues

to hold after executing the action. McCarthy and Hayes [25] solved this
problem by adding additional frame axioms; one for each action and each
fact. The obvious problem with this solution is that the number of frame
axioms rapidly increases when many actions and many facts occur. Robert
Kowalski reduced the number of frame axioms to become linear with respect
to the number of different actions [20]. Some years later, it was again John
McCarthy who proposed the use of nonmonotonic inference rules to tackle
the frame problem [24]. He uses a default rule called law of inertia which
states that a proposition does not change its value when executing an action
unless the contrary is known.

Recently, three new deductive approaches to deal with situations, actions,
and change were proposed, each of them without the need to state frame
axioms explicitly. In the linear connection method [3] proofs are restricted
such that each literal is connected at most once. Thus, connecting a literal
during the inference process simulates consumption of the corresponding
fact. Conversely, if the conditions of an implication are fulfilled then the
conclusion can be used and, thus, the literals occurring in the conclusion
are produced. This treatment of literals resembles the concept of resources.
In a similar way, linear logic [12] can be used, which is a Gentzen–style
proof system without weakening and contraction rules. In the multiplicative
fragment of the linear logic, literals and formulas cannot be copied or erased
which also provides the idea of resources [22].

In [16], classical logic along with an equational theory is used as a plan-
ning formalism. Facts describing a situation in the world are reified and
represented as terms which are connected via a binary function symbol ◦
which is associative (A), commutative (C), and admits a unit element (1),
viz. the constant ∅ . For instance, the situation where the gun is unloaded
and the victim, a turkey, is alive is represented by the term unloaded ◦alive .
The load action can be specified by the clause1

action(C, load , E) ← C =AC1 unloaded ∧ E =AC1 loaded , (1)

where =AC1 denotes equality modulo AC1. Then, a ternary predicate
causes (i, [a1, . . . , an], g) is used to express that the sequence [a1, . . . , an] of
actions causes a situation i to become situation g :

causes(I, [], G) ← I =AC1 G. (2)

causes(I, [A|P], G) ← action(C,A,E) ∧ C ◦ V =AC1 I ∧ (3)

causes(E ◦ V, P,G).

Let us illustrate these two rules by investigating the goal

?− causes(unloaded ◦ alive, [load], X) (4)

to examine what happens if we execute the load action in the situation
above. (4) can be resolved to ?− causes(loaded ◦ alive, [], X) using (3),

(1), and solving the AC1–unification problems. In particular, the respective
instances of C ◦ V and I , viz. unloaded ◦ V and unloaded ◦ alive , are
AC1–unified using the substitution {V 7→ alive} . This illustrates that the
technical frame problem is solved by the variable V which carries over all
those facts which are not affected by the action. It also illustrates how
the concept of dealing with facts as resources is handled in this approach.
Via clause (3), the fact unloaded is removed from the actual situation, ie.
it is consumed, whereas the fact loaded is added to the situation, ie. it is
produced. Finally, the goal ?− causes(loaded ◦ alive, [], X) can be solved
with computed answer substitution {X 7→ loaded ◦ alive} by applying (2)
and performing an AC1–unification step.

The three recent approaches [3, 22, 16] turned out to be equivalent for
planning problems, where situations as well as the conditions and effects of
actions are conjunctions of atomic facts [27, 13]. This result does not only
provide a standard semantics for fragments of the linear logic and the linear
connection method, it also suggests that resources can be treated within
classical logic — viz. by using equational logic — without loosing expressive
power.

Let us examine the equational logic approach of [16] more closely. The
axioms AC1 for the function symbol ◦ essentially define the data structure
multisets. Hence, a situation S is a multiset of facts where consumption
means removing elements and production means adding elements [13]. As
each description of an action is defined by its name a , the multiset C of its
conditions, and the multiset E of its effects, α = 〈C, a, E〉 is applicable in
S if C ⊆̇ S and, if executed, transforms S into S ′ = (S −̇ C) ∪̇ E .2 Thus,
planning in this approach is closely related to planning in Strips [9, 21]
except that multisets are used instead of sets and that planning is performed
in a purely deductive system. As argued in [13] multisets represent resources
more adequately than sets and, moreover, it is more efficient to compute with
multisets instead of sets.

In [13] it was also shown that the equational logic approach can handle
database transaction and objects in much the same way as database trans-
actions and objects are handled in [26] and [1], respectively. As an example
consider the class hierarchy depicted in Figure 1 and suppose that an action
move(O,L1, L2) has been defined for the class object which moves an ob-
ject O from location L1 to location L2 . The conditions and effects of this
action are {|on(O,L1)|} and {|on(O,L2)|} , respectively. Such an action can
be represented in the equational logic approach by

action(C,move(O,L1, L2), E) ← C =AC1 on(O,L1) ∧ (5)

E =AC1 on(O,L2).

Using clause (3) it can be applied to move objects. But it can also be applied
to move fragile objects like eg. vases. For instance, the goal

?− causes(on(vase, table) ◦ fragile(vase), [move(vase, table, board)], X).

