
Reinforcement Belief Revision

Yi Jin
School of Computing Science

Simon Fraser University
yij@cs.sfu.ca

Michael Thielscher
Department of Computer Science
Dresden University of Technology
mit@inf.tu-dresden.de

Abstract

The capability of revising its beliefs upon new informationin a rational and ef-
ficient way is crucial for an intelligent agent. The classical work in belief revision
focuses on idealized models and is not concerned with computational aspects. In
particular, many researchers are interested in the logicalproperties (e.g., the AGM
postulates) that a rational revision operator should possess. For the implementation
of belief revision, however, one has to consider that any realistic agent is a finite
being and that calculations take time. In this paper, we introduce a new operation
for revising beliefs which we callreinforcement belief revision. The computational
model for this operation allows us to assess it in terms of time and space consump-
tion. Moreover, the operation is proved equivalent to a (semantical) model based
on the concept of possible worlds, which facilitates showing that reinforcement
belief revision satisfies all desirable rationality postulates.

1 Introduction

Belief revision is the process of adapting the beliefs of an agent to accommodate
new, more precise, or more reliable information that is possibly inconsistent with
the existing beliefs. The formal study of belief revision took as starting point the
work of Alchourrón, Gärdenfors, and Makinson (AGM) during the first half of the
1980s[Alchourrónet al., 1985; Alchourrón and Makinson, 1985]. The AGM frame-
work is an idealized mathematical model of belief revision:It assumes that the beliefs
of an agent are represented by a so-calledbelief set, a logically closed set of sentences
in some underlying languageL . The new evidence is also represented by a sentence
in L , and a revision operator is then modeled as a function mapping the current belief
set and the new evidence to a revised belief set.

To provide general design criteria for belief revision operators, the AGM trio de-
veloped a set of so-calledrationality postulates[Alchourrónet al., 1985]. The guiding
principle of the AGM postulates is that ofeconomy of informationor minimal change,
which means to not give up currently held beliefs and not generate new beliefs un-
less necessary. As pointed out by several researchers[Gärdenfors and Makinson, 1988;
Spohn, 1988], the AGM postulates do not uniquely determine a revision operator, and
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revision operators should, in general, exploit extra-logical information concerning the
preference (or plausibility) over different beliefs in order to determine the revision
strategy. TheTriviality Theoremof [Gärdenfors, 1988] shows that, when accepting the
AGM postulates, it is improper to include extra-logical preference information into the
belief sets. As a consequence, we need to distinguish a belief set from abelief state
(also calledepistemic state). The latter contains, in addition to its belief set, the extra-
logical preference information (also referred to asconditional beliefs[Boutilier, 1993])
which determines the revision strategy. Like in[Darwiche and Pearl, 1997], we will
therefore consider revision operators to be functions on belief states in this paper.

For the incremental adaptation of beliefs, the AGM postulates proved to be too
weak [Darwiche and Pearl, 1997] due to the excessive freedom they permit on the
change of the conditional beliefs. This has led to the development of additional
postulates for iterated belief revision by Darwiche and Pearl (DP), among others.
Still, however, the AGM and DP postulates together are too permissive in that they
support belief revision operators which assume arbitrary dependencies among the
pieces of information which an agent acquires along its way.These dependencies
have a drastic effect when the agent makes an observation which contradicts its cur-
rently held beliefs: The agent is forced to cancel everything it has learnt up to
this point[Nayaket al., 1996; Nayaket al., 2003]. To handle dependencies properly,
we have recently proposed the postulate ofIndependenceas a complement to the
AGM+DP postulates[Jin and Thielscher, 2007].

In classical belief revision, the agents are considered to have unlimited memory,
time, and deductive ability. For implementing belief revision, however, one has to con-
sider that any realistic agent is a finite being and that calculations take time. Therefore,
the beliefs of a realistic agent should always be finitely representable; and a revision
operator should not only behave rationally but also consumea reasonable amount of
time and space. Arguably, adapting belief revision to realisitic settings is far from triv-
ial, as we need an approach which takes these characteristics of finiteness as well as
memory and time limitations into account[Wassermann, 1999].

In this paper, we introduce a concrete belief revision operator, calledreinforcement
belief revision. Specifically, we present a computational model for reinforcement re-
vision which operates on finite sets of integer-weighted sentences. This operation is
proved equivalent to a possible world-based (semantical) model, which enables us to
show that reinforcement belief revision satisfies the desirable rationality postulates. In
addition, we will analyze the computational complexity of reinforcement belief revi-
sion. Finally, we will place our result in the context of possibility theory, which is a
field of research that is intimately related to belief revision [Dubois and Prade, 1992;
Duboiset al., 1994]: In [Benferhatet al., 2002], for instance, it is shown that some
well-known revision operators can be directly mapped to well-known conditioning op-
erations in possibility theory. In this paper, we will likewise show how reinforcement
belief revision can be re-cast in the possibilistic setting. The result is a novel approach
to revising possibilistic knowledge states.

The rest of the paper is organized as follows. In the next section, we recall the
classical AGM postulates, followed by postulates for iterated revision. In Section 3
we introduce reinforcement belief revision by giving both asemantical and a computa-
tional definition. Reinforcement belief revision is assessed in terms of its logical prop-
erties and computational complexity. In Section 4, we re-model reinforcement belief
revision in the setting of possibility theory. We conclude in Section 5 with a detailed
comparison to related work. Proofs of the main results can befound in the appendix.
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2 Preliminaries

In this paper, we will deal with a finitary propositional languageL generated from a
finite setP of atomic propositions. It is assumed thatL is equipped with the classical
consequence relation⊢ . Given a setS of sentences,Cn(S) consists of all logical
consequences ofS , that is Cn(S) = {α ∈ L |S ⊢ α} . Two sentencesα and β
are logically equivalent, writtenα ≡ β , iff α ∈ Cn({β}) and β ∈ Cn({α}) . A
propositionalinterpretation(also referred to as apossible world) is a mapping fromP
to {⊤,⊥} , and the set of all interpretations is denoted byΘL . For the sake of simplic-
ity, we may represent an interpretation by the set of atoms towhich it assigns⊤ . An
interpretationW is called amodelof S (denoted byW |= S ) if it truth functionally
maps all sentences inS to ⊤ . The set of all models ofS is denoted byMods(S) .
Conversely, given a setW of possible worlds,Th(W) denotes the set of all sentences
which are true in each element ofW . For easier readability, in the rest of the paper
we will often identity a singleton set with its element. For instance,Mods({α}) may
also be written asMods(α) .

A belief set K is a logically closed set of sentences, that is,K = Cn(K) . The
expansionof a belief setK by a sentenceα is defined as:K+α

def
=Cn(K∪{α}) . For

the sake of generality, we deliberately consider a belief state K as an abstract object
from which we can derive a belief set, denoted byBel(K) , and also some extra-logical
preference information. In concrete constructions of revision operators, the extra-logic
preference information could take the form of a relation over the set of all sentences, or
a relation over all possible worlds, etc. Moreover, we say that two belief statesK1,K2

arelogically equivalent(written asK1 ≡ K2 ) iff Bel(K1) = Bel(K2) .
A total pre-order≤ (possibly indexed) is a reflexive, transitive, binary relation,

such that for anyα, β : either α ≤ β or β ≤ α . The strict part of≤ is denoted by
< , that is, α < β iff α ≤ β and β 6≤ α . As usual,α = β abbreviatesα ≤ β
and β ≤ α . Given a total pre-order≤ on S , we denote bymin(S,≤) the set of all
minimal elements ofS wrt. ≤ . Natural numbers and positive integers (i.e., natural
number greater than0 ) are denoted byN and N

+ , respectively. Thecardinalityof a
set S is denoted by||S|| , and thesizeof S (the number of symbols occurring inS )
is denoted by|S| ,

2.1 The AGM Postulates

TheAGM postulates[Alchourrónet al., 1985] provide a mathematical foundation for
belief revision by defining criteria for rational revision operators. The original postu-
lates have been reformulated in[Darwiche and Pearl, 1997] as follows, whereK ∗ α
denotes the belief state resulting from the revision of belief stateK by sentenceα :

( K ∗ 1 ) Bel(K ∗ α) = Cn(Bel (K ∗ α))

( K ∗ 2 ) α ∈ Bel(K ∗ α)

( K ∗ 3 ) Bel(K ∗ α) ⊆ Bel(K) + α

( K ∗ 4 ) If ¬α /∈ Bel (K) then Bel (K) + α ⊆ Bel (K ∗ α)

( K ∗ 5 ) Bel(K ∗ α) is inconsistent only if⊢ ¬α

( K ∗ 6 ) If α ≡ β then K ∗ α ≡ K ∗ β

3



( K ∗ 7 ) Bel(K ∗ (α ∧ β)) ⊆ Bel(K ∗ α) + β

( K ∗ 8 ) If ¬β /∈ Bel(K ∗ α) then Bel(K ∗ α) + β ⊆ Bel(K ∗ (α ∧ β))

Readers are referred to[Gärdenfors and Makinson, 1988] for a detailed account of the
motivation and intuition behind these postulates.

