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Abstract

The capability of revising its beliefs upon new informatiara rational and ef-
ficient way is crucial for an intelligent agent. The claskigark in belief revision
focuses on idealized models and is not concerned with catipoal aspects. In
particular, many researchers are interested in the logicglerties (e.g., the AGM
postulates) that a rational revision operator should [sssgeor the implementation
of belief revision, however, one has to consider that aniisteaagent is a finite
being and that calculations take time. In this paper, wethice a new operation
for revising beliefs which we cateinforcement belief revisiorThe computational
model for this operation allows us to assess it in terms of timd space consump-
tion. Moreover, the operation is proved equivalent to a @®inal) model based
on the concept of possible worlds, which facilitates shawtimat reinforcement
belief revision satisfies all desirable rationality poatak.

1 Introduction

Belief revision is the process of adapting the beliefs of gerna to accommodate
new, more precise, or more reliable information that is fdgdnconsistent with
the existing beliefs. The formal study of belief revisiorokoas starting point the
work of Alchourron, Gardenfors, and Makinson (AGM) dugithe first half of the
1980s][lAichourrénet al., 198%;[ Alchourron and Makinson, 1885The AGM frame-
work is an idealized mathematical model of belief revisiirassumes that the beliefs
of an agent are represented by a so-cdllelief set a logically closed set of sentences
in some underlying languagg . The new evidence is also represented by a sentence
in £, and a revision operator is then modeled as a function mgppacurrent belief
set and the new evidence to a revised belief set.

To provide general design criteria for belief revision aers, the AGM trio de-
veloped a set of so-calledtionality postulateg§Alchourronet al, 1989. The guiding
principle of the AGM postulates is that economy of informationr minimal change
which means to not give up currently held beliefs and not gerenew beliefs un-
less necessary. As pointed out by several researff@argenfors and Makinson, 1988;
Spohn, 1988 the AGM postulates do not uniquely determine a revisiorraioe, and




revision operators should, in general, exploit extradaginformation concerning the
preference (or plausibility) over different beliefs in erdto determine the revision
strategy. ThdTiviality Theorenof [[Gardentors, 19¢8hows that, when accepting the
AGM postulates, it is improper to include extra-logicalf@rence information into the
belief sets. As a consequence, we need to distinguish & ketiédrom abelief state
(also calledepistemic stafe The latter contains, in addition to its belief set, theraxt
logical preference information (also referred tacasditional belief§Boutilier, 1993)
which determines the revision strategy. Like[Darwiche and Pearl, 199, 7we will
therefore consider revision operators to be functions dieftetates in this paper.

For the incremental adaptation of beliefs, the AGM posadatroved to be too
weak [Darwiche and Pearl, 199 due to the excessive freedom they permit on the
change of the conditional beliefs. This has led to the dewraknt of additional
postulates for iterated belief revision by Darwiche andrPéaP), among others.
Still, however, the AGM and DP postulates together are tamssive in that they
support belief revision operators which assume arbitrapettdencies among the
pieces of information which an agent acquires along its waliese dependencies
have a drastic effect when the agent makes an observatiarhwbitradicts its cur-
rently held beliefs: The agent is forced to cancel everghinhas learnt up to
this point[Nayaket al, 1996; Nayalet al, 2003. To handle dependencies properly,
we have recently proposed the postulatelrafependencas a complement to the
AGM+DP postulate¢Jin and Thielscher, 20(.7

In classical belief revision, the agents are consideredate lunlimited memory,
time, and deductive ability. For implementing belief réois however, one has to con-
sider that any realistic agent is a finite being and that ¢aficns take time. Therefore,
the beliefs of a realistic agent should always be finitelyregpntable; and a revision
operator should not only behave rationally but also consameasonable amount of
time and space. Arguably, adapting belief revision to siidisettings is far from triv-
ial, as we need an approach which takes these characten$timiteness as well as
memory and time limitations into accouWassermann, 19)9

In this paper, we introduce a concrete belief revision ojperaalledreinforcement
belief revision Specifically, we present a computational model for reicéonent re-
vision which operates on finite sets of integer-weightedesees. This operation is
proved equivalent to a possible world-based (semanticafjety which enables us to
show that reinforcement belief revision satisfies the dédgrrationality postulates. In
addition, we will analyze the computational complexity efnforcement belief revi-
sion. Finally, we will place our result in the context of pibiity theory, which is a
field of research that is intimately related to belief remisiDubois and Prade, 1992;
[Duboisetal, 1994: In [Benferhakt al, 2004, for instance, it is shown that some
well-known revision operators can be directly mapped td-kebwn conditioning op-
erations in possibility theory. In this paper, we will likesg show how reinforcement
belief revision can be re-cast in the possibilistic settifige result is a novel approach
to revising possibilistic knowledge states.

The rest of the paper is organized as follows. In the nexiaegctve recall the
classical AGM postulates, followed by postulates for itedarevision. I-Seciionl 3
we introduce reinforcement belief revision by giving botbeanantical and a computa-
tional definition. Reinforcement belief revision is assess terms of its logical prop-
erties and computational complexity. [D_Seciidn 4, we redetoeinforcement belief
revision in the setting of possibility theory. We concludéSeciionb with a detailed
comparison to related work. Proofs of the main results cdobed in the appendix.




2 Preliminaries

In this paper, we will deal with a finitary propositional larage £ generated from a
finite setP of atomic propositions. It is assumed thatis equipped with the classical
consequence relatior . Given a setS of sentences,(Cn(S) consists of all logical
consequences of', that is Cn(S) = {a € £|S + «}. Two sentencesy and
are logically equivalent, writterv = 3, iff o« € Cn({3}) and 3 € Cn({a}). A
propositionainterpretation(also referred to aspossible worldlis a mapping fromP
to {T, L}, andthe setof all interpretations is denoted®y . For the sake of simplic-
ity, we may represent an interpretation by the set of atomghtioh it assignsT . An
interpretation is called amodelof S (denoted byW = S') if it truth functionally
maps all sentences i§ to T . The set of all models of5 is denoted byMods(S) .
Conversely, given a sétV of possible worlds,Th(V) denotes the set of all sentences
which are true in each element &% . For easier readability, in the rest of the paper
we will often identity a singleton set with its element. Fostance,Mods({a}) may
also be written as\fods(«) .

A belief set K is a logically closed set of sentences, thati§,= Cn(K). The

def

expansiorf a belief setX’ by a sentence is defined as:K+a = Cn(KU{«}) . For
the sake of generality, we deliberately consider a belekest as an abstract object
from which we can derive a belief set, denoted Byl (K) , and also some extra-logical
preference information. In concrete constructions ofgievi operators, the extra-logic
preference information could take the form of a relationralie set of all sentences, or
a relation over all possible worlds, etc. Moreover, we say to belief statesCy, Ko
arelogically equivalentwritten askC; = Ky ) iff Bel(K1) = Bel(Ks) .

A total pre-order< (possibly indexed) is a reflexive, transitive, binary rielat
such that for anyw, 5 : either a < 5 or 8 < a. The strict part of< is denoted by
<, thatis,a < g iff « < g and § £ «. As usual,a = [ abbreviatesa < f3
and 8 < «. Given a total pre-ordeK on S, we denote bymin(S, <) the set of all
minimal elements ofS wrt. <. Natural numbers and positive integers (i.e., natural
number greater thafi ) are denoted byN and NT , respectively. Theardinality of a
set S is denoted by||S||, and thesizeof S (the number of symbols occurring il )
is denoted by|S]| ,

2.1 The AGM Postulates

The AGM postulateg§Alchourronet al, 1989 provide a mathematical foundation for
belief revision by defining criteria for rational revisiop@rators. The original postu-
lates have been reformulated[iDarwiche and Pearl, 19pas follows, wherek * o
denotes the belief state resulting from the revision ofdfeliate by sentencex:

(Kx*1) Bel(K * o) = Cn(Bel (K * «v))

(K+2)  ac Bel(Kxa)

(K*3) Bel(K * «) C Bel(K) + «

(Kx4) If = ¢ Bel(K) then Bel(K) + o C Bel(K * «)
(Kx5) Bel(K  «) is inconsistent only if- -«
(K*6) If a=pthenKxa=Kx*g



(KxT7) Bel(K x (e« A3)) C Bel(K*a) + 3
(K %8) If =3 ¢ Bel(K x «) then Bel(K x «) +  C Bel(K % (a A )

Readers are referred [Gardenfors and Makinson, 198®r a detailed account of the
motivation and intuition behind these postulates.

Various approaches to constructing AGM revision operatbange been proposed
in the literature. Here, we will only sketch the basic ideasam of them which are
crucial to the rest of the paper.