¶
µ

³
´i object

¶
µ

³
´b object

¶
µ

³
´f object

¶
µ

³
´object

¡
¡

@
@

Figure 1: A hierarchy of classes representing objects (object) , fragile objects
(f object) , intact objects (i object) , and broken objects (b object) . An
object belongs to the class f object if it is known to be fragile. A fragile
object belongs to the classes i object or b object if it is known that it is
intact or broken, respectively.

can be solved with computed answer substitution {X 7→ on(vase, board) ◦
fragile(vase)} by applying (3), (5), (2), and performing the required AC1–
unification computations. This demonstrates that actions defined for a cer-
tain class are automatically inherited by its subclasses. It also demonstrates
that variables such as O , L1 , and L2 may occur within the conditions, the
effects, and the name of an action.

In an object oriented framework, however, we do not only want to inherit
descriptions of actions, but we also want to override action descriptions if a
more specific description is defined for a particular subclass. For example,
if a robot holding a solid object like a silver bar drops the object then the
object will remain as it was, ie. nothing is changed:

action(C, drop, E) ← C =AC1 ∅ ∧ E =AC1 ∅. (6)

However, if a robot holding a fragile object like a vase drops the object, then
the object will be broken afterwards (to keep this example small we omit
the argument of the fragile function and use it as a constant):

action(C, drop, E) ← C =AC1 fragile ∧ E =AC1 fragile ◦ broken. (7)

Now, in a situation where a robot holds a fragile object, ie. solving the
query ?− causes(fragile, [drop], X) , both action descriptions (6) and (7) are
applicable using (3). (6) is inherited from the class object . However, (7) is
defined for the class f object and, thus, is more specific than (6) and should
be preferred.3 The approaches of [1] or [13] do not model the concept of
overriding through specificity in class hierarchies. Neither does the approach
of [26] allow to specify more specific transactions in deductive databases.

In this paper we extend the equational logic approach of [16, 13] such
that the most specific action description is preferred. Specificity and the

use of multisets to represent situations are discussed more thoroughly in the
following Section 2, where we also illustrate the approach by an additional ex-
ample from the Yale Shooting domain. Section 3 shows how completed logic
programs in the sense of [6] along with a unification–complete (see [18]) AC1–
theory capture specificity. Informally, the most specific action description is
preferred by adding a negative literal of the form ¬non specific(A,C, V) to
the body of (3), which guarantees that the selected description of action A
with conditions C is the most specific applicable action description in the
situation C ◦V . One should observe that such a logic program does not be-
long to the class of programs investigated in [18] as a negative literal occurs
in the body of a clause. On the other hand, it also does not belong to the
class of programs investigated in eg. [2] as our program contains the equa-
tional theory AC1. Thus, our program falls into a class which has recently
been investigated in [28]. Section 4 focuses on models which assign to ◦ and
∅ operators which can be used to build up multisets. Section 5 introduces
SLDENF–resolution as SLDNF–resolution extended by a unification algo-
rithm for an equational theory. Section 6 shows how SLDENF–resolution
can be used as a sound and complete computation procedure for logic pro-
grams modelling actions and specificity. Finally, Section 7 discusses these
results and outlines possible extensions. In particular, our results are related
to a semantical approach to reason about actions developed by Gelfond and
Lifschitz [11].

2 Specificity

In the introduction we have informally motivated specificity with the help of
the Fragile Object example. In this section we will formally define specificity.
To ease our presentation we restrict actions to those whose conditions and
effect are ground.

As we do not want to allow explicit negation in situations4 we have to
specify inconsistency for the domain of discourse. Intuitively, in the Fragile
Object domain an object cannot be intact and broken at the same time.
Furthermore, as we are dealing with multisets, we may want to consider
the number of occurrences of a fact in a multiset. For example, a single
occurrence of broken may be interpreted as the fact that the object is broken
into a few pieces, whereas several occurrences of broken may be interpreted
as the fact that the object is shattered into many pieces. Thus, fuzziness
may be expressed. However, for the sake of simplicity we assume that no
fact should occur more than once in a consistent situation, ie. for the Fragile
Object domain we specify that a situation S is inconsistent iff

{|broken, intact |} ⊆̇ S ∨ ∃X ∈ {fragile, broken, intact}. {|X,X|} ⊆̇ S. (8)

Having specified inconsistency and defining that a situation is consistent iff
it is not inconsistent we can now concentrate on specificity.

Recall that an action description α = 〈C, a, E〉 is defined by the multiset
C of its conditions, its name a , and by the multiset E of its effects. Given
a finite set A of action descriptions, we define a partial order with regard
to specificity as follows. An action description α1 = 〈C1, a1, E1〉 is said to be
more specific than an action description α2 = 〈C2, a2, E2〉 (written α1 < α2)
iff a1 = a2 and C1 ⊃̇ C2 .