Various approaches to constructing AGM revision operatorshave been proposed
in the literature. Here, we will only sketch the basic ideas of two of them which are
crucial to the rest of the paper.

2.1.1 Epistemic Entrenchment

[Gärdenfors and Makinson, 1988] have suggested to represent the extra-logical prefer-
ence information of a belief state by a total pre-order on theunderlying languageL .
Formally, anepistemic entrenchment≤K on a belief setK is a binary relation over
L satisfying the following conditions:

(EE1) If α ≤K β and β ≤K γ , then α ≤K γ

(EE2) If α ⊢ β , then α ≤K β

(EE3) For anyα and β , α ≤K α ∧ β or β ≤K α ∧ β

(EE4) WhenK is consistent,α /∈ K iff α ≤K β for all β

(EE5) If β ≤K α for all β , then ⊢ α

Intuitively, α ≤K β means thatβ is at least as plausible asα .
It has been shown by[Gärdenfors and Makinson, 1988] that the AGM postulates

characterize exactly the class of epistemic entrenchment-based revision operators: A
revision operator∗ satisfies (K ∗ 1 )-( K ∗ 8 ) iff for any belief stateK there exists an
epistemic entrenchment≤Bel(K) on Bel(K) , such that for any sentenceα :

(C∗) Bel(K ∗ α) =

{

L if ⊢ ¬α
{β ∈ L |¬α <Bel(K) ¬α ∨ β} otherwise

2.1.2 Faithful Ranking

From quite a different perspective,[Katsuno and Mendelzon, 1991] have proposed a
constructive model for belief revision based on possible worlds. Formally, afaithful
ranking �K on a belief setK is a total pre-order on the set of all possible worlds
ΘL , such that for any possible worldsW1, W2 :

1. If W1, W2 |= K , then W1 =K W2

2. If W1 |= K and W2 6|= K , then W1 ≺K W2

The intuitive meaning ofW1 �K W2 is that W1 is at least as plausible asW2 .
Similar to epistemic entrenchment-based revision,[Katsuno and Mendelzon, 1991]

have shown that the AGM postulates characterize exactly theclass of faithful ranking-
based revision operators: A revision operator∗ satisfies (K ∗ 1 )-( K ∗ 8 ) iff for any
belief stateK there exists a faithful ranking�Bel(K) on Bel(K) such that for any
sentenceα :

Bel (K ∗ α) =

{

L if ⊢ ¬α
Th(min(Mods(α),�Bel(K))) otherwise
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2.2 Postulates for Iterated Revision

2.2.1 The DP Postulates

It is well-known that the AGM postulates sanction improper response to sequences of
new information due to the excessive freedom they allow on the change of the con-
ditional beliefs. Therefore,[Darwiche and Pearl, 1997] have proposed four additional
postulates for iterated belief revision:

(DP1) If β ⊢ α , then Bel((K ∗ α) ∗ β) = Bel (K ∗ β)

(DP2) If β ⊢ ¬α , then Bel ((K ∗ α) ∗ β) = Bel(K ∗ β)

(DP3) If α ∈ Bel(K ∗ β) , then α ∈ Bel ((K ∗ α) ∗ β)

(DP4) If ¬α /∈ Bel (K ∗ β) , then ¬α /∈ Bel((K ∗ α) ∗ β)

A detailed account of the motivation and interpretation of these postulates can be found
in [Darwiche and Pearl, 1997].

To provide formal justifications,[Darwiche and Pearl, 1997] have also given a nice
representation result for Postulates (DP1)-(DP4): Let∗ be a revision operator satis-
fying Postulates (K *1)-( K∗ 8), then∗ satisfies Postulates (DP1)-(DP4) iff the corre-
sponding faithful rankings satisfy the following conditions:1

(DPR1) If W1, W2 |= α , then W1 �K W2 iff W1 �K∗α W2

(DPR2) If W1, W2 6|= α , then W1 �K W2 iff W1 �K∗α W2

(DPR3) If W1 |= α and W2 6|= α , then W1 ≺K W2 implies
W1 ≺K∗α W2

(DPR4) If W1 |= α and W2 6|= α , then W1 �K W2 implies
W1 �K∗α W2

This result gives an elegant characterization of the seemingly natural constraints that
the DP postulates impose on the change of the conditional beliefs: WhenK is revised
by α , Conditions (DPR1) and (DPR2) require to retain the relative plausible ordering
of any two α -worlds (¬α -worlds, respectively); Conditions (DPR3) and (DPR4) re-
quire that if anα -world W1 is (strictly) more plausible than a¬α -world W2 , then
W1 continues to be (strictly) more plausible thanW2 .

2.2.2 Two Radical Revision Operators

The AGM and DP postulates together still do not uniquely determine a revision oper-
ator. In the following, we present two interesting operators known from the literature
which satisfy all AGM/DP postulates.

[Boutilier, 1993] has proposed a specific revision operator (known asnatural revi-
sion) which satisfies the following:

(CB) If ¬β ∈ Bel (K ∗ α) , then Bel((K ∗ α) ∗ β) = Bel (K ∗ β )

1For the sake of simplicity,�Bel(K) and �Bel(K∗α) are abbreviated by�K and �K∗α , respectively.
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This postulate alone is in fact a strengthening of the set of DP postulates, in the sense
that (CB) implies all of them (in the presence of the AGM postulates) but not vice
versa.

A semantical characterization for (CB) has been given in
[Darwiche and Pearl, 1997]:

(CBR) If W1, W2 6|= Bel(K ∗ α) , then W1 �K W2 iff W1 �K∗α W2

Since Condition (CB) forces the agent to cancel the previousobservation upon
any new observation which contradicts its currently held beliefs, it has been criti-
cized as too radical to serve as a general rationality postulate [Nayaket al., 2003;
Jin and Thielscher, 2007].

So-calledlexicographic revision(with “naked evidence”) satisfies thepostulate of
Recalcitrance[Nayak, 1994; Nayaket al., 2003]:

(Rec) If β 0 ¬α , then α ∈ Bel((K ∗ α) ∗ β)

Note that, in the presence of Postulates (K ∗ 1 )-( K ∗ 8 ), we can derive (DP3) and
(DP4) from (Rec), but neither (DP1) nor (DP2).

The semantical characterization of (Rec) is as follows[Nayaket al., 2003]:

(RecR) If W1 |= α and W2 |= ¬α , then W1 ≺K∗α W2

As shown in [Konieczny and Pérez, 2000], Postulate (Rec) is only suitable when
the agent has full confidence in the new information; hence it, too, cannot serve as a
general rationality postulate (cf.[Jin and Thielscher, 2007] for a counterexample).

2.2.3 Postulate of Independence

While both (CB) and (Rec) are too radical, the DP postulates alone are
too weak because they do not address the problem of implicit depen-
dence[Jin and Thielscher, 2007]. The additional postulate ofIndependencehas been
proposed to overcome this weakness:

(Ind) If ¬α /∈ Bel (K∗¬β) then α ∈ Bel ((K∗α)∗¬β)

Note that (Ind) is a weakening of (Rec), while it is still strong enough to imply (DP3)
and (DP4). Readers are referred to[Jin and Thielscher, 2007] for a detailed discus-
sion on the problem of implicit dependence, and the motivation and interpretation of
Postulate (Ind).

The semantical characterization for Postulate (Ind) is as follows:

(IndR) If W1 |= α and W2 |= ¬α , then W1 �K W2 implies
W1 ≺K∗α W2

Arguably, Condition (IndR) is quite natural and not overly constrained: WhenK is
revised byα , Condition (IndR) requires a worldW1 confirming the new information
α to become more plausible than a worldW2 violating α , provided thatW1 was at
least as plausible asW2 .
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2.3 Cut Base Revision

The constructive models based on epistemic entrenchment and/or faithful ranking seem
mathematically elegant. However, in order to construct an implementable revision op-
erator, we need afeasible representationof belief states. Obviously, it is infeasible to
encode on a computer an explicit belief set, since it is infinite in general. Many re-
searchers[Wobcke, 1992; Nebel, 1994] have therefore suggested to represent the log-
ical contents of a belief state by abelief base, which is a finite set of sentences (not
logically closed). Moreover,[Nebel, 1998] has argued that the size of the extra-logical
preference information of a belief state should bepolynomially boundedby the size of
its belief base.

Cut base revisionis a revision operator proposed by[Nebel, 1991] based on a very
compact belief representation. Formally, aprioritized base 〈B,≤B〉 consists of a
belief baseB and a total pre-order≤B on B . Note that a prioritized base〈B,≤B〉
can also be represented by a totally ordered family of sets ofsentences(B1, . . . , Bn)
such thatα ≤B β iff there exist i, j with α ∈ Bi , β ∈ Bj , and i ≤ j .