2.1.1 Epistemic Entrenchment

[Gardenfors and Makinson, 198@ave suggested to represent the extra-logical prefer-
ence information of a belief state by a total pre-order onuhéerlying languageC .
Formally, anepistemic entrenchment ;- on a belief setK is a binary relation over

L satisfying the following conditions:

(EE1) If o <k B and B <g v,thena <k v

(EE2) If ot 3,thena <g g

(EE3) Foranya and 3, a<g aApor 8 <g aAf
(EEA4) WhenK is consistent ¢ K iff a <x (8 forall
(EEDS) If 3 <k « forall g,thent «

Intuitively, o <x 6 meansthat3 is at least as plausible as.

It has been shown bjGardenfors and Makinson, 198®at the AGM postulates
characterize exactly the class of epistemic entrenchipased revision operators: A
revision operator satisfies (C « 1)-( K x 8 ) iff for any belief state/C there exists an
epistemic entrenchment ., on Bel(K) , such that for any sentence:

L if F-a«

(Cx) Bel(K x o) = { {B € L]|=a <pape, ~aV B} otherwise

2.1.2 Faithful Ranking

From quite a different perspectiviKatsuno and Mendelzon, 19Phave proposed a
constructive model for belief revision based on possibleldgo Formally, afaithful
ranking < on a belief setK is a total pre-order on the set of all possible worlds
O, , such that for any possible worldd;, W5 :

1. If Wl,Wg ': K,then Wi =g Wy

2. If W, E K and W, = K, then W < Wo

The intuitive meaning ofil; <x W5 is that W, is at least as plausible % .

Similar to epistemic entrenchment-based revisigaisuno and Mendelzon, 1901
have shown that the AGM postulates characterize exactlgléss of faithful ranking-
based revision operators: A revision operatosatisfies (C « 1)-( I « 8 ) iff for any
belief state IC there exists a faithful ranking<,.,c;, on Bel(K) such that for any
sentencex :

L if -«

Bel(K % o) = { Th(min(Mods(a), < su))  Otherwise



2.2 Postulatesfor Iterated Revision
2.2.1 TheDP Postulates

It is well-known that the AGM postulates sanction impropespgonse to sequences of
new information due to the excessive freedom they allow enctiange of the con-
ditional beliefs. TherefordDarwiche and Pearl, 19phave proposed four additional
postulates for iterated belief revision:

(DP1)  If BF o, then Bel((K = a) % 8) = Bel(K * 3)
(DP2)  If B+ —a, then Bel((K * o) * 3) = Bel(K « )
(DP3) If a € Bel(K * f3),thena € Bel((K * a) * [3)
(DP4)  If ~a ¢ Bel(K = 3) , then —a ¢ Bel((K * «) * 3)

A detailed account of the motivation and interpretatiorhefste postulates can be found
in [Darwiche and Pearl, 1997

To provide formal justificationgDarwiche and Pearl, 19pfave also given a nice
representation result for Postulates (DP1)-(DP4): kebe a revision operator satis-
fying Postulates £ *1)-( Kx 8), then x satisfies Postulates (DP1)-(DP4) iff the corre-
sponding faithful rankings satisfy the following condit

(DPR].) If Wl, Wo ': a, then Wy < Ws iff Wi <rxcsa Wo
(DPRZ) If Wl, Wo b& a, then Wy < Ws iff Wi <rcsxa Wo

(DPR3)  If W) E a and Ws [~ o, then W, < Wy implies
W1 <Kcsa Wa

(DPR4)  If W, E a and Ws [~ o, then W < W, implies
Wi Zicsa Wa

This result gives an elegant characterization of the seglgnimatural constraints that
the DP postulates impose on the change of the conditioniafselWhen /C is revised

by «, Conditions (DPR1) and (DPRZ2) require to retain the redapilausible ordering
of any two « -worlds (-« -worlds, respectively); Conditions (DPR3) and (DPR4) re-
quire that if ana -world W is (strictly) more plausible than aa -world W5, then
W, continues to be (strictly) more plausible th&i, .

2.2.2 Two Radical Revision Operators

The AGM and DP postulates together still do not uniquely aetee a revision oper-
ator. In the following, we present two interesting operatanown from the literature
which satisfy all AGM/DP postulates.

has proposed a specific revision operator (knowneaaral revi-
sion) which satisfies the following:

(CB) If =5 € Bel(K x «), then Bel((K x o) % ) = Bel(K % 3)

1For the sake of simplicity< Ba(x) and Xpe(xc«q) are abbreviated by<x and =<x.q , respectively.



This postulate alone is in fact a strengthening of the set®pDstulates, in the sense
that (CB) implies all of them (in the presence of the AGM pdates) but not vice
versa.

A semantical characterization for (CB) has been given in
[Darwiche and Pearl, 197

(CBR) If Wl,WQ b& Bel(/C * a) s then W1 <K W2 iff W1 <Kxa W2

Since Condition (CB) forces the agent to cancel the previahservation upon
any new observation which contradicts its currently heltielie it has been criti-

cized as too radical to serve as a general rationality patst{iNayaket al, 2003;
Jin and Thielscher, 2007

So-calledexicographic revisior{with “naked evidence”) satisfies thpostulate of

RecalcitrancdNayak, 1991 Nayakt al., 200]:
(Rec) If 3¥ —a, then o € Bel((K * a) * 3)

Note that, in the presence of Postulatds £ 1)-( X x 8), we can derive (DP3) and
(DP4) from (Rec), but neither (DP1) nor (DP2).
The semantical characterization of (Rec) is as follfWayaket al,, 2003:

(RecR) If W1 | a and Ws E —a, then Wy <jcuq Wa

As shown in [[Konieczny and Perez, 20p(Postulate (Rec) is only suitable when
the agent has full confidence in the new information; hend®d, cannot serve as a
general rationality postulate (diJin and Thielscher, 20 Tor a counterexample).

2.2.3 Postulate of Independence

While both (CB) and (Rec) are too radical, the DP postulatésnea are
too weak because they do not address the problem of impliepen-
dencelJin and Thielscher, Z0(.7 The additional postulate dhdependenchas been
proposed to overcome this weakness:

(Ind)  If —a ¢ Bel(Kx—f3) then o € Bel((Kxa)x—[3)

Note that (Ind) is a weakening of (Rec), while it is still sigpenough to imply (DP3)
and (DP4). Readers are referred[fn and Thielscher, 20p7or a detailed discus-
sion on the problem of implicit dependence, and the motiveéind interpretation of
Postulate (Ind).

The semantical characterization for Postulate (Ind) ioHsvirs:

(IndR) If W1 =« and Ws | —a, then Wy < Wy implies
Wi <icsva Wo

Arguably, Condition (IndR) is quite natural and not overynstrained: Whent is
revised by« , Condition (IndR) requires a worldll’; confirming the new information
« to become more plausible than a worlldl, violating o, provided thati?; was at
least as plausible a&/; .



2.3 Cut BaseRevision

The constructive models based on epistemic entrenchmefargaithful ranking seem
mathematically elegant. However, in order to construchaplémentable revision op-
erator, we need feasible representatioof belief states. Obviously, it is infeasible to
encode on a computer an explicit belief set, since it is itdim general. Many re-
searcher§Wobcke, 19902 Nebel, 19phave therefore suggested to represent the log-
ical contents of a belief state bykelief basewhich is a finite set of sentences (not
logically closed). MoreovefiNebel, 1998 has argued that the size of the extra-logical
preference information of a belief state shouldooéynomially boundedby the size of

its belief base.

Cut base revisiois a revision operator proposed fiNebel, 1991 based on a very
compact belief representation. Formallypgoritized base (B, <p) consists of a
belief baseB and a total pre-ordeK g on B . Note that a prioritized baseB, <g)
can also be represented by a totally ordered family of sesemtfenceg By, ..., B),)
such thata <p S iff there existi, j with a« € B;, 3 € B;,andi < j.

Given a prioritized baséB, <) , thecut-sebf a sentence is defined as follows:

cute,(a)Z{B e B|{yeB|B<pv}ia} 1)

Put in words, the cut-set oft consists of all sentences iB; U ... U B,, such that if
the next lower classB;_; is added, thervx becomes entailed.

Let Cn(B) be the belief set induced from a prioritized base, <), then ac-
cording to[[Nebel, T99} the total pre-order<p can be generalized to an epistemic
entrenchmeni ., 5, on Cn(B) by letting

a Zcup Biff cut<,(B) C cut< () 2

Formally, cut base revision is defined as follows:
(B, <B) *cut @ < cut <, (ma) U{a} ©))

Note that cut- ,(—«) is a subset ofB; therefore, the size of B, <p) *.u: a is
linearly boundedn the size of B and «..

In [Nebel, T99}it has been shown that cut base revision is essentially atespic
entrenchment-based revision: Suppose tti2t<p) is a prioritized base an& ., s,
is the epistemic entrenchment as definedby (2), then for amgscex :

L if F-a

Cn((B, SB) *eut Oé) = { {6 c L | - <Cn(B) -V ﬂ} otherwise

Nebel’s proposal constitutes a nice step from theory to adatfpn. Unfortunately,
cut base revision is not an iterated revision operator strmaps a prioritized base and
the new information to a flat belief base. It is therefore iisgible to do a subsequent
revision. This is also referred to HjHansson, 20(I3as the problem otategorial
mis-matching It is not difficult to see that categorial mis-matching atexxurs in the
constructive model based on faithful ranking.