In our example we have already considered the two action descriptions

〈 {||}, drop, {||} 〉 (9)

and 〈 {|fragile|}, drop, {|fragile, broken|} 〉, (10)

which were represented by (6) and (7), respectively. Clearly, (10) < (9) .
These two action descriptions do not yet completely specify the Fragile Ob-
ject domain: If the robot drops an object belonging to the class i object ,
then the description of drop inherited from the class f object could be
applied. This, however, would lead to an inconsistent situation, where the
object is intact and broken at the same time. To avoid such a behavior we
define the additional action description

〈 {|intact , fragile|}, drop, {|fragile, broken|} 〉. (11)

As (11) is more specific than (10) it will be preferred if the dropped object
is known to be intact. Similarly, if the dropped object is already broken,
ie. if the current situation is {|broken, fragile|} , then the execution of (10)
would lead to the situation {|broken, broken, fragile|} . This can be avoided
by defining a more specific action description for the class b object , namely

〈 {|broken, fragile|}, drop, {|fragile, broken|} 〉. (12)

Altogether we obtain a set of action descriptions such that whenever an ap-
plicable and most specific description is executed in a consistent situation
the resulting situation is also consistent. A formal proof for this set of ac-
tion descriptions being consistency preserving is analogous to the respective
proofs for the Blocksworld domain in [16].

Hierarchies of classes can be used in general to describe scenarios of ac-
tions and change. Eg., the Yale Shooting environment ([14]) consists of a
gun which might be unloaded or loaded, a turkey which is alive or dead, and
three actions, viz. loading the gun (load), shooting (shoot), and waiting
(wait). The reader is invited to prove that the following set of action de-
scriptions forms a complete set for the various consistent situations — where
consistency is defined analogously to (8) — in the Yale Shooting domain:

〈 {| |} , wait , {| |} 〉 〈 {| |} , shoot , {|unloaded |} 〉

〈 {| |} , load , {|loaded |} 〉 〈 {|loaded |} , shoot , {|dead , unloaded |} 〉

〈 {|loaded |} , load , {|loaded |} 〉 〈 {|unloaded |} , shoot , {|unloaded |} 〉

〈 {|unloaded |} , load , {|loaded |} 〉 〈 {|loaded , alive|} , shoot , {|dead , unloaded |} 〉

〈 {|loaded , dead |} , shoot , {|dead , unloaded |} 〉

This example can be enriched in many directions using the expressive
power of the concept of multisets. For instance, a double–barrelled gun
can be modelled as having three different states: It is either unloaded
({|unloaded |}), loaded with one ({|loaded |}) or two pellets ({|loaded , loaded |}).
Modelling such a gun requires to modify the consistency criteria such that
a situation is inconsistent if loaded occurs more than twice. It also requires
to modify the action descriptions of load and shoot in the obvious way,
eg. 〈{|loaded |}, load , {|loaded , loaded |}〉 should occur in the new set of action
descriptions.

3 Completed Equational Logic Programs

In this section we present a completed logic program in the sense of [6] along
with a unification complete equational theory in the sense of [18] which can
be used to define actions and specificity.

As already argued in the introduction, multisets can be represented using
a constant ∅ denoting the empty multiset and a binary AC1–function symbol
◦ such that ∅ is a unit element of ◦ . More formally, let ·I and ·I

−1

be two
mappings such that ∅I = {||} , (s1 ◦ s2 ◦ . . . ◦ sn)

I = {|s1|} ∪̇ (s2 ◦ . . . ◦ sn)
I ,

{||}I
−1

= ∅ and {|s1, s2, . . . , sn|}
I−1

= s1 ◦ {|s2, . . . , sn|}
I−1

. One should observe
that (sI)I

−1

=AC1 s and (SI
−1

)I =̇S . For the sake of simplicity we assume
that terms are well–sorted in the following sense. Elementary terms are
non–variable terms built up from a given alphabet not containing ∅ and ◦
as usual. ◦ –terms are defined inductively: ∅ and each elementary term is
a ◦ –term, and if s and t are ◦ –terms then s ◦ t is a ◦ –term. Finally,
AC1–terms are either ◦ –terms or of the form s ◦X , where s is a ◦ –term
and X is a variable called AC1–variable which must not occur elsewhere.

Proving equality of two AC1–terms under the equational theory AC1
requires the axioms of associativity, commutativity, and existence of a unit
element ∅ for ◦ together with the general axioms of equality, ie. the axioms
of reflexivity, symmetry, and transitivity along with the substitution schema.
However, these axioms are not sufficient for completed logic programs where
also inequalities must be provable. In other words, s 6=AC1 t has to be
derivable whenever s and t are not AC1–unifiable.

Inequality axiom schemata for the empty equational theory are well–
known and contain, among others, the unique name assumption. We use the
appropriate axiom schemata described in [6] with the restriction that they
must not be instantiated with the function symbol ◦ . This symbol requires
special axioms. As we intend to restrict equalities to equalities between
AC1–terms the following two axiom schemata are sufficient. Informally,
these schemata express the fact that two AC1–terms s and t are equal only
if for each subterm of s there is a corresponding subterm in t and vice
versa. The expression Π(n) below denotes the set of all permutations over

the natural numbers {1, . . . , n} :

∀X,V . [X ◦ s1 ◦ · · · ◦ sm =AC1 t1 ◦ · · · ◦ tn → (13)
∨

π∈Π(n)

s1 = tπ(1) ∧ . . . ∧ sm = tπ(m) ∧ X = tπ(m+1) ◦ · · · ◦ tπ(n)]

for any n ≥ m ≥ 1 and any elementary terms s1, . . . , sm, t1, . . . , tn with free
variables V , and