Given a prioritized base〈B,≤B〉 , thecut-setof a sentenceα is defined as follows:

cut<B
(α)

def
= {β ∈ B | {γ ∈ B |β ≤B γ} 6⊢ α} (1)

Put in words, the cut-set ofα consists of all sentences inBi ∪ . . . ∪ Bn such that if
the next lower classBi−1 is added, thenα becomes entailed.

Let Cn(B) be the belief set induced from a prioritized base〈B,≤B〉 , then ac-
cording to[Nebel, 1994] the total pre-order≤B can be generalized to an epistemic
entrenchment≤Cn(B) on Cn(B) by letting

α ≤Cn(B) β iff cut<B
(β) ⊆ cut<B

(α) (2)

Formally, cut base revision is defined as follows:

〈B,≤B〉 ∗cut α
def
= cut<B

(¬α) ∪ {α} (3)

Note that cut<B
(¬α) is a subset ofB ; therefore, the size of〈B,≤B〉 ∗cut α is

linearly boundedin the size ofB and α .
In [Nebel, 1994] it has been shown that cut base revision is essentially an epistemic

entrenchment-based revision: Suppose that〈B,≤B〉 is a prioritized base and≤Cn(B)

is the epistemic entrenchment as defined by (2), then for any sentenceα :

Cn(〈B,≤B〉 ∗cut α) =

{

L if ⊢ ¬α
{β ∈ L |¬α <Cn(B) ¬α ∨ β} otherwise

Nebel’s proposal constitutes a nice step from theory to computation. Unfortunately,
cut base revision is not an iterated revision operator sinceit maps a prioritized base and
the new information to a flat belief base. It is therefore impossible to do a subsequent
revision. This is also referred to by[Hansson, 2003] as the problem ofcategorial
mis-matching. It is not difficult to see that categorial mis-matching alsooccurs in the
constructive model based on faithful ranking.

3 Reinforcement Belief Revision

It is an interesting question whether we can construct a satisfactory iterated revision
operator by generalizing cut base revision. Unfortunately, the following discussion will
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Figure 1: Two naive generalizations of cut base revision

show that at least a naive approach does not work. To make our presentation easier, we
assume that a prioritized base is represented by a totally ordered family of classes of
sentences(B1, . . . , Bn) .

Suppose that a prioritized base(B1, . . . , Bn) is revised byα and cut<B
(¬α) =

⋃

{Bi, . . . , Bn} . According to (3), the revised belief base consists of(Bi, . . . , Bn)
and α . Arguably, we have every reason to assume that(Bi, . . . , Bn) is ordered as
before. The only problem is, where to put the new informationα ? Without any further
information, we may have two options: to renderα less plausible than(Bi, . . . , Bn)
as shown in Figure 1(a); or to considerα to be more plausible than(Bi, . . . , Bn) as
shown in Figure 1(b).

Formally, we can define the so-calledskeptical cut base revisionas follows:

〈B,≤B〉 ∗s
cut α

def
= 〈B1 = cut<B

(¬α) ∪ {α},≤B1〉

where β ≤B1 γ iff β = α or β, γ ∈ cut<B
(¬α) and β ≤B γ . It is not difficult

to see that skeptical cut base revision satisfies the AGM postulates as well as Postu-
late (CB).

Similarly, the so-calledcredulous cut base revisionis defined as follows:

〈B,≤B〉 ∗c
cut α

def
= 〈B1 = cut<B

(¬α) ∪ {α},≤B1〉

where β ≤B1 γ iff γ = α or β, γ ∈ cut<B
(¬α) and β ≤B γ . Credulous cut base

revision satisfies the AGM postulates, (DP1), and (Rec), butviolates (DP2).
Note that both skeptical and credulous cut base revision have their own assumptions

about the plausibility of the new information. One may arguethat these assumptions
could be violated in many situations. In the sequel, we will present a generalization
of cut base revision which deals with the plausibility of thenew information in a more
appropriate manner.

In our approach, a belief state is represented by a finite set of integer-weighted
sentences. Formally, anepistemic entrenchment base(EE base, for short), denoted by
Ξ = 〈B, f〉 , consists of a belief baseB and a mappingf from B to N

+ .2 The

2 EE bases and related notions that will be introduced in this section are not new. Similar belief rep-
resentations have been used in various computational revision operators[Williams, 1992; Dixon, 1994;
Williams, 1994]. Moreover, knowledge bases in possibilistic logic[Duboiset al., 1994] are essentially EE
bases modulo a monotonic scale transformation. What makes our work distinct, however, is a novel and
better approach to revising EE bases. As we will see in Section 4.2 this also gives us a new approach to
revising possibilistic knowledge bases.
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belief set ofΞ consists of all logical consequences ofB , that is, Bel (Ξ) = Cn(B) .
For any sentenceβ ∈ B , we call f(β) its evidence degree. Intuitively, a sentence
with a larger evidence degree is considered more plausible.

Given an EE baseΞ = 〈B, f〉 , we denote byΞ|m the set of sentences inB
whose evidence degree is exactlym :

Ξ|m
def
= {β ∈ B | f(β) = m}

Moreover,Ξm is the set of sentences whose evidence degree is greater thanm :

Ξm def
=

⋃

{Ξ|i | i ≥ m}

The belief degree (also calledrank) of a sentenceβ wrt. an EE baseΞ = 〈B, f〉
is defined as follows:

RankΞ(β)
def
=







0 if B 6⊢ β
∞ else if ⊢ β
max({m |Ξm ⊢ β}) otherwise

(4)

We may consider an EE base as a collection of some uncertain information, in which
the rank of a sentence can be interpreted as its certainty. Note that it is possible that
RankΞ(β) > f(β) for a sentenceβ ∈ B , in which case we say thatβ is redundant
in Ξ . Therefore, the evidence degreef(β) of a sentenceβ ∈ B is only a lower bound
of its belief degree. It is not difficult to see that we can remove redundant sentences
from an EE base without affecting the belief degrees of all sentences.

An EE baseΞ = 〈B, f〉 is a generalized prioritized base in which the cut-set of a
sentenceα can be obtained as follows:

cutΞ(α) = {β ∈ B |RankΞ(α) < f(β)} (5)

Note that the notion of cut-set defined by (5) generalizes theone defined by (1).
Not surprisingly, we can also derive an epistemic entrenchment ≤Bel(Ξ) from an

EE baseΞ = 〈B, f〉 by stipulating:

α ≤Bel(Ξ) β iff RankΞ(α) ≤ RankΞ(β) (6)

In our setting, an iterated revision operator should now be afunction which maps an
EE base and the new information to a revised EE base. It is worth mentioning that the
quantitative nature of EE bases allows to represent more fine-grained beliefs, e.g., the
belief thatα is “much more plausible” thanβ . As we will see, the quantitative nature
of EE bases also allows for a fine-grained control on belief revision. The discussion in
Section 2.3 suggests that one major problem is to find an appropriate evidence degree
for the new information in the revised EE base. Obviously, ifthe new information is
a mere sentenceα , then the revision operator has to assign toα an evidence degree
via a fixed scheme. But it is unlikely that there exists such a fixed scheme suitable
for all different kinds of applications. Therefore, based on the same considerations
as in [Spohn, 1988], we consider a more general revision scheme in which the new
information consists of a sentenceα along with anevidence degreem ∈ N

+ .
By generalizing cut base revision, we now define so-calledreinforcement base re-

visionas follows:

〈B, f〉 ∗r 〈α, m〉
def
= {〈β, f(β) − RankΞ(¬α)〉 |β ∈ cutΞ(¬α)}

∪ {〈α ∨ β, f(β) + m〉 |β ∈ B}
∪ {〈α, m〉}

(7)
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Note that the new sentenceα is assigned evidence degreem in the revised EE base.
The main difference between cut base revision and reinforcement base revision is that
the latter adds a disjunctionβ ∨ α for every sentenceβ ∈ B . These disjunctions
will obviously not affect the logical contents of the revised EE base, but they are nec-
essary to avoid (undesirable) implicit dependencies.3 It is easy to see that the size of
〈B, f〉 ∗r 〈α, m〉 is linearly bounded by the size of〈B, f〉 and 〈α, m〉 .

To see how reinforcement base revision works, let us consider a classical example
introduced by[Darwiche and Pearl, 1997].

Example 1. We are introduced to a ladyX who sounds smart and looks rich, so we
believe thatX is smart andX is rich. Since we profess of no prejudice, we also
maintain thatX is smart even if found to be poor and conversely,X is rich even if
found to be not smart. Now, we obtain some evidence thatX is in fact not smart,
we remain of course convinced thatX is rich. Still, it would be strange for us to say,
“if the evidence turns out false, andX turns out smart after all, we would no longer
believe thatX is rich”. If we currently believeX is smart and rich, then evidence
first refuting then supporting thatX is smart should not in any way change our opinion
aboutX being rich.