3 Reinforcement Belief Revision

It is an interesting question whether we can construct afaatbry iterated revision
operator by generalizing cut base revision. Unfortunatkl/following discussion will
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Figure 1: Two naive generalizations of cut base revision

show that at least a naive approach does not work. To makeesetation easier, we
assume that a prioritized base is represented by a totalgred family of classes of
sentences By, ..., B,) .

Suppose that a prioritized ba$®, . .., B,,) is revised bya and cut ,(—«a) =
U{Bi,.-.,Bn}. According to [B), the revised belief base consisty 8%, ..., B,)
and «. Arguably, we have every reason to assume {13y, ..., B,,) is ordered as
before. The only problem is, where to put the new informaton Without any further
information, we may have two options: to renderless plausible thaiB;, ..., B;,)
as shown if Figure] 1(a); or to consider to be more plausible thatB;, ..., B,,) as
shown i{FigureTi(b).

Formally, we can define the so-callskleptical cut base revisiaas follows:
(B’ SB) *zut « d:ef <Bl = C’u,t<B(ﬁOé) U {Oé}, §B1>

where g <p, v iff =« or 8,7 € cut<,(—a) and 8 <p ~. Itis not difficult
to see that skeptical cut base revision satisfies the AGMufaist as well as Postu-
late (CB).

Similarly, the so-calle@dredulous cut base revisias defined as follows:

<Bv §B> *gut « = <Bl = CUt<B(_‘O‘> U {a}a §B1>

where 8 <p, v iff vy =« or 8,7 € cut<,(—«) and 3 <p . Credulous cut base
revision satisfies the AGM postulates, (DP1), and (Rec)yimlates (DP2).

Note that both skeptical and credulous cut base revisioa theair own assumptions
about the plausibility of the new information. One may artjust these assumptions
could be violated in many situations. In the sequel, we wilgent a generalization
of cut base revision which deals with the plausibility of treav information in a more
appropriate manner.

In our approach, a belief state is represented by a finite fsitteger-weighted
sentences. Formally, a&pistemic entrenchment ba@eE base, for short), denoted by
= = (B, f), consists of a belief bas®& and a mappingf from B to N+ A The

2 EE bases and related notions that will be introduced in thigien are not new. Similar belief rep-
resentations have been used in various computationalioeviserators[Williams, 1992;[Dixon, 1994;
[Williams, T994. Moreover, knowledge bases in possibilistic loffitiboiset al, 1994 are essentially EE
bases modulo a monotonic scale transformation. What makewark distinct, however, is a novel and
better approach to revising EE bases. As we will sden_"Jedis this also gives us a new approach to
revising possibilistic knowledge bases.




belief set of = consists of all logical consequencesBf, that is, Bel(Z) = Cn(B) .
For any sentencegg € B, we call f(() its evidence degreelntuitively, a sentence
with a larger evidence degree is considered more plausible.

Given an EE bas& = (B, f), we denote by=|,, the set of sentences i3
whose evidence degree is exactly:

Elm {8 € B| f(8) = m}

Moreover, =™ is the set of sentences whose evidence degree is greatenthan

= 2 J (=i = m)

The belief degree (also callednk) of a sentences wrt. an EE base&s = (B, f)
is defined as follows:

0 if B3
Rank:(5) = { oo elseif -4 4)
max({m|Z™ + 8}) otherwise

We may consider an EE base as a collection of some uncerfaimiation, in which
the rank of a sentence can be interpreted as its certaintie tNat it is possible that
Rank(5) > f(B) for a sentenced € B, in which case we say that is redundant
in =. Therefore, the evidence degr¢é3) of a sentence’ € B is only alower bound
of its belief degree. It is not difficult to see that we can remoedundant sentences
from an EE base without affecting the belief degrees of aitesgces.

An EE base= = (B, f) is a generalized prioritized base in which the cut-set of a
sentencex can be obtained as follows:

cuts(a) = {0 € B|Rank(a) < f(0)} (5)

Note that the notion of cut-set defined B (5) generalizestieedefined by[{1).
Not surprisingly, we can also derive an epistemic entreresttra,,,=, from an
EE base= = (B, f) by stipulating:

a <= B iff Rank (o) < Rank(9) (6)

In our setting, an iterated revision operator should nowfometion which maps an
EE base and the new information to a revised EE base. It idwmentioning that the
guantitative nature of EE bases allows to represent moregfimi@ed beliefs, e.g., the
belief that o is “much more plausible” thars . As we will see, the quantitative nature
of EE bases also allows for a fine-grained control on beligtien. The discussion in
suggests that one major problem is to find an appte evidence degree
for the new information in the revised EE base. Obviouslyh& new information is
a mere sentence , then the revision operator has to assigmtaan evidence degree
via a fixed scheme. But it is unlikely that there exists suctxadfischeme suitable
for all different kinds of applications. Therefore, basedtbe same considerations
as in[Spohn, T98R we consider a more general revision scheme in which the new
information consists of a sentenee along with anevidence degreen € N+ .

By generalizing cut base revision, we now define so-cakétforcement base re-
visionas follows:

(B, f) #r (a,m) = {(B, f(B) — Rank(~a)) | B € cutz(—a)}
U{{aV B, f(B)+m)|B € B} @)
U {{a,m)}



Note that the new sentence is assigned evidence degree in the revised EE base.
The main difference between cut base revision and reinfioecg base revision is that
the latter adds a disjunctiofy vV « for every sentence € B. These disjunctions
will obviously not affect the logical contents of the reWdSEE base, but they are nec-
essary to avoid (undesirable) implicit dependerﬂid!sls easy to see that the size of
(B, f) * {a,m) is linearly bounded by the size dB, f) and («, m) .

To see how reinforcement base revision works, let us conaidassical example
introduced by[Darwiche and Pearl, 19p7

Example 1. We are introduced to a ladX who sounds smart and looks rich, so we
believe that X is smart andX is rich. Since we profess of no prejudice, we also
maintain thatX is smart even if found to be poor and conversely, is rich even if
found to be not smart. Now, we obtain some evidence tKais in fact not smart,
we remain of course convinced that is rich. Still, it would be strange for us to say,
“if the evidence turns out false, and turns out smart after all, we would no longer
believe that X is rich”. If we currently believeX is smart and rich, then evidence
first refuting then supporting thaX” is smart should notin any way change our opinion
about X being rich.

Let s and r represent respectively tha is smart andX is rich. Assume that
our initial belief state is encoded b = {(r, 1), (s, 1), (r V s, 2)}A and we first learn
that X is not smart with evidence degre®. Since Rank(——s) = 1, according
to (@), the revised EE base B, = = #, (—s,2) = {{r Vs, 1), (=s,2), (r v —s,3)} B
Suppose we now learn thaf is smart with evidence . Since Rankg, (—s) = 2, we
obtain Zs = Z1 %, (5,2) = {(rV =s,1),(s,2),(r VsVs,3)}. Itis not difficult to
see thatRanlg, () = 1, which means that we continue to believe tHétis rich (as
expected).

As reinforcement base revision is a generalization of cgebavision, one may
wonder whether it suffers from a well-known weakness of #itet, namely, the fail-
ure of proper belief preservation. Consider the foIIowingarepI& Suppose that
= = {{p,1),{q,2),(r,3)} is revised by (—q,4). At first glance, it seems indeed
undesirable that, in the revised EE base, 1), (pV —q, 5), (rV —q,7), (—q,4)}, p is
not believed anymore and the rank ofis lowered to1. However, this is indeed the
intended behavior, as the following argument shows.

As we have noted ifidin and Thielscher, 20D,7for any revision operator satisfy-
ing the AGM postulates a belief state (regardless of itsasgmtation) will encode
some implicit dependencies among beliefs. More specijfic@lbndition (C'x) in
shows that if V =« is not more entrenched thana, then 5 will
not survive ana -revision (because? depends on-a, so its removed together with
-« ). In the above case&s encodes implicitly that p depends ony” since p Vv ¢ is
not considered to be more plausible than Therefore, it is perfectly reasonable and
inevitable thatp is removed after a revision byiq . An interesting question is how we
can obtain a belief state which does not encode undesimaiplécit dependencies like
“p depends ory "? In fact, it is a major advantage of reinforcement basesiewithat

SWe refer readers who are interested in the problem of intlependencies {@in and Thielscher, 2007
for a detailed discussion.

“Readers are invited to check that is equal to ( +, (r, 1)) % (s, 1) aswell as(@*;, (s, 1)), (r, 1) .

SFor simplicity, redundant sentences have been removedyenill always tacitly do so in the rest of
the paper.