∀X,V . [X ◦ s1 ◦ · · · ◦ sm 6=AC1 t1 ◦ · · · ◦ tn] (14)

for any m > n ≥ 0 and any elementary terms s1, . . . , sm, t1, . . . , tn with free
variables V . For instance, to derive that X ◦ intact 6=AC1 fragile ◦ broken
via the contraposition of (13) we have to prove that (intact 6= fragile ∨X 6=
broken) ∧ (intact 6= broken ∨X 6= fragile) , which is a consequence from the
unique name axioms. Note that neither in (13) nor in (14) both AC1–terms
contain an AC1–variable since otherwise two terms are always unifiable, as
it is required that each AC1–variable in an AC1–term has to be unique. In
what follows, we abbreviate the union of AC1, (13), (14), and the general
axioms for equality along with the (restricted) completion axioms of [6] by
AC1∗. AC1∗ can be shown to be complete in the sense that for any two
AC1–terms s and t with variables V either AC1∗ |= ∃V . s =AC1 t if s
and t are AC1–unifiable, or AC1∗ |= ∀V . s 6=AC1 t , otherwise.

5

To select the most specific, applicable action description in a given situa-
tion, the body of clause (3) is extended by the literal ¬non specific(A,C, V) ,
and we obtain the following completed definition.

∀I, P,G. [causes(I, P,G) ↔ (P = [] ∧ I =AC1 G) ∨
∃A,P ′, C,E, V. (P = [A|P ′] ∧ action(C,A,E) ∧

C ◦ V =AC1 I ∧ ¬non specific(A,C, V) ∧
causes(E ◦ V, P ′, G))].

(15)

An action description of A with conditions C is non–specific in the situation
C ◦ V iff there is a more specific, applicable action description:

∀A,C, V. [non specific(A,C, V)↔ ∃C ′, E′, V ′,W. (action(C ′, A,E′) ∧
C ′ ◦ V ′ =AC1 C ◦ V ∧
C ◦W =AC1 C

′ ∧ W 6=AC1 ∅)].
(16)

The elements αi = 〈Ci, ai, Ei〉 of a set containing m action descriptions are
represented by the following completed clause.

∀C,A,E. [action(C,A,E) ↔
m
∨

i=1

(C = CI
−1

i ∧ A = ai ∧ E = EI
−1

i)]. (17)

Finally, let C be the conjunction of all formulas of the form ∀X1, . . . , Xn.
¬p(X1, . . . , Xn) , where p is an n –ary predicate symbol not occurring in the
set of predicates {=, =AC1 , causes, non specific, action} .

Let P ∗ = (15)∧(16)∧(17)∧C . Then, (P ∗,AC1∗) is the completed equa-
tional logic program specifying actions and specificity. One should observe
that various scenarios like the Fragile Object or the Yale Shooting domain
differ only in the definition of the predicate action.

4 Models

For the purpose of this paper it suffices to consider standard first–order mod-
els M = (·I ,D) for the first–order formula (P ∗,AC1∗) , where D and ·I

denote the domain and the mapping of the model, respectively. In particu-
lar, we consider interpretations which interpret ∅ and ◦ as multiset–building
operators, ie. ·I is defined on these symbols as in Section 3. In addition,
list expressions of the form [h | t] are interpreted as usual. This is not a
restriction as any other models for AC1∗ can be mapped onto such a (·I ,D)
(see [17]).

Now, let (P ∗,AC1∗) contain the definition of a set of action descriptions
A and let M = (·I ,D) be a model for (P ∗,AC1∗) . Furthermore, let i
and g be ground AC1–terms denoting the initial situation iI =̇S0 and the
goal situation gI =̇Sn , respectively, and let a1, . . . , an denote action names.
It is not difficult to see that M |= causes(i, [a1, . . . , an], g)

I iff there is a
sequence of multisets (Sj | 0 ≤ j ≤ n) and a sequence of action descriptions
(αj = 〈Cj , aj, Ej〉 | 1 ≤ j ≤ n) from A such that for all j , 1 ≤ j ≤ n , we
find that Sj = (Sj−1 −̇Cj) ∪̇Ej and αj is the most specific applicable action
description of the action aj in Sj−1 wrt A .

5 SLDENF–resolution

Proving in completed logic programs is known to be quite inefficient. We
therefore do not want to compute with (P ∗,AC1∗) , rather we would like to
compute with the if–halves of the definitions in P ∗ , to use AC1–unification
instead of the unification complete theory AC1∗, and to use negation–as–
failure for deriving negative information. Let P be the following normal
logic program:

causes(I, [], G) ← I =AC1 G. (18)

causes(I, [A|P], G) ← action(C,A,E) ∧ C ◦ V =AC1 I ∧ (19)

¬non specific(A,C, V) ∧ causes(E ◦ C,P,G).

non specific(A,C, V) ← action(C ′, A,E′) ∧ C ′ ◦ V ′ =AC1 C ◦ V ∧ (20)

C ◦W =AC1 C
′ ∧ W 6=AC1 ∅.

action(C, ai, E) ← C =AC1 ci ∧ E =AC1 ei. (21)

for all actions 〈cIi , ai, e
I
i 〉 ∈ A .