Let s and r represent respectively thatX is smart andX is rich. Assume that
our initial belief state is encoded byΞ = {〈r, 1〉, 〈s, 1〉, 〈r ∨ s, 2〉} 4 and we first learn
that X is not smart with evidence degree2 . Since RankΞ(¬¬s) = 1 , according
to (7), the revised EE base isΞ1 = Ξ ∗r 〈¬s, 2〉 = {〈r ∨ s, 1〉, 〈¬s, 2〉, 〈r ∨ ¬s, 3〉} .5

Suppose we now learn thatX is smart with evidence2 . SinceRankΞ1(¬s) = 2 , we
obtain Ξ2 = Ξ1 ∗r 〈s, 2〉 = {〈r ∨ ¬s, 1〉, 〈s, 2〉, 〈r ∨ s ∨ s, 3〉} . It is not difficult to
see thatRankΞ1(r) = 1 , which means that we continue to believe thatX is rich (as
expected).

As reinforcement base revision is a generalization of cut base revision, one may
wonder whether it suffers from a well-known weakness of the latter, namely, the fail-
ure of proper belief preservation. Consider the following example:6 Suppose that
Ξ = {〈p, 1〉, 〈q, 2〉, 〈r, 3〉} is revised by 〈¬q, 4〉 . At first glance, it seems indeed
undesirable that, in the revised EE base{〈r, 1〉, 〈p∨¬q, 5〉, 〈r∨¬q, 7〉, 〈¬q, 4〉} , p is
not believed anymore and the rank ofr is lowered to1 . However, this is indeed the
intended behavior, as the following argument shows.

As we have noted in[Jin and Thielscher, 2007], for any revision operator satisfy-
ing the AGM postulates a belief state (regardless of its representation) will encode
some implicit dependencies among beliefs. More specifically, Condition (C∗ ) in
Section 2.1.1 shows that ifβ ∨ ¬α is not more entrenched than¬α , then β will
not survive anα -revision (becauseβ depends on¬α , so its removed together with
¬α ). In the above case,Ξ encodes implicitly that “p depends onq ” since p ∨ q is
not considered to be more plausible thanq . Therefore, it is perfectly reasonable and
inevitable thatp is removed after a revision by¬q . An interesting question is how we
can obtain a belief state which does not encode undesirable implicit dependencies like
“ p depends onq ”? In fact, it is a major advantage of reinforcement base revision that

3We refer readers who are interested in the problem of implicit dependencies to[Jin and Thielscher, 2007]
for a detailed discussion.

4Readers are invited to check thatΞ is equal to(∅∗r 〈r, 1〉)∗r 〈s, 1〉 as well as(∅∗r 〈s, 1〉)∗r 〈r, 1〉 .
5For simplicity, redundant sentences have been removed, andwe will always tacitly do so in the rest of

the paper.
6We are grateful to an anonymous reviewer of this paper for suggesting this example.
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it will not introduce undesirable dependencies. For instance, assume that the initial be-
lief state is empty and we subsequently learnp, q, r with individual evidence degrees.
In this case,Ξ′ = ((∅ ∗r 〈p, 1〉) ∗r 〈q, 2〉) ∗r 〈r, 3〉 will encode implicitly thatp, q, r
are independent of each other. Therefore, a revision by the negation of one proposition
will not alter the ranks of any of the other propositions. Forexample, it is not difficult
to see thatRankΞ′′(p) = 1 and RankΞ′′(r) = 3 , whereΞ′′ = Ξ′ ∗r 〈¬q, 4〉 .

The fact that r is lowered to 1 in the first example,{〈p, 1〉, 〈q, 2〉, 〈r, 3〉} ∗r

〈¬q, 4〉 , can be explained as follows. Sinceq depends onr in the initial belief state,
r can be considered a strong support ofq . Therefore, it is reasonable that we become
less certain aboutr after q is learned to be false. In contrast, the rank ofr will re-
main the same whenΞ′ is revised by¬q becauseq is not dependent onr in Ξ′ .
The following result shows that a revision of one sentence ingeneral will not affect the
rank of another sentence, unless they are somehow logicallyrelated:

Proposition 3.1. Suppose thatΞ1 is the result of revising an EE baseΞ by 〈¬α, m〉 ,
where α is an arbitrary sentence andm an arbitrary natural number. Then for any
sentenceβ :

RankΞ1(β) 6= RankΞ(β) iff RankΞ2(α) 6= RankΞ(α)

where Ξ2 = Ξ ∗r 〈¬β, m′〉 for an arbitrary natural numberm′ .

We remark that more logical properties of reinforcement base revision will be pre-
sented later in this section.

3.1 OCF-Based Semantics

To provide a better intuition about reinforcement base revision, we give an alternative,
semantic characterization, which originates in[Jin and Thielscher, 2007] and is based
on Spohn’sordinal conditional functions(OCF, for short)[Spohn, 1988]. Originally,
an OCFk is a mapping from the set of all possible worldsΘL to the class of ordinals.
Like in [Spohn, 1991], for mathematical simplicity we take the range of an OCFk to
be the natural numbers,N . For any possible worldW , we call k(W ) the rank of
W . Intuitively, the rank of a world represents its degree of implausibility. Hence, the
lower its rank, the more plausible is a world.

Any OCF k is a belief state from which we can induce a belief set and a faithful
ranking�k , whereBel(k) is the set of sentences which hold in all worlds of rank0 :

Bel (k) = Th({W | k(W ) = 0}) (8)

In contrast to[Spohn, 1988], we do not require the set of possible worlds with rank0
to be non-empty. Therefore, our approach can also deal with inconsistent belief sets.

An OCF k is extended to a ranking of sentences as follows:

k(β) =

{

∞ if ⊢ β
min{k(W ) |W |= ¬β)} otherwise

(9)

Put in words, the rank of a sentence is the lowest rank of a world in which the sentence
does not hold.7 Hence, the higher the rank of a sentence, the firmer the beliefin it, and
the belief set consists of all sentences with rank greater than 0 .

7In Spohn’s original proposal, the rank of a sentence is the lowest rank of a world in which it is true. So
the rank of β there is equal tok(¬β) here.
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m

k(¬α)

α -worlds ¬α -worlds

Figure 2: Visualization of reinforcement OCF revision

It is not difficult to see that an OCFk determines an epistemic entrenchment as
follows:

α ≤k β iff k(α) ≤ k(β) (10)

In the sequel, we present a generalized revision operator (calledreinforcement OCF
revision) which also allows to assign different evidence degrees to new information. An
OCF k is revised according to new informationα with evidence degreem ∈ N

+ as
follows:

(kr,∗
α.m)(W )

def
=

{

k(W ) − k(¬α) if W |= α
k(W ) + m otherwise

(11)

Put in words, the rank of anα -world decreases byk(¬α) , whereas the rank of a
¬α -world increases bym .

A graphical illustration of the principle of reinforcementOCF revision is given
in Figure 2: Circles to the left (right) of the vertical dotted line representα -worlds
( ¬α -worlds, respectively); the vertical coordinate of a possible world denotes its rank;
and the arrow starting from a possible world indicates the change of its rank.

3.1.1 Equivalence Results

To show the equivalence of reinforcement belief revision and reinforcement OCF re-
vision, we need a mapping from EE bases to OCFs. Formally, an OCF kΞ is derived
from an EE baseΞ = 〈B, f〉 by letting

kΞ(W ) =

{

0 if W |= B
max({f(β) |β ∈ B andW 6|= β}) otherwise

(12)

Put in words, the rank of a possible world is the maximal evidence degree of all sen-
tences that it does not satisfy.

The following result shows that an EE base and its induced OCFencode essentially
the same belief state.8

Proposition 3.2. Suppose thatΞ = 〈B, f〉 is an EE base andkΞ the induced OCF
as defined by (12), then for any sentenceβ :

RankΞ(β) = kΞ(β)

8A similar result can be found in possiblistic logic[Duboiset al., 1994] (cf. Proposition 4.3).
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Ξ Ξ ∗r 〈α, m〉

kΞ kΞ
r,∗
α,m

(7)

(11)

(12) (12)

Figure 3: A commuting diagram for reinforcement base revision and reinforcement
OCF revision

Recall Example 1. It is easy to see that the EE baseΞ = {〈r, 1〉, 〈s, 1〉, 〈r ∨ s, 2〉}
induces the OCFk shown in Table 1 (middle column; assumingP = {s, t} ). Now,
with k(¬¬s) = 1 and following (11) we obtain the OCFkr,∗

¬s,2 shown in the right
column of Table 1. We remark that thiskr,∗

¬s,2 is exactly the OCF induced from the EE
baseΞ1 = {〈r ∨ s, 1〉, 〈¬s, 2〉, 〈r ∨ ¬s, 3〉} , which is the result of revisingΞ by ¬s
with evidence degree2 .

possible worlds k kr,∗
¬s,2

W1 = {s, r} 0 2
W2 = {s} 1 3
W3 = {r} 1 0
W4 = {} 2 1

Table 1: An example of reinforcement OCF revision

The following theorem shows that the two revision operatorsbehave symmetrically
in general. That is to say, for any EE baseΞ and new information〈α, m〉 , the revised
EE baseΞ ∗r 〈α, m〉 induces exactly the revised OCFkΞ

r,∗
α,m (see also Figure 3).