6We are grateful to an anonymous reviewer of this paper fogesiing this example.
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it will not introduce undesirable dependencies. For instaassume that the initial be-
lief state is empty and we subsequently leariy, » with individual evidence degrees.
In this case,=" = ((0 %, (p, 1)) *, {q,2)) . (r,3) will encode implicitly thatp, ¢, r
are independent of each other. Therefore, a revision bydbation of one proposition
will not alter the ranks of any of the other propositions. Erample, it is not difficult
to see thatRank (p) = 1 and Rank (r) = 3, whereZ" = Z' x, (¢, 4) .

The fact thatr is lowered to 1 in the first example,{(p, 1), (¢, 2), (r,3)} *,
(—q,4) , can be explained as follows. Singedepends on- in the initial belief state,
r can be considered a strong supporiofTherefore, it is reasonable that we become
less certain about after ¢ is learned to be false. In contrast, the rankrofwill re-
main the same whe@’ is revised by—q becauseg is not dependent om in ='.
The following result shows that a revision of one sentenageimeral will not affect the

rank of another sentence, unless they are somehow logieddlied:

Proposition 3.1. Suppose thak; is the result of revising an EE base by (—a,m) ,
where « is an arbitrary sentence andn an arbitrary natural number. Then for any
sentences :

Ranlg, (8) # Rank(3) iff Ranks, () # Rank(«)
where 25 = = x,. (=3, m’) for an arbitrary natural numberm’ .

We remark that more logical properties of reinforcemenebrasision will be pre-
sented later in this section.

3.1 OCF-Based Semantics

To provide a better intuition about reinforcement basesieni, we give an alternative,
semantic characterization, which originate§dm and Thielscher, 20Dand is based
on Spohn’sordinal conditional functiongOCF, for short)[Spohn, 198B Originally,
an OCFk is a mapping from the set of all possible worl@s: to the class of ordinals.
Like in for mathematical simplicity we take the range of an OEFo
be the natural numberdy . For any possible worldV , we call k(W) therank of
W . Intuitively, the rank of a world represents its degree gplausibility. Hence, the
lower its rank, the more plausible is a world.

Any OCF k is a belief state from which we can induce a belief set andthftdi
ranking <y , where Bel(k) is the set of sentences which hold in all worlds of rank

Bel(k) = Th{W | k(W) = 0}) (8)
In contrast td/Spohn, 198B we do not require the set of possible worlds with raink

to be non-empty. Therefore, our approach can also deal méttmisistent belief sets.
An OCF k is extended to a ranking of sentences as follows:

S if -2
k(B) = { min{k(W)|W = —3)} otherwise ®)

Put in words, the rank of a sentence is the lowest rank of adwmorivhich the sentence
does not hol@. Hence, the higher the rank of a sentence, the firmer the heligfand
the belief set consists of all sentences with rank greagar th

In Spohn’s original proposal, the rank of a sentence is thiest rank of a world in which it is true. So
the rank of 3 there is equal tok(—3) here.

11
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Figure 2: Visualization of reinforcement OCF revision

It is not difficult to see that an OCK determines an epistemic entrenchment as
follows:
a <y fiff k(a) < k(B) (10)

In the sequel, we present a generalized revision operattegdeceinforcement OCF
revision) which also allows to assign different evidence degreeswoinformation. An
OCF k is revised according to new informatian with evidence degree: € N* as
follows:

EW) —k(-a) W E«

(k5 )(W) £ { k(W) +m otherwise D

Put in words, the rank of amx -world decreases by:(—«), whereas the rank of a
—a -world increases byn .

A graphical illustration of the principle of reinforceme®@ICF revision is given
in [Figure 2: Circles to the left (right) of the vertical daltéine represent -worlds
(—a -worlds, respectively); the vertical coordinate of a pbksworld denotes its rank;
and the arrow starting from a possible world indicates trengle of its rank.

3.1.1 Equivalence Results

To show the equivalence of reinforcement belief revisiod sginforcement OCF re-
vision, we need a mapping from EE bases to OCFs. Formally,@Gif & is derived
from an EE base& = (B, f) by letting

0 if W= B

ks(W) = { max({f(3) |3 € BandW [~ 3}) otherwise (12)

Put in words, the rank of a possible world is the maximal endcdedegree of all sen-
tences that it does not satisfy.

The following result shows that an EE base and its induced @bde essentially
the same belief stafk.

Proposition 3.2. Suppose thaE = (B, f) is an EE base andiz the induced OCF
as defined by{12), then for any sentente

Rank(5) = k=(9)
8A similar result can be found in possiblistic lodiouboiset al, 1994 (cf. [Proposition 413).
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@) @)
k= k=i
@@

Figure 3: A commuting diagram for reinforcement base revisind reinforcement
OCEF revision

Recal[Example]l. Itis easy to see that the EE kAse {(r,1), (s, 1), (r V s,2)}
induces the OCH: shown in(Tablell (middle column; assumiiy= {s,t}). Now,
with k(=—s) = 1 and following [11) we obtain the OCE”; , shown in the right
column of Tahlell. We remark that this’; , is exactly the OCF induced from the EE
base=; = {(rVs,1),(-s,2), (r vV -s,3)}, which is the result of revisingE by —s

with evidence degreé .

| possible worlds] k | k77, |

Wy = {s,r} 0 2
W2 = {S} 1 3
Wy = {r} 1] o
Wy =1{} 2] 1

Table 1: An example of reinforcement OCF revision

The following theorem shows that the two revision operab@fsave symmetrically
in general. That is to say, for any EE baSeand new informatior{«, m) , the revised
EE baseZ *, (o, m) induces exactly the revised OCkz;,, (see als@ Figurg 3).

Theorem 3.3. Suppose thatE is an EE base and= the OCF induced from=.
Let (a,m) be any new information, then for all possible worlts :

(W) = k=125 (W)

=o,m

where 21 = = «,. {a, m) .

As a direct consequencefof Proposition] 3.2[and Theorelm & Bawe the following
equivalence result.

Corollary 3.4. Suppose that is an EE base andiz the OCF induced fronz= .
Let (o, m) be any new information, then for any sentente

Rank, (3) = k=g, (0)

where 21 = = «,. {a, m) .
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3.2

Logical Properties

The equivalence result enables us to prove important lbgicgerties of reinforce-
ment base revision by referring to reinforcement OCF revignstead. The reason for
doing so is two-fold: On the one hand, it is much easier to deéthlthe latter due to its
simple and intuitive construction. Moreover, reinforcet@CF revision has already
been investigated ifJin and Thielscher, 20)7 In the following, we summarize the
most important of the known properties.

Theorem 3.5. [Jin and Thielscher, 20(TConsider an OCFk .

1.

Assume an arbitrary but fixed evidence degree for any newniration. Then
reinforcement OCF revision satisfies the AGM postulates«(1)-(/C = 8) as
well as (DP1), (DP2), and (Ind).

. Foranym, my € NT, reinforcement OCF revision satisfies the following:

(EDP1) If BF a,then (k0% )5 =k

a,m1/B,mo B,ma2
(EDP2)  If B+ —a, then (kI )5, = ki,

(EInd) Ifthere existsm such thatk”; = —a,then
(krx % Fa

a,mi/=3,ms

. Let (o, m) be some new information, then

kam (@) = k(a) +m

All of these formal properties of reinforcement OCF revisae inherited by rein-
forcement base revision. Specifically,

1. Assuming an arbitrary but fixed evidence degree for anyinewmation, we ob-

tain a standard iterated revision operator and the desiratibnality postulates
are satisfied,;

2. This holds also for the more general case of varying eddelegrees;

3. Reinforcement base revision does indeed have a reimf@ceeffect, which,

from a pragmatic point of view, is a desirable effect in parar for domains
with several independent information sources.

This is summarized in the following corollary, which is aefit consequence of the
above-mentioned properties and the equivalence of raiafent belief revision and
reinforcement base revision.

Corollary 3.6. Consider an EE-basé& .

1. Assume an arbitrary but fixed evidence degree for any newniation. Then

reinforcement base revision satisfies the AGM postulates (1 )-(K * 8) as
well as (DP1), (DP2), and (Ind).

2. Foranym, my € NT, reinforcement base revision satisfies the following:

(EDP1") If BF a,then (Ex, (o, m1)) *, (3, ma) = E x,. (3, ma)
(EDP2") If BF —a,then (2, (a,mq)) *, (3, ma) = E %, (G, ma)
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(Elnd") If there existsm such that= «,. (3, m) ¥ -« , then
(B (a,ma)) #r (B,m2) b o

3. Let (o, m) be some new, non-tautological information. &t = = x,. (o, m) ,
then
Rank, (o) = Rank (B, a) + m

3.2.1 Degreeof Syntax Irrelevance

Strictly speaking, reinforcement base revision violatesall’s principle ofirrelevance
of syntaX|Dalal, 1988, because the revised belief state is not purely determinéiueb
logical contents of the original belief state. The prineipff irrelevance of syntax is
motivated by Newell’s influential proposal which statest tt@ behavior of an intelli-
gent system should be specifiable onkhewledge leveNewell, 198%; that is to say,
the behavior of the system is determined solely by the cdsitahits knowledge (in
our context, beliefs), independent of the symbolic represt@n. In the following, we
show that reinforcement base revision does indeed not depethe syntax of an EE
base, so that it actually complies with Newell's idea.