As our programs contain an equational theory we intend to build this the-
ory into the unification computation. In particular, we are interested in

the AC1–unification of two AC1–terms, which is decidable, finitary, and for
which a complete and minimal unification algorithm is known [13, 29]. The
programs are carefully specified such that the need for AC1–unification is
localized within calls to subgoals of the form s =AC1 t or s 6=AC1 t , whereas
all other subgoals can be solved by applying the usual unification procedure.

Following the ideas of [28], SLDENF–resolution is like SLDNF–resolution
[6] if the selected literal is not of the form s =AC1 t or s 6=AC1 t . If the
selected literal is of the form s =AC1 t and s and t are AC1–terms, then
the AC1–unification algorithm in [13, 29] is called, which either returns a
minimal complete set of AC1–unifiers for s and t if both terms are AC1–
unifiable, or returns a failure message otherwise. In the former case, the
literal s =AC1 t is removed from the goal and one of the AC1–unifiers is
applied to the remaining literals occurring in the goal. Thus, we obtain
a finitely branching derivation tree. In the latter case the derivation fails.
Conversely, if the selected literal is of the form s 6=AC1 t and s and t are
AC1–terms, then the AC1–unification algorithm is called to unify s and t .
If s and t are not AC1–unifiable, then the literal s 6=AC1 t is removed from
the goal. Otherwise, the derivation fails.

As for the selection function we assume that it is fair, ie. that each
literal occurring in a goal is selected after finitely many steps, that negative
literals are selected only if they are ground, and that literals of the form
s =AC1 t and s 6=AC1 t are selected only if s and t are AC1–terms. In
the following section we show that the application of SLDENF–resolution to
our equational logic program yields the intended results. General soundness
and completeness results concerning SLDENF–resolution, which extend the
results of [28], can be found in [17].

6 Soundness and Completeness of SLDENF–

Resolution

In this section we assume that i and g are ground AC1–terms denoting an
initial situation iI and a goal situation gI , respectively. Furthermore, p
denotes a list of action names [a1, . . . , an] . Note that SLDENF–refutations
are defined with respect to an equational logic program like (P,AC1) ,
whereas models M = (·I ,D) are defined for the corresponding completed
equational logic program (P ∗,AC1∗) .

Theorem 6.1 (Soundness.) If there exists an SLDENF–refutation of ?−
causes (i, p, g) then for each model M we find that M |= causes (i, p, g)I .

Proof (sketch): The proof is a straightforward induction on the length of
the sequence p of actions. The interesting parts of this proof are the two
cases where negation–as–failure is used. The first one is concerned with the
subgoal W 6=AC1 ∅ , where W is bound to a ground AC1–term. As AC1–
unification is decidable and a correct and complete unification algorithm is

known, this subgoal will be evaluated to true whenever an attempt to unify
the respective instance of W and ∅ fails. The second case is concerned with
the subgoal ¬non specific(A,C, V) , where A is bound to an action name a
and C and V are bound to ground AC1–terms c and v , respectively. Such
a subgoal is called if an action description 〈cI , a, eI〉 has been selected and
it has to be checked whether this is the most specific, applicable description
in the situation (c ◦ v)I . In this case we apply the following Lemma 6.2.

Lemma 6.2 An SLDENF–derivation of ?−non specific (a, c, v) finitely fails
iff there is no action description 〈C ′, a, E ′〉 ∈ A such that C ′ ⊆̇ (c ◦ v)I and
C′ ⊃̇ cI .

Proof: To prove the only–if–half we assume that an SLDENF–derivation of
?− non specific(a, c, v) finitely fails. Using (20) this goal is replaced by

?−action(C ′, a, E′) ∧ C ′◦V ′ =AC1 c◦v ∧ c◦W =AC1 C
′ ∧ W 6=AC1 ∅. (22)

Without loss of generality we assume that this goal is evaluated from left to
right. As A contains only finitely many action descriptions, the program P
contains only finitely many rules of the form (21). For each action description
〈C′, a′, E ′〉 ∈ A we find that if a′ 6= a then the derivation fails; the action has
another name. Otherwise, the derivation continues with C ′ and E′ bound

to c′ = C′I
−1

and e′ = E ′I
−1

, respectively. The unification attempt for the
literal c′ ◦ V ′ =AC1 c ◦ v fails iff C′ ˙6⊆ (c ◦ v)I . Otherwise, C ′ ⊆̇ (c ◦ v)I and
(22) reduces to

?− c ◦W =AC1 c
′ ∧ W 6=AC1 ∅.

The subgoal c◦W =AC1 c
′ fails iff C′ ˙6⊇ cI . Otherwise, C ′ ⊇̇ cI and W will

be bound to w = (C ′ −̇ cI)I
−1

. In this case, if w is equal to ∅ modulo AC1,
ie. if the derivation of ?−w 6=AC1 ∅ fails, then C ′ =̇ cI . Altogether, whenever
a derivation of (22) fails, then either a 6= a′ or C′ ˙6⊆ (c ◦ v)I or C′ ˙6⊃ cI . The
result follows immediately from the observation that the derivation tree of
(22) is finite.