Theorem 3.3. Suppose thatΞ is an EE base andkΞ the OCF induced fromΞ .
Let 〈α, m〉 be any new information, then for all possible worldsW :

kΞ1(W ) = kΞ
r,∗
α,m(W )

where Ξ1 = Ξ ∗r 〈α, m〉 .

As a direct consequence of Proposition 3.2 and Theorem 3.3, we have the following
equivalence result.

Corollary 3.4. Suppose thatΞ is an EE base andkΞ the OCF induced fromΞ .
Let 〈α, m〉 be any new information, then for any sentenceβ :

RankΞ1(β) = kΞ
r,∗
α,m(β)

where Ξ1 = Ξ ∗r 〈α, m〉 .
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3.2 Logical Properties

The equivalence result enables us to prove important logical properties of reinforce-
ment base revision by referring to reinforcement OCF revision instead. The reason for
doing so is two-fold: On the one hand, it is much easier to dealwith the latter due to its
simple and intuitive construction. Moreover, reinforcement OCF revision has already
been investigated in[Jin and Thielscher, 2007]. In the following, we summarize the
most important of the known properties.

Theorem 3.5. [Jin and Thielscher, 2007] Consider an OCFk .

1. Assume an arbitrary but fixed evidence degree for any new information. Then
reinforcement OCF revision satisfies the AGM postulates (K ∗ 1 )-( K ∗ 8 ) as
well as (DP1), (DP2), and (Ind).

2. For any m1, m2 ∈ N
+ , reinforcement OCF revision satisfies the following:

(EDP1) If β ⊢ α , then (kr,∗
α,m1

)r,∗
β,m2

≡ kr,∗
β,m2

(EDP2) If β ⊢ ¬α , then (kr,∗
α,m1

)r,∗
β,m2

≡ kr,∗
β,m2

(EInd) If there existsm such thatkr,∗
¬β,m2

0 ¬α , then
(kr,∗

α,m1
)r,∗
¬β,m2

⊢ α

3. Let 〈α, m〉 be some new information, then

kr,∗
α,m(α) = k(α) + m

All of these formal properties of reinforcement OCF revision are inherited by rein-
forcement base revision. Specifically,

1. Assuming an arbitrary but fixed evidence degree for any newinformation, we ob-
tain a standard iterated revision operator and the desirable rationality postulates
are satisfied;

2. This holds also for the more general case of varying evidence degrees;

3. Reinforcement base revision does indeed have a reinforcement effect, which,
from a pragmatic point of view, is a desirable effect in particular for domains
with several independent information sources.

This is summarized in the following corollary, which is a direct consequence of the
above-mentioned properties and the equivalence of reinforcement belief revision and
reinforcement base revision.

Corollary 3.6. Consider an EE-baseΞ .

1. Assume an arbitrary but fixed evidence degree for any new information. Then
reinforcement base revision satisfies the AGM postulates (K ∗ 1 )-( K ∗ 8 ) as
well as (DP1), (DP2), and (Ind).

2. For any m1, m2 ∈ N
+ , reinforcement base revision satisfies the following:

(EDP1′ ) If β ⊢ α , then (Ξ ∗r 〈α, m1〉) ∗r 〈β, m2〉 ≡ Ξ ∗r 〈β, m2〉

(EDP2′ ) If β ⊢ ¬α , then (Ξ ∗r 〈α, m1〉) ∗r 〈β, m2〉 ≡ Ξ ∗r 〈β, m2〉

14



(EInd ′ ) If there existsm such thatΞ ∗r 〈β, m〉 0 ¬α , then
(Ξ ∗r 〈α, m1〉) ∗r 〈β, m2〉 ⊢ α

3. Let 〈α, m〉 be some new, non-tautological information. LetΞ1 = Ξ ∗r 〈α, m〉 ,
then

RankΞ1(α) = RankΞ(B, α) + m

3.2.1 Degree of Syntax Irrelevance

Strictly speaking, reinforcement base revision violates Dalal’s principle ofirrelevance
of syntax[Dalal, 1988], because the revised belief state is not purely determined by the
logical contents of the original belief state. The principle of irrelevance of syntax is
motivated by Newell’s influential proposal which states that the behavior of an intelli-
gent system should be specifiable on theknowledge level[Newell, 1982]; that is to say,
the behavior of the system is determined solely by the contents of its knowledge (in
our context, beliefs), independent of the symbolic representation. In the following, we
show that reinforcement base revision does indeed not depend on the syntax of an EE
base, so that it actually complies with Newell’s idea.

To this end, we call two EE basesΞ1 and Ξ2 epistemically equivalentiff their
induced epistemic entrenchments (as defined by (6)) are equivalent; that is, for any
sentencesα, β :

α ≤Bel(Ξ1) β iff α ≤Bel(Ξ2) β

The following result shows that two epistemically equivalent EE bases yield the
same beliefs when revised by the same sentence.

Proposition 3.7. Let Ξ1 , Ξ2 be two epistemically equivalent EE bases, then for any
sentenceα and evidence degreesm1, m2 ∈ N

+ :

Bel (Ξ′
1) = Bel (Ξ′

2)

where Ξ′
1 = Ξ1 ∗r 〈α, m1〉 and Ξ′

2 = Ξ2 ∗r 〈α, m2〉 .

Moreover, we call two EE basesΞ1 and Ξ2 equivalent, denoted byΞ1
∼= Ξ2 , iff

for any sentenceβ :
RankΞ1(β) = RankΞ2(β)

Obviously, two equivalent EE bases are also epistemically equivalent, which in turn
means that they are logically equivalent.

It is not difficult to see that two equivalent EE bases lead to equivalent EE bases
when revised by the same information.

Proposition 3.8. Let Ξ1, Ξ2 be two equivalent EE bases and〈α, m〉 any new infor-
mation, then

Ξ1 ∗r 〈α, m〉 ∼= Ξ2 ∗r 〈α, m〉

3.3 Computational Complexity

In practice, computational complexity is a very important criterion for evaluating revi-
sion operators[Eiter and Gottlob, 1992; Liberatore, 1997b; Cadoliet al., 1995].9 Like
in [Eiter and Gottlob, 1992], we will consider the so-calledproblem of counterfactual

9We assume the reader to have basic knowledge in complexity theory, as can be found, e.g., in
[Papadimitriou, 1994].
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(CF, for short), which means to decide whetherK ∗ α ⊢ β holds for arbitrary belief
statesK and sentencesα, β .

[Nebel, 1992] has shown that both SAT and VALID can be polynomially (many-
to-one) reduced to the problem of CF for a revision operator that satisfies(K ∗ 4) and
(K ∗ 5) . This means that the problem of CF is at least both NP-hard andcoNP-hard. It
follows immediately that in general the complexity of the problem of CF is higher than
NP and coNP , provided that NP6= coNP .

For most well-known belief change operators in the literature, the problem
of CF has been shown to be at the lower end of so-calledpolynomial hierar-
chy [Eiter and Gottlob, 1992; Nebel, 1994; Liberatore, 1997a]. In the following, we
give a brief introduction to this concept. LetX be a class of decision problems. Let
PX denote the class of decision problems that can be decided in polynomial time by a
deterministic Turing machine that is allowed to use a procedure (also referred to as an
oracle) for deciding a problemQ ∈ X , whereby executing the procedure only costs
constant time. Similarly, NPX denotes the class of decision problems that can be de-
cided in polynomial time by a non-deterministic Turing machine that is allowed to use
an oracle for deciding a problemQ ∈ X . Based on these notions, the complexity
classes∆p

k , Σp
k , and Πp

k are inductively defined fork = 0, 1, 2, . . . :

∆p
0 = Σp

0 = Πp
0 = P

∆p
k+1 = PΣp

k

Σp
k+1 = NPΣp

k

Πp
k = coΣp

k+1

Note that Σp
1 = NP and Πp

1 = coNP . The polynomial hierarchy is then defined as
PH =

⋃

k≥0 ∆p
k =

⋃

k≥0 Σp
k =

⋃

k≥0 Πp
k ⊆ PSPACE . It is unknown, but commonly

believed, that the inclusion betweenPH and PSPACE is a proper one.
For problems in ∆p

2 , it is often difficult to determine their exact complexity.
But by restricting the number of oracle calls, we obtain an important special class
∆p

2[O(log n)] of problems that can be decided in polynomial time by using only loga-
rithmically many oracle calls. Furthermore, inside of∆p

2[O(log n)] are the classes of
the so-calledboolean hierarchy, that is, problems solvable in deterministic polynomial
time using aconstantnumber of NP-oracle calls.