To this end, we call two EE base€s; and =, epistemically equivalerniff their
induced epistemic entrenchments (as definedby (6)) arevalgot; that is, for any
sentencesy, 3 :

@ <paz,) B iff a <pei(zy) B

The following result shows that two epistemically equival&E bases yield the
same beliefs when revised by the same sentence.

Proposition 3.7. Let =;, =5 be two epistemically equivalent EE bases, then for any
sentencen: and evidence degrees, ms € N*:

Bel(Z}) = Bel(=Z))
where &) = = *, (a,my) and =5 = Zg %, (o, ma) .

Moreover, we call two EE bases;, and =, equivalentdenoted by=; = =, , iff
for any sentences :
Ranlél (6) = Ranl@z (6)

Obviously, two equivalent EE bases are also epistemicajlyvalent, which in turn
means that they are logically equivalent.

It is not difficult to see that two equivalent EE bases leaddoiealent EE bases
when revised by the same information.

Proposition 3.8. Let =1, 2, be two equivalent EE bases ar{d, m) any new infor-
mation, then

~

. <O‘a m> = D9 ke <O‘a m>

3.3 Computational Complexity

In practice, computational complexity is a very importaritecion for evaluating revi-

sion operatorf§Eiter and Gottlob, 199Z; Liberatore, 1997b; Cadlal., 1999 8 Like
in [[Eifer and Gottlob, 7992 we will consider the so-calleproblem of counterfactual

SWe assume the reader to have basic knowledge in complesxyryth as can be found, e.g., in
[Papadimitriou, T9¢4
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(CF, for short), which means to decide whethiér « - 3 holds for arbitrary belief
statesC and sentences, 3.

has shown that both SAT and VALID can be polynomially (many-
to-one) reduced to the problem of CF for a revision operduat $atisfies(KC « 4) and
(K %5) . This means that the problem of CF is at least both NP-har¢aN&-hard. It
follows immediately that in general the complexity of thelpiem of CF is higher than
NP and coNP, provided that N2 coNP .

For most well-known belief change operators in the litemtuthe problem
of CF has been shown to be at the lower end of so-catlelynomial hierar-
chy [Eiter and Gottlob, 1994; Nebel, 1994; Liberatore, 1497 the following, we
give a brief introduction to this concept. Let be a class of decision problems. Let
PX denote the class of decision problems that can be decidealyingmial time by a
deterministic Turing machine that is allowed to use a pracedalso referred to as an
oracle) for deciding a problemy € X , whereby executing the procedure only costs
constant time. Similarly, N® denotes the class of decision problems that can be de-
cided in polynomial time by a non-deterministic Turing maehthat is allowed to use
an oracle for deciding a probler® € X . Based on these notions, the complexity
classesA} , X}, andII} are inductively defined fok = 0,1,2,...:

AL =P =TI} =P

Apy =P )
P
I = C02k+1

Note that>}] = NP andIIj = coNP. The polynomial hierarchy is then defined as
PH = U0 A} = Ui>0 25 = Up>o ITZ € PSPACE. Itis unknown, but commonly
believed, that the inclusion betwedtH and PSPACE is a proper one.

For problems in AL, it is often difficult to determine their exact complexity.
But by restricting the number of oracle calls, we obtain apantant special class
AL[O(logn)] of problems that can be decided in polynomial time by usinyg toga-
rithmically many oracle calls. Furthermore, inside &f[O(logn)| are the classes of
the so-calledoolean hierarchythat is, problems solvable in deterministic polynomial
time using aconstaninumber of NP-oracle calls.

It has been shown ifiNebel, 199} that for cut base revision the problem of CF
is A5[O(log n)] -complete. Since reinforcement base revision generatisebase
revision, it does not come as a surprise that one can shovhth&rmer has the same
complexity:

Theorem 3.9. For reinforcement base revision, the problem of CFA$[O(logn)] -
complete.

This theorem shows that there is not too much room for imprmm in terms
of computational complexity, sincé\5[O(logn)| inhabits the very low end of the
polynomial hierarchy. In general, unless the size of a betae is restricted, it is hard
to imagine that the problem of CF for any realistic operatitiramly require a constant
number of NP-oracle calls. Of course, if the underlying laage is constrained téorn
sentencesthen the problem of CF for reinforcement base revision besotractable
(i.e., solvable in polynomial time).

Itis also an interesting problem to ask how hard it is to cotaphie revised belief
state given an arbitrary belief state and new informatiohisTs the so-calledunc-
tion problem which is not a decision problem like the problem of CF. Theptexity
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classes for decision problems have natural counterpartarfiction problems: For ex-
ample, FPP (also referred to as NP -easy) represents the set of alliumgtoblems
which can be solved in polynomial time by a deterministiciligmachine that is al-
lowed to invoke an NP -oracle. It turns out that the problencarhputing a revised
belief state (EE base) for reinforcement base revisios fallan interesting complex-
ity class, called NPequivalent Formally, a function problem is NP -equivalent iff
it is both NP -easy and NP -hard. Note that NP -equivalentésatialogue of NP -
complete for function problems, in the sense that if one Njir@lent problem can
be solved in polynomial time, then so can be all other NP aedent problems.

Theorem 3.10. For reinforcement base revision, the problem of computingvésed
belief state iSNP-equivalent.

4 Possibilistic Reinforcement Revision

Possibility theory (also referred to as possibilistic £)ds another research field which
is intimately related to belief revisiolDubois and Prade, 1991; Dub@sal, 1994.
The main difference is that in the former the certainty obimfiation is represented
numerically, whereas in the latter we use ordinal measunesiBuboiset al, 1994.
Therefore, many notions usedin Seciidn 3 can also be foupadsibility theory mod-
ulo an innocuous affine transformation. [Benferhaiet al, 2004, for instance, it has
been shown that some well-known OCF revision operators eatirectly mapped to
conditioning operations in possibility theory. In this 8en, we will likewise show
how our reinforcement belief revision can be re-cast in thespilistic setting. The
result is a novel approach to revising possibilistic knalgle states.

In possibility theory, the beliefs of an agent are represg:b/ a possibility distribu-
tion 7, which maps the set of all possible worl@s. to the unitinterval[0, 1] . Con-
trary to an OCF, a possibility distributionm assigns higher possibility to more plausible
worlds, so thatr(W) = 0 indicates an impossible worléd” while (W) = 1 means
that nothing prevent$V’ from being the real world.

The belief setBel(r) encoded by a possibility distributiom consists of all sen-
tences which are true in all most plausible worlds:

Bel(r) = TR{W | =(W) = 1}) (13)

Given a possibility distributionr , we can define two different measures for a sen-
tence 5 : Thepossibility degreell, () evaluates the extent to which is consistent
with 7 : .

I, (ﬂ) def 0 if F ﬁﬁ.
max({7(W)|W = 5}) otherwise

Thenecessity degreéV,.(/3) evaluates the extent to which is entailed byr f

def{OO if -3

(14)

Nz(8)= 1—TI,(=B) otherwise (15)

Henceforth, whenr is obvious from the context, we denofé, (3) and IL.(3) sim-
ply by N(5) and II(3) , respectively.

def

100riginally, the necessity degree is simply definedis(3) = 1 — I (—3) . In this paper, we will use
this slightly different definition in order to be fully comgiale with the notion of belief degree introduced in
[Seciion B.
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4.1 Possibilistic Conditionings

In possibility theory, the revision of a possibility diditition 7 by a totally reliable
evidencea is obtained by Bayesian-style conditionifienfernait al, 2004, that
is, for any sentencex and any possible world? :

o (W) =n(Wla)

where 7(.|«) is the posterior possibility distribution conditioned on
Two main methods for conditioning have been proposed initeeature. The so-
calledminimum-based conditionirig more of a qualitative nature:

1 if 7(W) =T1I(«) andW [ «
T(Wlma)Z { 7(W) elseifr(W) < II(a) andW = o
0 otherwise

Much like genuine Bayesian conditioning, the so-calfgdduct-based conditioning
re-scales upwards all models of the new evideace

Tt if W = aand(a) #0

def

T(Wixa)= 1 1 else ifW = a andll(a) =0
0 otherwise

It is not difficult to see that bothr(.|,,«) and 7(.|x«) upgrade the necessity degree
of « to 1, provided that# «. Moreover, they are justified to be called conditioning
since both of them satisfy the Bayesian conditioiV) = 7(WW|a) ® II(«) with
® = min (the minimum operator) for minimum-based conditioning and= x (the
arithmetic product) for product-based conditioning.