To prove the if–half, assume that there is no action description 〈C ′, a, E ′〉 ∈
A such that C ′ ⊆̇ (c ◦ v)I and C′ ⊃̇ cI . Suppose there is an SLDENF–
refutation of ?− non specific(a, c, v) . Then, as (20) is the only rule in the
program P for non specific , we find a refutation of (22). Hence, we find
an action description 〈C ′, a, E ′〉 ∈ A and a ground AC1–term w such that
C′ ⊆̇ (c ◦ v)I , (c ◦ w)I =̇ C′ , and wI /̇= {||} . The last two facts translate to
cI ⊂̇ C′ , which contradicts the initial premise.

Theorem 6.3 (Completeness.) If we find that M |= causes (i, p, g)I for
each model M then there exists an SLDENF–refutation of ?−causes (i, p, g) .

Proof (sketch): The proof is again a straightforward induction on the
length of the expression pI using Lemma 6.2 and the fact that AC1∗ is
complete.

7 Discussion

We have presented an equational logic approach to reasoning about situa-
tions, actions, and change, where situations are multisets of facts and an
action is applied to a situation S by deleting its conditions from and adding
its effects to S . In particular, we have focused on specificity such that more
specific action descriptions are preferred. This solves an open problem in
the approaches of [1, 13] or [26].

Aside from checking whether a given sequence of actions transforms a
given situation into a goal situation, our approach can as well be used to
generate a plan, ie. a sequence of actions, as a computed answer substitution
to a query of the form ?− causes(i, P, g) (cf. [16, 13]).

We have restricted our presentation to actions whose conditions and ef-
fects are ground, and to situations which are ground as well. As already
indicated by an example in the introduction, we may lift this restriction and
allow variables to occur in situations as well as in the conditions and effects
of actions. This causes no problems as long as we focus on the completed
equational logic program and lift the definition of specificity as well. How-
ever, as soon as negation–as–failure is applied, we have to be more careful.
Not only must we ensure that negative subgoals are fully instantiated before
they are called, but inconsistencies may be derived if the initial situation is
only partially specified. This will be discussed in the next paragraph.

Reasoning about the past

Aside from temporal projection and planning, we are also interested in the
ability of deriving information about former situations. As an example, recall
the Fragile Object domain from Section 1. If we know that a previously
intact object is broken after it was dropped, then we want to conclude that
the object is fragile. Can we derive such a conclusion with our equational
logic program? To answer this question, we relate our approach to the action
description language developed by Gelfond and Lifschitz.

The language described in [11] consists of action names and fluent names,
which might occur negated, along with expressions such as

drop causes broken if fragile. (23)

These so–called e–propositions describe the effect of an action (drop) on a
single fluent (broken) provided a number of conditions (fragile) hold. The set
of e–propositions describing a domain is used to define a transition function
which maps situations into situations given a particular action name. A
situation S is a set of fluent names and it is assumed that f holds in S
iff f ∈ S and that ¬f holds in S iff f 6∈ S . Eg., in the Fragile Object
domain the set {fragile} describes a situation where fragile and ¬broken

hold, and the transition function Φ determined by (23) is

Φ(drop,S) =

{

S ∪ {broken}, if fragile ∈ S
S, otherwise.

(24)

So–called v–propositions are used to describe the value of a single fluent in
a particular situation. For example, the two v–propositions

initially ¬broken and broken after drop (25)

describe the fact that the object is not broken in the initial situation and is
broken after executing the drop action, respectively. A model for a set of
e–propositions and v–propositions consists of a transition function Φ along
with a particular situation S0 — called the initial situation — such that Φ is
determined by the e–propositions, and Φ and S0 satisfy the v–propositions.
In our example, Φ is defined as in (24) and, due to (25), is required that
broken 6∈ S0 and broken ∈ Φ(drop,S0) . It is easy to verify that fragile ∈ S0
holds in each such model, ie. we are allowed to conclude that the object
was fragile before having dropped it. In other words, the v–proposition
initially fragile is a consequence of the domain description.

Gelfond and Lifschitz give a translation for this language into an extended
logic program with two kinds of negation (cf. [10]). The soundness of this
translation is proved, ie. each conclusion drawn by the logic program holds
in every model of the domain description. However, they have also shown
by a simple counterexample that their translation is incomplete. In the
sequel, we briefly sketch how to encode the action description language in
our approach, ie. in terms of a completed equational logic program for actions
and specificity.

As we do not support explicit negation, we need two different fluents
for each fluent name of the domain description. In case of the Fragile Ob-
ject domain we use the set {fragile, fragile, broken, broken} where f should
be interpreted as an independent fluent denoting the negation of the fluent
name f . Since situations in the action description language are assumed
to be sets of fluents, we do not allow any fluent to occur more than once in
an AC1–term. In addition, a fluent must not occur together with its nega-
tion and each fluent is required to occur either affirmatively or negatively.
To create an appropriate set of action descriptions, we use a simple and
straightforwardly automated transformation, which creates exactly the four
action descriptions (9)–(12) of Section 2 given the e–proposition (23).6 Due
to lack of space, we omit a formal description of this transformation here. It
can be found in [30].