It has been shown in[Nebel, 1994] that for cut base revision the problem of CF
is ∆p

2 [O(log n)] -complete. Since reinforcement base revision generalizescut base
revision, it does not come as a surprise that one can show thatthe former has the same
complexity:

Theorem 3.9. For reinforcement base revision, the problem of CF is∆p
2 [O(log n)] -

complete.

This theorem shows that there is not too much room for improvement in terms
of computational complexity, since∆p

2 [O(log n)] inhabits the very low end of the
polynomial hierarchy. In general, unless the size of a belief state is restricted, it is hard
to imagine that the problem of CF for any realistic operator will only require a constant
number of NP-oracle calls. Of course, if the underlying language is constrained toHorn
sentences, then the problem of CF for reinforcement base revision becomes tractable
(i.e., solvable in polynomial time).

It is also an interesting problem to ask how hard it is to compute the revised belief
state given an arbitrary belief state and new information. This is the so-calledfunc-
tion problem, which is not a decision problem like the problem of CF. The complexity
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classes for decision problems have natural counterparts for function problems: For ex-
ample, FPNP (also referred to as NP -easy) represents the set of all function problems
which can be solved in polynomial time by a deterministic Turing machine that is al-
lowed to invoke an NP -oracle. It turns out that the problem ofcomputing a revised
belief state (EE base) for reinforcement base revision falls in an interesting complex-
ity class, called NP-equivalent. Formally, a function problem is NP -equivalent iff
it is both NP -easy and NP -hard. Note that NP -equivalent is the analogue of NP -
complete for function problems, in the sense that if one NP -equivalent problem can
be solved in polynomial time, then so can be all other NP -equivalent problems.

Theorem 3.10. For reinforcement base revision, the problem of computing arevised
belief state isNP-equivalent.

4 Possibilistic Reinforcement Revision

Possibility theory (also referred to as possibilistic logic) is another research field which
is intimately related to belief revision[Dubois and Prade, 1991; Duboiset al., 1994].
The main difference is that in the former the certainty of information is represented
numerically, whereas in the latter we use ordinal measurements[Duboiset al., 1998].
Therefore, many notions used in Section 3 can also be found inpossibility theory mod-
ulo an innocuous affine transformation. In[Benferhatet al., 2002], for instance, it has
been shown that some well-known OCF revision operators can be directly mapped to
conditioning operations in possibility theory. In this section, we will likewise show
how our reinforcement belief revision can be re-cast in the possibilistic setting. The
result is a novel approach to revising possibilistic knowledge states.

In possibility theory, the beliefs of an agent are represented by a possibility distribu-
tion π , which maps the set of all possible worldsΘL to the unit interval[0, 1] . Con-
trary to an OCF, a possibility distributionπ assigns higher possibility to more plausible
worlds, so thatπ(W ) = 0 indicates an impossible worldW while π(W ) = 1 means
that nothing preventsW from being the real world.

The belief setBel (π) encoded by a possibility distributionπ consists of all sen-
tences which are true in all most plausible worlds:

Bel(π) = Th({W |π(W ) = 1}) (13)

Given a possibility distributionπ , we can define two different measures for a sen-
tenceβ : Thepossibility degreeΠπ(β) evaluates the extent to whichβ is consistent
with π :

Ππ(β)
def
=

{

0 if ⊢ ¬β
max({π(W ) |W |= β}) otherwise

(14)

Thenecessity degreeNπ(β) evaluates the extent to whichβ is entailed byπ :10

Nπ(β)
def
=

{

∞ if ⊢ β
1 − Ππ(¬β) otherwise

(15)

Henceforth, whenπ is obvious from the context, we denoteNπ(β) and Ππ(β) sim-
ply by N(β) and Π(β) , respectively.

10Originally, the necessity degree is simply defined asNπ(β)
def
=1−Ππ(¬β) . In this paper, we will use

this slightly different definition in order to be fully compatible with the notion of belief degree introduced in
Section 3.
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4.1 Possibilistic Conditionings

In possibility theory, the revision of a possibility distribution π by a totally reliable
evidenceα is obtained by Bayesian-style conditioning[Benferhatet al., 2002], that
is, for any sentenceα and any possible worldW :

π∗
α(W ) = π(W |α)

where π(.|α) is the posterior possibility distribution conditioned onα .
Two main methods for conditioning have been proposed in the literature. The so-

calledminimum-based conditioningis more of a qualitative nature:

π(W |mα)
def
=







1 if π(W ) = Π(α) andW |= α
π(W ) else ifπ(W ) < Π(α) andW |= α
0 otherwise

Much like genuine Bayesian conditioning, the so-calledproduct-based conditioning
re-scales upwards all models of the new evidenceα :

π(W |×α)
def
=







π(W )
Π(α) if W |= α andΠ(α) 6= 0

1 else ifW |= α andΠ(α) = 0
0 otherwise

It is not difficult to see that bothπ(.|mα) and π(.|×α) upgrade the necessity degree
of α to 1 , provided that0 α . Moreover, they are justified to be called conditioning
since both of them satisfy the Bayesian conditionπ(W ) = π(W |α) ⊗ Π(α) with
⊗ = min (the minimum operator) for minimum-based conditioning and⊗ = × (the
arithmetic product) for product-based conditioning.

When the new evidenceα is not fully certain, it may come with its own degree
w ∈ [0, 1] of possibility. Based on the well-known Jeffrey Rule[Jeffrey, 1965], a
possibility distribution π should be conditioned (revised) by an uncertain evidence
〈α, w〉 as follows:

π∗
〈α,w〉(W )

def
=π(W |〈α, w〉)

where

π(W |〈α, w〉) =

{

π(W |α) if W |= α
(1 − w) ⊗ π(W |¬α) otherwise

Again, ⊗ = min for minimum-based conditioning and⊗ = × for product-based
conditioning. Note thatπ(.|〈α, w〉) coincides withπ(.|α) in casew = 1 . Moreover,
both minimum-based and product-based conditioning (with uncertain input〈α, w〉 )
have the effect that the posterior necessity degree ofα is exactly w .

In [Benferhatet al., 2002] it has been pointed out that there is an intimate relation
between OCF-based revision operators and conditioning in possibility theory. In par-
ticular, a scale transformation from an OCFk to a possibility distributionπk can be
obtained by letting:

πk(W ) = e−k(W ) (16)

Then minimum-based and product-based conditioning with uncertain input can be
shown to correspond to two well-known OCF revision operators: adjustment and con-
ditionalization, respectively.11

11A comparison between reinforcement OCF revision and those two operators can be found in Section 5.
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k k∗
α,m

πk πk(.|r〈α, 1 − e−m〉)

(11)

(16) (16)

(17)

Figure 4: Correspondence between reinforcement OCF revision and conditioning

4.2 Possibilistic Reinforcement Revision

We are now ready to present possibilistic versions for both reinforcement OCF and
reinforcement base revision. The equivalence between possibilistic reinforcement re-
vision and genuine reinforcement revision will be shown.

4.2.1 Reinforcement Conditioning

By slightly modifying product-based conditioning, we obtain the followingreinforce-
ment conditioning:

π(W |r〈α, w〉) =

{

π(W |×α) if W |= α
(1 − w) × π(W ) otherwise

(17)

Note that reinforcement conditioning usesπ(W ) to compute the posterior possibility
of ¬α -worlds, instead ofπ(W |¬α) (as used in product-based conditioning). The
main effect of this modification is that the posterior necessity degree ofα may not be
w anymore. In fact, it can be shown that reinforcement conditioning always strength-
ens the necessity degree of the new evidence.

Proposition 4.1. Suppose that a possibility distributionπ is revised by a new non-
tautological evidenceα with possibility degreew . Let π1 = π∗

〈α,w〉 , then

Nπ1(α) = Nπ(α) + w − w × Nπ(α)

Since w ≥ w × Nπ(α) , this implies thatNπ1(α) ≥ Nπ(α) . Moreover, it is easy
to see thatNπ1(α) = 1 iff w = 1 or Nπ(α) = 1 .

We now show that there is actually a close correspondence between reinforcement
conditioning and reinforcement OCF revision, given the mapping defined by (16) (cf.
also the commuting diagram in Figure 4).

Theorem 4.2. Suppose thatk is an OCF and〈α, m〉 (with m ∈ N
+ ) some input

information. Letk∗
〈α,m〉 be the revised OCF using reinforcement OCF revision, then

for any possible worldW :

πk∗
〈α,m〉

(W ) = πk(W |r〈α, 1 − e−m〉)

The reader may note that an evidence degreem in OCF revision is monotonically
mapped to a possibility degree1 − e−m in possibilistic conditioning.
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4.2.2 Reinforcement Possibility Base Revision

Possibilistic bases provide a method for the compact representation of beliefs in pos-
sibility theory. Formally, a possibilistic baseΣ consists in a belief baseB and a
mapping g from B to [0, 1] , where g(β) is called the possibility degree of a sen-
tence β ∈ B . Intuitively, sentences with higher certainty have a higher possibility
degree.