When the new evidence: is not fully certain, it may come with its own degree
w € [0,1] of possibility. Based on the well-known Jeffrey Rulgefirey, 1965, a
possibility distribution 7 should be conditioned (revised) by an uncertain evidence
(v, w) as follows:

Ty (W) E (W] (0, 0))
where (Wla) it W =
us « I «a
T(Wl{a, w)) = { (1—w)®a(W|-a) otherwise

Again, ® = min for minimum-based conditioning and = x for product-based
conditioning. Note thatr(.|(«,w)) coincides withr(.|a) in casew = 1. Moreover,
both minimum-based and product-based conditioning (witbeutain input{«, w) )
have the effect that the posterior necessity degree o exactly w .

In [Benferhaiet al, 2007 it has been pointed out that there is an intimate relation
between OCF-based revision operators and conditioningssipility theory. In par-
ticular, a scale transformation from an OGFto a possibility distributionr;, can be
obtained by letting:

(W) = e kW) (16)

Then minimum-based and product-based conditioning witbettain input can be
shown to correspond to two well-known OCF revision opematadjustment and con-
ditionalization, respectivefid

1A comparison between reinforcement OCF revision and theseperators can be foundlSecudn 5.
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Figure 4: Correspondence between reinforcement OCF oevésid conditioning

4.2 Possibilistic Reinforcement Revision

We are now ready to present possibilistic versions for bethforcement OCF and
reinforcement base revision. The equivalence betweerihlistsc reinforcement re-
vision and genuine reinforcement revision will be shown.

4.2.1 Reinforcement Conditioning

By slightly modifying product-based conditioning, we olbtéhe followingreinforce-
ment conditioning

(W] a) if Wk a

(1 —w) x7(W) otherwise 17)

A7, (o) = {
Note that reinforcement conditioning use$lV) to compute the posterior possibility
of —a-worlds, instead ofr(W|-a) (as used in product-based conditioning). The
main effect of this modification is that the posterior netgstegree ofa may not be
w anymore. In fact, it can be shown that reinforcement cooliiig always strength-
ens the necessity degree of the new evidence.

Proposition 4.1. Suppose that a possibility distribution is revised by a new non-
tautological evidencex with possibility degreew . Let m; = T ) » then

Ny () = Ny(a) +w — w X Ny ()

Since w > w X Ny («), thisimplies thatN,;, (o) > N, («) . Moreover, it is easy
to see thatV,, (o) =1 iff w=1 or Ny(a)=1.

We now show that there is actually a close correspondeneebkatreinforcement
conditioning and reinforcement OCF revision, given the piag defined by[(1l6) (cf.
also the commuting diagram[in Figure 4).

Theorem 4.2. Suppose that is an OCF and{«, m) (with m € NT) some input
information. Letkz*a ) be the revised OCF using reinforcement OCF revision, then
for any possible worldiV :

(W) = m (W, 1 —e™™))

)(kamn)

The reader may note that an evidence degreé OCF revision is monotonically
mapped to a possibility degrele— e~ in possibilistic conditioning.
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4.2.2 Reinforcement Possibility Base Revision

Possibilistic bases provide a method for the compact reptation of beliefs in pos-
sibility theory. Formally, a possibilistic bas& consists in a belief basé3 and a
mappingg from B to [0, 1], where g(53) is called the possibility degree of a sen-
tence 5 € B. Intuitively, sentences with higher certainty have a higbessibility
degree.

We remark that a possibilistic base is the same as an EE bak@areomonotonic
scale transformation. Therefore, many notions on EE basesaltso be applied to
possibilistic bases. Specifically, given a possibilisas®X. = (B, g) , let X denotes
the set of sentences whose possibility degree is at keast

SY E{p; € Blg(Bi) > w}
Moreover,X>% is the set of sentences with possibility degree greater than
7Y £ {6 € Blg(8) > w}

In analogy to the notion of a belief degree, we define the rsityedegree of a sentence
0 as follows:

0 if Bt/ 3
Ns(B) £{ oo else if - 3 (18)
max({w|X" F 3}) otherwise

Now we are ready to define a revision operator for possilalisases. The ba-
sic idea is quite similar to that of reinforcement base lievis Suppose that: =
{{B1,w1),...,{Bn,wn)} is a possibilistic base an¢v, w) the uncertain new infor-
mation. Letw = Nx(—«), then the revised possibilistic basey = X &, (a, w) is
obtained as follows:

%= {8, 452) [wi > W}
U {{o, w)} (19)

U{{aV Bi,w;+w—wx w;}

In the sequel, we will show that possibilistic reinforcerniease revision is equiva-
lent to reinforcement conditioning. Like ["Secfion 3l1wle first define a mapping
from a possibilistic base> = {(51,w1),...,{Bn,w,)} to a possibility distribu-
tion my :

e if W E={Bi,...,0n}
(W) = { 1 — max({w; | W }~ 3;}) otherwise (20)

The following result shows that a possibilistic baSeand its induced possibility
distribution 7, encode essentially the same belief state.

Proposition 4.3. [[Duboiset al, 1994 Suppose that is a possibilistic base and,
the induced possibility distribution as defined by (20) ntfer any sentence :

Nx(B) = Nxs(8)

Finally, we can show the equivalence of reinforcement [hilsgtic base revision

and reinforcement conditioning (§_Figurk 5).
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Figure 5: Reinforcement conditioning and possibilistisdaevision

Theorem 4.4. Suppose that: is a possibilistic base andry; the possibility distri-
bution induced fromX . Let («,w) be any new information, then for any possible
world W :

(W, w)) = s, (W)

where ¥, = ¥ &, (o, w) .

As a direct consequence of the above equivalence result hadr@nTZR, rein-
forcement possibilistic base revision also shares modtehice properties stated in
oection 5.P.

5 Reated Work and Conclusion

We have presented a computational model of so-called mei@fioent belief revision.
This operator has been shown semantically equivalent toGiR-kased model of re-
inforcement revision. This implies that reinforcementdesvision satisfies all desir-
able rationality postulates but violates those that areréolical. Moreover, we have
formally analyzed the time and space complexity of the caapanal model of rein-

forcement revision. In this final section, we will give a ditd comparison between
our proposal and existing revision operators.

5.1 Syntax Irrelevant Operators

In the literature, there are revision operators which doexmioit any explicit extra-
logical preference information. From a representationaiof view, this seems to be
an advantage; but these revision operators are also zeiticisnflexible[Nebel, T99B
because they allow little control over which sentences &eadded and which are re-
tained. In the following, we present one well-known syntaglevant revision operator
proposed byD 988. We will argue that Dalal’s operator, while sacrificing flex-
ibility, does not have the benefit of lower time and/or spasescmption. As shown
in [Eiter and Goftlob, 1992; Cadaét al, 1999, the same holds for most other syntax
irrelevant operators.

Dalal’s operator is based on a notion of distance (betwessiple worlds): When
a belief baseB is revised by« , the revised belief base should be determined by the
models of « that are “closest” to those ob [Dalal, 19883.
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Formally, the distance between two possible worldls,, W, , denoted by
[|A]|(Wy, W3), is the cardinality of their symmetric difference:

A[[(Wy, Wa) = [|(Wy \ Wa) U (Wa \ Wh)|

The distance between a possible wolld and a (consistent) belief bage , denoted
by ||A|[™i®(B, W), is the minimal distance betwed¥ and models ofB :

[|A[™"(B, W) = min({[|A[|(W1, W) | W1 € Mods(B)})

Given a belief baseB , we can induce a faithful ranking<c,,(gy on Cn(B) by
stipulating: . _
Wi =p Wy iff [[A["™ (B, Wh) < [[A["™"(B, W>)

Dalal’'s operator is then defined as follows:

@i [ Th(min(Mods(a),<p)) If Bis consistent
Cn(B *a a) = { Cn({a}) otherwise

It has been shown HKatsuno and Satoh, 19Pthat Dalal's operator satisfies all AGM
postulates.

Note that Dalal's operator does not tell us explicitly howctnstruct a revised
belief base. A negative result [€adoliet al, 1994 says that the size of the revised
belief baseB x4 a can be much larger than that @& and «. More precisely, they
have shown that if the size of the revised belief bdse, « is polynomially bounded
by the size of B and «, then X8 = TIY = PH. As the equality of these classes is
highly unlikely, this essentially shows that Dalal's operacauses super-polynomial
space explosion. Moreover, as showditer and Gotflob, 1992 the problem of CF
for Dalal's operator isA5[O(log n)] -complete; however, unlike reinforcement base
revision, it remainsA5[O(log n)] -complete even for Horn theories.