Reasoning about the past is mainly based on finding consistent explana-
tions for observations. Recall that the actions for the Fragile Object domain
were designed such that the application of an action to a consistent situ-
ation yields a consistent situation. Now, however, we have to ensure that
additional derived facts of a situation are consistent with the known facts,

which is why the completed clause (15) has to be modified such that the
initial situation is tested for consistency.

Now, given the completed logic program of a domain description, how to
decide which v–propositions are entailed, eg. given the v–propositions (25),
how to decide whether the object was necessarily fragile? The key idea is
to ask how the various v–propositions can be satisfied if the initial situation
is left unspecified. Unspecified means that a variable is used to denote that
more facts may hold in the initial situation, ie.

∃X,Y. causes (broken ◦ fragile ◦X, [drop], broken ◦ Y) ∧

∀V,W. ¬ causes (broken ◦ fragile ◦ V, [drop], broken ◦W)
(26)

can be used to ask whether the object was necessarily fragile at the be-
ginning if we observe that it is broken after having dropped it and that it
was intact before. The negative part of this conjunction is used to ensure
that fragile is not an irrelevant fact when trying to satisfy the positive part
of the query. The entailment of (26) could be interpreted as initially

fragile which would be exactly the desired result. (26) is in fact entailed by
our modified completed program. The crucial point is the second part of
this conjunction. Informally, the only possibility for unifying the goal situ-
ation broken ◦W with the result of applying an action description of drop
to the initial situation broken ◦ fragile ◦ V requires V to be substituted by
a term like fragile ◦ Z . This, however, can be shown to be inconsistent for
any Z since fragile and fragile must not occur in a situation due to the
consistency criterion. Note that by asking (26) we have guessed that fragile
might have been true in the initial situation. This is not necessary in general
of course, since leaving the initial situation totally unspecified, the various
answer substitutions to a query such as ∃X,Y. causes (X, [drop], broken ◦Y)
should give us a hint of what might have been true at the beginning.

In [30] it is shown that the ideas sketched above can be used as a sound
and complete implementation of the action description language of Gelfond
and Lifschitz. This makes our approach to reason about actions and change
comparable to various other approaches which were also related to this lan-
guage recently, such as [8, 19, 7].

A problem arises when the SLDENF–approach of Section 5 is used to
pose queries as eg. the negative part of (26). The problem is a consequence
from the fact that negation–as–failure does not allow for solving negative
non–ground literals. In [17] we propose to use the concept of constructive
negation [5] to be able to compute queries such as (26).

Reasoning about the past often requires also to find out the sequence of
actions which has been performed. This is what detectives must do when
solving a crime or natural scientists who have to explain observations. In
general, problems like this show an enormous search space and require a
large number of efficient heuristics in practical applications, but in principle
they can be formulated in our approach as it stands.

Sequences of Actions

Hitherto we have investigated specificity with respect to the conditions of
action descriptions. Another way to receive — at first glance — inconsistent
descriptions of causality occurs when a sequence of actions has another effect
than the application of each element of this sequence one after another.

Assume we have parked a car without closing the door. Further, assume
the only action to be a wait action. Normally waiting has no effects. How-
ever, if we wait too long then we must expect that the car is stolen. With
an extended notion of action descriptions, this example can be encoded by
〈{| |}, [wait], {| |}〉 and 〈{|parked |}, [wait ,wait ,wait], {|stolen|}〉 . Fortunately, as
before, we find a syntactic criterion for preferring the — in some sense —
more specific derivation if both are applicable, viz. the sequence of actions
[wait ,wait ,wait] is a superlist of [wait] . By slightly modifying our program,
this can be straightforwardly encoded within the definition of non specific .

Acknowledgements

This work was supported in part by ESPRIT within basic research action
MEDLAR-II under grant no. 6471.

Notes

1. Throughout this paper, we use a Prolog–like syntax, ie. constants and
predicates are in lower cases whereas variables are denoted by upper case
letters. Moreover, free variables are assumed to be universally quantified
and, as usual, the term [h | t] denotes a list with head h and tail t .

2. Multisets are depicted using the brackets {| |} . Furthermore, ∪̇ , −̇ ,
⊆̇ , =̇ , etc. denote the multiset extensions of the usual set operations and
relations ∪ , − , ⊆ , = , etc. More formally, if an element occurs m –times
in a multiset M and n –times in a multiset N , then it occurs m+n –times
in M ∪̇ N and m − n –times in M −̇N if m > n and not in M −̇N if
m ≤ n . If each element occurring m –times in M occurs n ≤ m –times in
N then N ⊆̇M , and if M⊆̇N as well as N ⊆̇M then M =̇N .

3. Although the owner of the vase may think different in this particular case.

4. It is an interesting philosophical question whether rational agents have a
general concept of negation comparable to the concept of negation in first–
order logic. This was brought to our attention by J. A. Robinson.