We remark that a possibilistic base is the same as an EE base modulo a monotonic
scale transformation. Therefore, many notions on EE bases can also be applied to
possibilistic bases. Specifically, given a possibilistic baseΣ = 〈B, g〉 , let Σw denotes
the set of sentences whose possibility degree is at leastw :

Σw def
= {βi ∈ B | g(βi) ≥ w}

Moreover,Σ>w is the set of sentences with possibility degree greater thanw :

Σ>w def
= {βi ∈ B | g(βi) > w}

In analogy to the notion of a belief degree, we define the necessity degree of a sentence
β as follows:

NΣ(β)
def
=







0 if B 6⊢ β
∞ else if ⊢ β
max({w |Σw ⊢ β}) otherwise

(18)

Now we are ready to define a revision operator for possibilistic bases. The ba-
sic idea is quite similar to that of reinforcement base revision. Suppose thatΣ =
{〈β1, w1〉, . . . , 〈βn, wn〉} is a possibilistic base and〈α, w〉 the uncertain new infor-
mation. Let w = NΣ(¬α) , then the revised possibilistic baseΣ1 = Σ �r 〈α, w〉 is
obtained as follows:

Σ1 = {〈βi,
wi−w
1−w

〉 |wi > w}
∪ {〈α, w〉}
∪ {〈α ∨ βi, wi + w − w × wi}

(19)

In the sequel, we will show that possibilistic reinforcement base revision is equiva-
lent to reinforcement conditioning. Like in Section 3.1.1,we first define a mapping
from a possibilistic baseΣ = {〈β1, w1〉, . . . , 〈βn, wn〉} to a possibility distribu-
tion πΣ :

πΣ(W ) =

{

1 if W |= {βi, . . . , βn}
1 − max({wi |W 6|= βi}) otherwise

(20)

The following result shows that a possibilistic baseΣ and its induced possibility
distribution πΣ encode essentially the same belief state.

Proposition 4.3. [Duboiset al., 1994] Suppose thatΣ is a possibilistic base andπΣ

the induced possibility distribution as defined by (20), then for any sentenceβ :

NΣ(β) = NπΣ(β)

Finally, we can show the equivalence of reinforcement possibilistic base revision
and reinforcement conditioning (cf. Figure 5).
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Σ Σ �r 〈α, w〉

πΣ πΣ(.|r〈α, w〉)
(17)

(20) (20)

(19)

Figure 5: Reinforcement conditioning and possibilistic base revision

Theorem 4.4. Suppose thatΣ is a possibilistic base andπΣ the possibility distri-
bution induced fromΣ . Let 〈α, w〉 be any new information, then for any possible
world W :

πΣ(W |r〈α, w〉) = πΣ1 (W )

where Σ1 = Σ �r 〈α, w〉 .

As a direct consequence of the above equivalence result and Theorem 4.2, rein-
forcement possibilistic base revision also shares most of the nice properties stated in
Section 3.2.

5 Related Work and Conclusion

We have presented a computational model of so-called reinforcement belief revision.
This operator has been shown semantically equivalent to an OCF-based model of re-
inforcement revision. This implies that reinforcement base revision satisfies all desir-
able rationality postulates but violates those that are tooradical. Moreover, we have
formally analyzed the time and space complexity of the computational model of rein-
forcement revision. In this final section, we will give a detailed comparison between
our proposal and existing revision operators.

5.1 Syntax Irrelevant Operators

In the literature, there are revision operators which do notexploit any explicit extra-
logical preference information. From a representational point of view, this seems to be
an advantage; but these revision operators are also criticized asinflexible[Nebel, 1998],
because they allow little control over which sentences are discarded and which are re-
tained. In the following, we present one well-known syntax irrelevant revision operator
proposed by[Dalal, 1988]. We will argue that Dalal’s operator, while sacrificing flex-
ibility, does not have the benefit of lower time and/or space consumption. As shown
in [Eiter and Gottlob, 1992; Cadoliet al., 1995], the same holds for most other syntax
irrelevant operators.

Dalal’s operator is based on a notion of distance (between possible worlds): When
a belief baseB is revised byα , the revised belief base should be determined by the
models ofα that are “closest” to those ofB [Dalal, 1988].
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Formally, the distance between two possible worldsW1, W2 , denoted by
||∆||(W1, W2) , is the cardinality of their symmetric difference:

||∆||(W1, W2) = ||(W1 \ W2) ∪ (W2 \ W1)||

The distance between a possible worldW and a (consistent) belief baseB , denoted
by ||∆||min(B, W ) , is the minimal distance betweenW and models ofB :

||∆||min(B, W ) = min({||∆||(W1, W ) |W1 ∈ Mods(B)})

Given a belief baseB , we can induce a faithful ranking�Cn(B) on Cn(B) by
stipulating:

W1 �B W2 iff ||∆||min(B, W1) ≤ ||∆||min(B, W2)

Dalal’s operator is then defined as follows:

Cn(B ∗d α)
def
=

{

Th(min(Mods(α),�B)) if B is consistent
Cn({α}) otherwise

It has been shown by[Katsuno and Satoh, 1991] that Dalal’s operator satisfies all AGM
postulates.

Note that Dalal’s operator does not tell us explicitly how toconstruct a revised
belief base. A negative result in[Cadoliet al., 1995] says that the size of the revised
belief baseB ∗d α can be much larger than that ofB and α . More precisely, they
have shown that if the size of the revised belief baseB ∗d α is polynomially bounded
by the size ofB and α , then Σp

2 = Πp
2 = PH . As the equality of these classes is

highly unlikely, this essentially shows that Dalal’s operator causes super-polynomial
space explosion. Moreover, as shown in[Eiter and Gottlob, 1992], the problem of CF
for Dalal’s operator is∆p

2 [O(log n)] -complete; however, unlike reinforcement base
revision, it remains∆p

2 [O(log n)] -complete even for Horn theories.

5.2 Theory Base Transmutation

Theory base transmutationis a class of iterated revision operators proposed by
[Williams, 1994], among whichconditionalizationandadjustmentare the most promi-
nent ones. Like reinforcement base revision, both conditionalization and adjustment
have intuitive OCF-based semantics. We remark that there are two major differences
between reinforcement base revision and theory base transmutation: First of all, Pos-
tulate (Ind) is violated by both conditionalization and adjustment, and the latter also
violates Postulate (DP2); secondly, theory base transmutation allows the input evi-
dence degree to be0 , and in this case they behave like contraction operators since
in theory base transmutation the input evidence degree willbe the rank of the input
sentence. To facilitate the comparison between reinforcement revision and theory base
transmutation, we assume in the following that the input evidence degree is always
greater than0 .

5.2.1 Conditionalization

OCF conditionalization was originally introduced in[Spohn, 1988]. It can be viewed as
a qualitative version of Jeffrey’s Rule of probabilistic conditioning[Goldszmidt, 1992]:

(kc,∗
α.m)(W )

def
=

{

k(W ) − k(¬α) if W |= α
k(W ) − k(α) + m otherwise

(21)
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0

k(α)

m

α -worlds ¬α -worlds

(a) k(α) > m

0

k(α)

m

α -worlds ¬α -worlds

(b) k(α) ≤ m

Figure 6: OCF conditionalization

It is easy to see that OCF conditionalization closely resembles reinforcement OCF
revision. In particular, they coincide ifk(α) = 0 . Moreover, the following result
shows that OCF conditionalization can in fact be decomposedinto a sequence of OCF
reinforcement revision steps.

Theorem 5.1. Let k be an OCF and〈α, m〉 some new information, then for any
possible worldW :

kc,∗
α,m(W ) =

{

kr,∗
α,m−k(α)(W ) if k(α) < m

((kr,∗
¬α,m′)r,∗

α,m)(W ) otherwise

where m′ ∈ N
+ is an arbitrary positive integer.

The above result shows that OCF reinforcement revision behaves much more subtly
than conditionalization.

The intuition behind OCF conditionalization is depicted inFigure 6, where we dis-
tinguish the two casesk(α) > m and k(α) ≤ m . OCF conditionalization changes
the ranks ofα -worlds in exactly the same way as reinforcement OCF revision does.
Depending on whetherk(α) > m or k(a) ≤ m , all ¬α -worlds are uniformly moved
downwards or upwards, respectively, so that the most plausible ¬α -worlds end up hav-
ing the rankm , which is necessary to obtainkc,∗

α,m(α) = m . It is easy to prove that
OCF conditionalization satisfies (DP1) and (DP2) but violates (Ind) in casek(α) > m .

Conditionalization itself is a revision operator on EE-bases defined as fol-
lows [Williams, 1992; Benferhatet al., 2002]:

〈B, f〉 ∗c 〈α, m〉
def
=















〈B, f〉 ∗r 〈α, m〉 if B 0 α
{〈β, f(β) − RankΞ(α) + m〉 | f(β) > RankΞ(α)}
∪ {〈¬α ∨ β, f(β)〉 |β ∈ B}
∪ {〈α, m〉}







otherwise

Note that conditionalization coincides with reinforcement base revision in caseB 0 α .
It is not difficult to see thatΞ ∗r α ≡ Ξ ∗c α for any EE baseΞ and new infor-
mation 〈α, m〉 . Therefore, the complexity of conditionalization is same as that of
reinforcement base revision.