5.2 Theory Base Transmutation

Theory base transmutatiois a class of iterated revision operators proposed by
[Williams, 1994, among whiclconditionalizatiorandadjustmenare the most promi-
nent ones. Like reinforcement base revision, both conuifiaation and adjustment
have intuitive OCF-based semantics. We remark that therénar major differences
between reinforcement base revision and theory base trtaaton: First of all, Pos-
tulate (Ind) is violated by both conditionalization and @timent, and the latter also
violates Postulate (DP2); secondly, theory base trandmatallows the input evi-
dence degree to be, and in this case they behave like contraction operatorsesin
in theory base transmutation the input evidence degreebwithe rank of the input
sentence. To facilitate the comparison between reinfoecenevision and theory base
transmutation, we assume in the following that the inputiente degree is always
greater thar .

5.2.1 Conditionalization

OCF conditionalization was originally introduced It can be viewed as
a qualitative version of Jeffrey’s Rule of probabilistiaxtitioning[[Goldszmidt, T99p

E(W) — k(-a) ifWEa

(ké’.ﬁn)(W)d:ef{ E(W) = k(@) +m  otherwise -
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Figure 6: OCF conditionalization

Itis easy to see that OCF conditionalization closely redemiteinforcement OCF
revision. In particular, they coincide ik(«) = 0. Moreover, the following result
shows that OCF conditionalization can in fact be decompaged sequence of OCF
reinforcement revision steps.

Theorem 5.1. Let k£ be an OCF and(«, m) some new information, then for any
possible worldV :
k- (W) ifk(a) <m

C,% — a,m—k(a)
ka,m(W) { ((kr* )T»* )(W) otherwise

—a,m’/a,m

wherem’ € N7 is an arbitrary positive integer.

The above result shows that OCF reinforcement revisionletrauch more subtly
than conditionalization.

The intuition behind OCF conditionalization is depicteffigure , where we dis-
tinguish the two case&(«) > m and k(«) < m. OCF conditionalization changes
the ranks ofa -worlds in exactly the same way as reinforcement OCF rewvidimes.
Depending on whethek(a) > m or k(a) < m, all ~« -worlds are uniformly moved
downwards or upwards, respectively, so that the most gdisia -worlds end up hav-
ing the rankm , which is necessary to obtaikf;;,, (o) = m . Itis easy to prove that
OCF conditionalization satisfies (DP1) and (DP2) but viesgind) in case: (o) > m .

Conditionalization itself is a revision operator on EE4mdefined as fol-

lows [Willlams, 1992{ Benferhaét al., 2004:

(B, f) *r (o, m) if B¥a
(B, f) *e (, m) & {(8, f(B) — Rank () + m) | f(8) > Rank(a)}
R U{(-aV @, f(3)|6 e B} otherwise
U {{a,m)}

Note that conditionalization coincides with reinforcertiease revisionin cas® ¥ « .
It is not difficult to see that= . a = = . o for any EE base= and new infor-
mation (a,m) . Therefore, the complexity of conditionalization is sansetlaat of
reinforcement base revision.

Theorem 5.2. For conditionalization, the problem of CF ia5[O(logn)] -complete.
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Figure 7: OCF adjustment

However, since conditionalization violates Postulatedd)l it is easy to find
counterexamples.  Recall, for instande,_Example 1. ~Supplose now = =
{(r,6), (s,5), (r V s,7)} and we first learn thatX is smart with evidence degree
1. Thisyields=Z; = E %, (s,1) = {{(r vVs,3),(r vV —s,6), (s,1)} . Next we learn
that X is not rich with evidence degre@, and obtainZ; = =; %, (-r,2) =
{(rv =s,3),(-r,2), (s V-r3)}. Hence, contrary to the intuition, we now believe
that X is not smart, sincdRanks, (—s) = 2.

5.2.2 Adjustment

OCF adjustment is an operator based on an absolute measuminiial

changdWilliams, T99%:

(ki”?n)(W) def { (ka)amW) if m < k(o)

ko m(W) otherwise (22)

where
if Wk -aandK (W) = E(«)
W) otherwise

—
o~
L
~—
—~
=
I

—N
> O
—

0 if WEkaandK(W) = Ek(-a)
(k)W) =19 i else ifW E —aand K (W) < i
k(W) else

Although the definition seems quite complicated, the gregdhiepresentation in
provides a nice intuition of OCF adjustment. UnlBEF conditionaliza-
tion and reinforcement OCF revision, OCF adjustment ongngfes the ranks of the
most plausible« -worlds and -« -worlds. Moreover, wherk(a) < m , the relative
plausibility ordering of~« -worlds is not always preserved (ET_Figuje 7(b)). It is easy
to verify that OCF adjustment satisfies only Postulate (DB@) violates (DP2) and
(Ind).

Adjustment is an EE-base revision operator defined as fsl[Milliams, 1992;
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[Bentferhakt al, 2001

{(8, £(8)) | f£(B) > Rank(=a)}
U }ga\/f,}f(ﬁ)) |m < f(B) < Rank(—a)} pif B¥F «
U (o, m

UBr ) xs deem) =4 (5, 1(8)) | £(8) > Ranle ()}
U %Eﬂa \/>f, FBNY | f(B) < Rank(a)} otherwise
U {a,m

Just like conditionalization, adjustment has the same dexitp as reinforcement
base revision:

Theorem 5.3. For adjustment, the problem of CF i&5[O(logn)] -complete.

Similar to conditionalization, it is easy to find examplesvhich adjustment leads
to counter-intuitive conclusions. Consider, for instarfEgample |l again. Suppose
that = = (0 %, (r, 1)) %, (s,1) = {(r, 1), (s, 1), (r V s,2)} and we first learn thaf{
is not smart with evidence degrée followed by learning the opposite with the same
evidence degree. With adjustment we obtain the revisedddedr, = =x;(—s,2) =
{(rvs,2),(=s,2)} and=Zs = =%, (s, 2) = {(s,2)} . Hence, contrary to the intuition,
we do not believe thafX is rich anymore.
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A Proofs

Suppose thaE = (B, f) is an EE base andi= the induced OCF
as defined by[{12), then for any sentente

Ranke(3) = k=(0)

Proof. Assumet . Then Rank(8) = k=(8) = .

Assume¥ 3 and Rank(3) = i . It follows from @) that=+! ¥ g and = - 3.
Let W be a possible world such that’ = =" U {-3}. From = |- 3, it follows
that W [~ =¢. Therefore, there must be a sentengec =|; such thatWW [~ 3; .

It follows from {@3) that k=(W) = i. Let W, be any possible world such that
k=(W1) < k=(W) . It follows from (I2) thatW; = =*; hence,W; = 3. According
to @), we havek=(3) =i .

O

Suppose thatE is an EE base andkz the OCF induced fron= .
Let (o, m) be any new information, then for all possible worlts :
k=, (W) = k=" (W)

= Sa,m
where 21 = = «,. (o, m) .

Proof. Let k=(W) = i. By @), we haveWW = Z*! and there exists a sentence
€ =Z|; such thati F =05 .
If W k= —a, then 1)) implies thakz=,.",, (W) = i +m . It follows from (@) that
Zitmtl = mmtl g {3va| B € 2} and aV B; € Eilitm - Obviously, we have
WEZE ””m“ and W £ o Vv 3; . Hence, according t€ 1 2%k=, (W) =i +m .
If W = o, then[11) implies thak=;",, (W) =i — k=(—«) . Let Rank(—a) =
. Itfollows from {@) that=i"""! C Z+'U{BVa|p € ByU{a} and 8; € Z1i—, .
It is obvious thatW = = ”l "+ It follows from @) thatk=, (W) = i —r =

i—Ranlg (—a) . According t.2, we obtain thiat, (W) = i —k=(—a) .
g

Some of the proofs below rely on the following lemma.

LemmaA.l. Suppose thakE is an EE base and«, m) is any new information. Let

=1 = Z #, (o, m) , then for any non-tautologous sentenge

t+m if Fa— g
Rank, (8)=¢ t' —T elseift’ =t
min(t’ — 7, t +m) otherwise

where7 = Rank(—«), t = Rank (), and ¢ = Rank(a — () .
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Proof. This is a direct consequence of the following property, véhpsoof can be
found in[Jin"and Thielscher, 207and Theoreri313: Lek be an OCF anda, m)
any new information, then for any non-tautological sengefic

k(B) +m if Fa— 0
kam(B) = Kkla = ) - k(-a else if k(a — B) = k(B)
min(k(o — B) — k(—a), k(3) + m)  otherwise

O

Suppose thaE; is the result of revising an EE base by (—«a,m) ,
where « is an arbitrary sentence andn an arbitrary natural number. Then for any

sentences :
Ranlg, (3) # Rank () iff Rankg, (a) # Rank(«)
where =y = = %, (=4, m’) for an arbitrary natural numbenn’ .