5. Note that AC1∗ is not a complete unification theory for AC1 in exactly
the sense of [18] or [28], rather it is restricted to AC1–terms and to this
completeness criterion. However, this is sufficient in our case.

6. Thereby intact must be substituted by broken . Observe that the intro-
duction of fragile does not force to define more action descriptions.

References

[1] J.-M. Andreoli and R. Pareschi. Linear Objects: Logical Processes with
built-in Inheritance. New Generation Computing, 9(3+4), 1991.

[2] K. R. Apt, H. A. Blair, and A. Walker. Towards a theory of declarative
knowledge. In J. Minker, editor, Foundations of Deductive Databases
and Logic Programming, 89–148. Morgan Kaufmann, 1987.

[3] W. Bibel. A Deductive Solution for Plan Generation. New Generation
Computing, 4:115–132, 1986.

[4] W. Bibel. Intellectics. In S. C. Shapiro, editor, Encyclopedia of Artificial
Intelligence, 705–706, New York, 1992.

[5] D. Chan. Constructive Negation Based on the Completed Database. In
Proc. of ICLP, 111–125, 1988.

[6] K. L. Clark. Negation as Failure. In H. Gallaire and J. Minker, editors,
Workshop Logic and Data Bases, 293–322. Plenum Press, 1978.

[7] M. Denecker and D. de Schreye. Representing Incomplete Knowledge
in Abductive Logic Programming. In D. Miller, editor, Proc. of ILPS.
1993.

[8] P. M. Dung. Representing Actions in Logic Programming and its Ap-
plications in Database Updates. In D. S. Warren, editor, Proc. of ICLP,
222–238. 1993.

[9] R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the ap-
plication of theorem proving to problem solving. Artificial Intelligence,
5(2):189–208, 1971.

[10] M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and
Disjunctive Databases. New Generation Computing, 9:365–385, 1991.

[11] M. Gelfond and V. Lifschitz. Representing Actions in Extended Logic
Programming. In K. Apt, editor, Proc. of IJCSLP, 559–573. 1992.

[12] J.-Y. Girard. Linear Logic. Journal of Theoretical Computer Science,
50(1):1–102, 1987.

[13] G. Große, S. Hölldobler, J. Schneeberger, U. Sigmund, and
M. Thielscher. Equational Logic Programming, Actions, and Change.
In K. Apt, editor, Proc. of IJCSLP, 177–191. 1992.

[14] S. Hanks and D. McDermott. Nonmonotonic logic and temporal pro-
jection. Artificial Intelligence, 33(3):379–412, 1987.

[15] S. Hölldobler. On Deductive Planning and the Frame Problem. In
A. Voronkov, editor, Proc. of the Int. Conf. on Logic Programming and
Automated Reasoning (LPAR), 13–29. Volume 624 of LNAI, 1992.

[16] S. Hölldobler and J. Schneeberger. A New Deductive Approach to Plan-
ning. New Generation Computing, 8:225–244, 1990.

[17] S. Hölldobler and M. Thielscher. Computing Change and Specificity
with Equational Logic Programs. 1993 (submitted).

[18] J. Jaffar, J-L. Lassez, and M. J. Maher. A theory of complete logic
programs with equality. In Proc. of the Int. Conf. on FGCS, 175–184.
ICOT, 1984.

[19] G. N. Kartha. Soundness and Completeness Theorems for Three For-
malizations of Actions. In Proc. of IJCAI, 1993. (to appear).

[20] R. Kowalski. Logic for Problem Solving, volume 7 of Artificial Intelli-
gence Series. Elsevier, 1979.

[21] V. Lifschitz. On the Semantics of STRIPS. In Proc. of the Workshop
on Reasoning about Actions and Plans. Morgan Kaufmann, 1986.

[22] M. Masseron, C. Tollu, and J. Vauzielles. Generating Plans in Linear
Logic. In Foundations of Software Technology and Theoretical Computer
Science, 63–75. Springer, Volume 472 of LNCS, 1990.

[23] J. McCarthy. Situations and Actions and Causal Laws. Stanford Arti-
ficial Intelligence Project, Memo 2, 1963.

[24] J. McCarthy. Applications of circumscription to formalizing common-
sense knowledge. Artificial Intelligence, 28:89–116, 1986.

[25] J. McCarthy and P. J. Hayes. Some Philosophical Problems from the
Standpoint of Artificial Intelligence. Machine Intell., 4:463–502, 1969.

[26] R. Reiter. Formalizing database evolution in the situation calculus. In
Proc. of the Int. Conf. on FGCS, 1992.

[27] J. Schneeberger. Plan Generation by Linear Deduction. PhD thesis,
Intellektik, TH Darmstadt, Germany, 1992.

[28] J. S. Sheperdson. SLDNF–Resolution with Equality. Journal of Auto-
mated Reasoning, 8:297–306, 1992.

[29] M. Thielscher. AC1-Unifikation in der linearen logischen Program-
mierung. Diplomarbeit, Intellektik, TH Darmstadt, 1992.

[30] M. Thielscher. Representing Actions in Equational Logic Programming.
1993. (forthcoming paper).