Proof. Assume, without loss of generality, thaRank, (3) = Rank(3) and
Rank, (o) # Rank(«). From LemmdAl, it follows thatr —a« — (3 and
Rank(3) = Ranlk, (8) = Rank(—a — ) — Rank(«) . Therefore,Rank(a) =
Rank(—a — ) — Rank (). Note thatRank (-« — ) = Rank(—-3 — «a).
Therefore, Lemm&Al1 implies thaRank, (o) = Rank(—a — 3) — Rank(3),
which contradictsRanlg, (o) # Rank(«) .

O

Let =;, =, be two epistemically equivalent EE bases, then for any
sentencen: and evidence degrees, ms € N* :

Bel(Z)) = Bel(Z))
where &) = = %, (a,my) and =5 = Zg %, (o, ma) .

Proof. Let 3 € Bel(Z}) . It follows that Rank:; () > 0. According to Lemm&All,
it must then be the case that eithern — 5 or Rank, (o« — ) > Rank, (—a) .

If - a — f, then according to Lemma_A.1 we have thRank;(3) =
Ranks, (8) +m2 > 0.

If Ranlkg, (o« — () > Rank, (—«a) , then alsoRank, (o — () > Rank, (—«)
since =, is epistemically equivalent t&; . Again, it follows from Lemmd&ZALl that
Rank; (3) > Ranks, (a« — 3) — Rank, (o) > 0.

The above discussion shows thBt/(Z)) C Bel(Z}) . The converseBel(Z}) C
Bel(Z)) , can be shown symmetrically. O

Proposition 3.9 Let Z4, =, be two equivalent EE bases arid, m) some new infor-

mation, then
=1 ke (@, m) 2 Eg %, (o, m)

Proof. A direct consequence of LemriaA.1. O
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[Theorem 3.9 For reinforcement base revision, the problem of CFA$[O(logn)] -
complete.

Proof. We first show that the problem is id\5[O(logn)] . It is easy to see that in
order to compute a revised EE baSe = = *, (o, m) , we mainly need to calculate
Rank:(—a) (cf. in AppendbB)[Algorithm L in AppendiXIB shws that
Rank: (—«) can be computed with at most logarithmic many NP-oraclescallnce
the revised EE basg&; has been computed, we just need one additional NP-oracle to
decide whetheE; entails 5. Therefore, the problem is ilA5[O(logn)] .

To show that the problem ia\5[O(log n)] -hard, we give a polynomial (many-to-
one) reduction from the problem of CF for cut base revisiohi¢iis AY[O(logn)] -
hard[[Nebel, T99}). Given any prioritized baséB, <) , we can construct a EE base
= = (B, f) by assigning evidence degrdeto all sentences in the lowest class and
evidence degre@ to all sentences in the next higher class, and so on. It is teasy
see that for any sentences and 5: (B, <p) % o =  iff Z; entails 3 where
E1 = E %, (o, 1). Thus, it follows that the problem of CF for reinforcemensea
revision is A5[O(logn)] -hard. O

Theorem 370 For reinforcement base revision, the problem of computingvésed
belief state iSNP-equivalent.

Proof. The proof ofTheorem 319 shows that the problemis NP -easghdw that it is
also NP-hard, it suffices to observe that the problem offsatifity of an arbitrary sen-
tence 3 can be reduced to the problem of computing the revigigf, 1) } =, (T, 1):
According to[T), the revised belief base includgs 1) iff cutys1y3(L) = {8} and
Rank 1)1 (L) = 0. The latter is equivalent t@ being satisfiable according tol (5)
and [3). O

Consider a possibility distributionr revised by a new non-
tautological evidencex with possibility degreew . Let m; = w?‘a w) then

Ny () = Np(a) +w — w X Ni(«)

Proof. Assume N,(a) = 1 — I,(-a) = w'. According to [I#), we have
maz({mr(W)|W &= -a}) =1—w'. From [IT), it follows thatmax ({7 (W) | W =
—a}) = (1—w')x (1—w). Then[I3) impliesll,, (—a) = (1—w’) x (1—w) . Thus,
according to[(Ib), we havéV;, (o) = 1—(1—w' ) x (1—w) = w+w —wxw . O

The following observation is needed for the proofof TheoreF

Lemma A.2. Let k be an OCF, andP(k) the possibility distribution as defined by
(@8), then for any sentence :

Hﬂ'k (a) = e_k(ﬁa)

Proof. Recall thatII.(«) is defined asmax({x(W)|W |= «}). Let W; be a
possible world such thatr, (W) = II;, (o) = max({mx(W)|W = a}). Since
f(z) = e~* is monotonically decreasing, we havgWW;) = min({k(W)|W [E
a}) . It follows from (@) thatk(W,) = k(—a) . ThusTL,, (o) = e *(") O
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Suppose that: is an OCF and(a, m) (with m € NT) some input
|nf0rmat|on Letk:zk ) be the revised OCF using reinforcement OCF revision, then
for any possible world :

(W) = m (W, 1 —e™™))

?amn)

Proof. Assume W |= . According to [IB) m; (W) = e *an(™) it fol-

lows from [M) thate *amW) = ¢~(k(w)=k(=a)) = On the other hand[17) im-

plies 7 (W (o, 1 — e™™)) = g’“(v(‘;)) . It follows from (I8) and Lemm@&ZAl2 that
Tk
k(w)

T (Wl (o, 1 —e ™)) = L5y Hencem. (W) =m,(Wl{a, 1 —e™™)) .
AssumeW F£ « . Similar to the above, according {0{16) a(l&@;(ka - (W) =
e~ (EW)+m) |t follows from {I2) that 7, (W, (a,1 — e™™)) = m(W) x e~ ™.
@) implies 7, (W|,.(a,1 — e™™)) = e W) x ¢=™  Hence T o (W) =
(Wl (o, 1 —e™™)). O

Theorem 4.4 Suppose that is a possibilistic base andry the possibility distri-
bution induced fromX . Let («,w) be any new information, then for any possible
world W :

(Wl (a, w)) = s, (W)

where ¥, = ¥ &, (o, w) .
Proof. Analogous to the proof ¢ Theorem B.3. O

Let k£ be an OCF and{(a,m) some new information, then for any
possible worldV :

k™ ey (W) if k(o) <m
C,% _ a,m—k(a)
Faim(W) {<<k:;,m Ji5)(W)  otherviise

where m’ € N is an arbitrary positive integer.

Proof.
Assumekz(a) < m, then it follows directly from[[21) and11) thatg;, (W) =
Assumek(a) > m . SupposelV |= a. According to [2L),k57%, (W) = k(W) —
k(-a) , whereas[(Q11) implies thalt(k", .. )i, ) (W) = kD5 L (W) — kD) (—a)

Again, [11) implies thatkz;* (W) = I<:(W7) +m’ . From item 3 of Theorelid.5, it

a,m’)
follows that £ , . (-a) = k(-a) +m'. Therefore,((k,, )55, (W) = k(W) —
k(=) . Thus, (K7, ) (W) = KE2 0 (W).

SupposeW [~ «. It follows from 1) that kg, (W) = k(W) — k(a) +m,
whereas[(ll1) implies that(k”,, ,,.)55,) (W) = k=5 ., (W) +m . According to [TL),
) =

“Otm

K2 (W) = K(W) = k(@) . Therefore, (72, )54, (W) = k(W) — k(a) +m.
Thus, (K, ) (W) = K (). 0
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[Theorem 5.2 For conditionalization, the problem of CF iA5[O(logn)] -complete.

Proof. It suffices to show that= %, « = = . « for any EE base= and new
information («,m). If B ¥ «, this holds trivially. AssumeB + «. Then
Ex.a = 2 = E . a, Since both conditionalization and reinforcement basé rev
sion satisfy the AGM postulates. O

Theorem 5.3 For adjustment, the problem of CF iA5[O(log n)] -complete.

Proof. It suffices to show thaE %, a = = %; o for any EE base= and new informa-
tion (a,m). AssumeB F «. ThenE %, o = Z = E %; «, since both adjustment
and reinforcement base revision satisfy the AGM postulakessume B ¥ a. The
only difference betweerE %, a and = %; « is that the former contains additional
sentences of the fornav vV 3; . Since both revised bases contain it follows that
Ex,a=ZE=E%ja. O
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B Algorithms

— —

Input : == {(B1,¢€i),...,(Bn,en)} suchthate; < e;y1,
Output : Rank(53)
begin

if {B1,---,8.} % 3 thenreturn 0 ;

elseif - 4 thenreturn oo ;

else
i=1L jg=n;
while i < j do
k=i+[5;
if 2¢ 3 then
if =+ )4 3 then
return ey ;
dsei=Fk+1;
dse j=k;
end
end
end
Algorithm 1: ComputingRank (5)
Input E={(01,€), ., {Bn,en)},a,m
Output : =1 suchthatz; = = x,. (o, m)
begin
=1={1};
7 = Rank(—a) ;

for i=1...n do
if e; >7 then
=1 U{(Biei—T)};

end
E1=E1U{{a,m)} ;
return = ;

end

Algorithm 2: Reinforcement base revision
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