Theorem 5.2. For conditionalization, the problem of CF is∆p
2 [O(log n)] -complete.

23



0

k(α)

m

α -worlds ¬α -worlds
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Figure 7: OCF adjustment

However, since conditionalization violates Postulates (Ind), it is easy to find
counterexamples. Recall, for instance, Example 1. Supposethat now Ξ =
{〈r, 6〉, 〈s, 5〉, 〈r ∨ s, 7〉} and we first learn thatX is smart with evidence degree
1 . This yields Ξ1 = Ξ ∗c 〈s, 1〉 = {〈r ∨ s, 3〉, 〈r ∨ ¬s, 6〉, 〈s, 1〉} . Next we learn
that X is not rich with evidence degree2 , and obtainΞ2 = Ξ1 ∗c 〈¬r, 2〉 =
{〈r ∨ ¬s, 3〉, 〈¬r, 2〉, 〈s ∨ ¬r, 3〉} . Hence, contrary to the intuition, we now believe
that X is not smart, sinceRankΞ2(¬s) = 2 .

5.2.2 Adjustment

OCF adjustment is an operator based on an absolute measure ofminimal
change[Williams, 1994]:

(kj,∗
α.m)(W )

def
=

{

(k−
α )×α,m(W ) if m < k(α)

k×
α,m(W ) otherwise

(22)

where

(k−
α )(W ) =

{

0 if W |= ¬α andK(W ) = k(α)
k(W ) otherwise

(k×
α,m)(W ) =







0 if W |= α andK(W ) = k(¬α)
i else ifW |= ¬α andK(W ) < i
k(W ) else

Although the definition seems quite complicated, the graphical representation in
Figure 7 provides a nice intuition of OCF adjustment. UnlikeOCF conditionaliza-
tion and reinforcement OCF revision, OCF adjustment only changes the ranks of the
most plausibleα -worlds and¬α -worlds. Moreover, whenk(a) ≤ m , the relative
plausibility ordering of¬α -worlds is not always preserved (cf. Figure 7(b)). It is easy
to verify that OCF adjustment satisfies only Postulate (DP1), but violates (DP2) and
(Ind).

Adjustment is an EE-base revision operator defined as follows [Williams, 1992;
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Benferhatet al., 2002]:

〈B, f〉 ∗j 〈α, m〉 =































{〈β, f(β)〉 | f(β) > RankΞ(¬α)}
∪ {〈α ∨ β, f(β)〉 |m < f(β) ≤ RankΞ(¬α)}
∪ {〈α, m〉}







if B 0 α

{〈β, f(β)〉 | f(β) > RankΞ(α)}
∪ {〈¬α ∨ β, f(β)〉 | f(β) ≤ RankΞ(α)}
∪ {〈α, m〉}







otherwise

Just like conditionalization, adjustment has the same complexity as reinforcement
base revision:

Theorem 5.3. For adjustment, the problem of CF is∆p
2 [O(log n)] -complete.

Similar to conditionalization, it is easy to find examples inwhich adjustment leads
to counter-intuitive conclusions. Consider, for instance, Example 1 again. Suppose
that Ξ = (∅ ∗r 〈r, 1〉) ∗r 〈s, 1〉 = {〈r, 1〉, 〈s, 1〉, 〈r ∨ s, 2〉} and we first learn thatX
is not smart with evidence degree2 , followed by learning the opposite with the same
evidence degree. With adjustment we obtain the revised EE-basesΞ1 = Ξ∗j 〈¬s, 2〉 =
{〈r∨s, 2〉, 〈¬s, 2〉} and Ξ2 = Ξ1∗j〈s, 2〉 = {〈s, 2〉} . Hence, contrary to the intuition,
we do not believe thatX is rich anymore.

Acknowledgments

The authors are grateful to the anonymous reviewers of an earlier version of this paper
for helpful comments and suggestions.

25



A Proofs

Proposition 3.2. Suppose thatΞ = 〈B, f〉 is an EE base andkΞ the induced OCF
as defined by (12), then for any sentenceβ :

RankΞ(β) = kΞ(β)

Proof. Assume⊢ β . Then RankΞ(β) = kΞ(β) = ∞ .
Assume0 β and RankΞ(β) = i . It follows from (4) thatΞi+1

0 β and Ξi ⊢ β .
Let W be a possible world such thatW |= Ξi+1 ∪ {¬β} . From Ξi ⊢ β , it follows
that W 6|= Ξi . Therefore, there must be a sentenceβi ∈ Ξ|i such thatW 6|= βi .
It follows from (12) that kΞ(W ) = i . Let W1 be any possible world such that
kΞ(W1) < kΞ(W ) . It follows from (12) thatW1 |= Ξi ; hence,W1 |= β . According
to (9), we havekΞ(β) = i .

Theorem 3.3. Suppose thatΞ is an EE base andkΞ the OCF induced fromΞ .
Let 〈α, m〉 be any new information, then for all possible worldsW :

kΞ1(W ) = kΞ
r,∗
α,m(W )

where Ξ1 = Ξ ∗r 〈α, m〉 .

Proof. Let kΞ(W ) = i . By (12), we haveW |= Ξi+1 and there exists a sentence
βi ∈ Ξ|i such thatW |= ¬βi .

If W |= ¬α , then (11) implies thatkΞ
r,∗
α,m(W ) = i + m . It follows from (7) that

Ξi+m+1
1 = Ξi+m+1 ∪ {β ∨α |β ∈ Ξi+1} and α∨ βi ∈ Ξ1|i+m . Obviously, we have

W |= Ξi+m+1
1 and W 6|= α ∨ βi . Hence, according to (12),kΞ1(W ) = i + m .

If W |= α , then (11) implies thatkΞ
r,∗
α,m(W ) = i − kΞ(¬α) . Let RankΞ(¬α) =

r . It follows from (7) thatΞi−r+1
1 ⊆ Ξi+1∪{β∨α |β ∈ B}∪{α} and βi ∈ Ξ1|i−r .

It is obvious thatW |= Ξi−r+1
1 . It follows from (12) that kΞ1(W ) = i − r =

i−RankΞ(¬α) . According to Proposition 3.2, we obtain thatkΞ1(W ) = i−kΞ(¬α) .

Some of the proofs below rely on the following lemma.

Lemma A.1. Suppose thatΞ is an EE base and〈α, m〉 is any new information. Let
Ξ1 = Ξ ∗r 〈α, m〉 , then for any non-tautologous sentenceβ :

RankΞ1(β) =







t + m if ⊢ α → β
t′ − r else if t′ = t
min(t′ − r, t + m) otherwise

where r = RankΞ(¬α) , t = RankΞ(β) , and t′ = RankΞ(α → β) .
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Proof. This is a direct consequence of the following property, whose proof can be
found in [Jin and Thielscher, 2007], and Theorem 3.3: Letk be an OCF and〈α, m〉
any new information, then for any non-tautological sentence β ,

kr,∗
α,m(β) =







k(β) + m if ⊢ α → β
k(α → β) − k(¬α) else if k(α → β) = k(β)
min(k(α → β) − k(¬α), k(β) + m) otherwise

Proposition 3.1. Suppose thatΞ1 is the result of revising an EE baseΞ by 〈¬α, m〉 ,
where α is an arbitrary sentence andm an arbitrary natural number. Then for any
sentenceβ :

RankΞ1(β) 6= RankΞ(β) iff RankΞ2(α) 6= RankΞ(α)

where Ξ2 = Ξ ∗r 〈¬β, m′〉 for an arbitrary natural numberm′ .

Proof. Assume, without loss of generality, thatRankΞ1(β) = RankΞ(β) and
RankΞ2(α) 6= RankΞ(α) . From Lemma A.1, it follows that0 ¬α → β and
RankΞ(β) = RankΞ1(β) = RankΞ(¬α → β) − RankΞ(α) . Therefore,RankΞ(α) =
RankΞ(¬α → β) − RankΞ(β) . Note that RankΞ(¬α → β) = RankΞ(¬β → α) .
Therefore, Lemma A.1 implies thatRankΞ2(α) = RankΞ(¬α → β) − RankΞ(β) ,
which contradictsRankΞ2(α) 6= RankΞ(α) .

Proposition 3.7. Let Ξ1 , Ξ2 be two epistemically equivalent EE bases, then for any
sentenceα and evidence degreesm1, m2 ∈ N

+ :

Bel (Ξ′
1) = Bel (Ξ′

2)

where Ξ′
1 = Ξ1 ∗r 〈α, m1〉 and Ξ′

2 = Ξ2 ∗r 〈α, m2〉 .

Proof. Let β ∈ Bel(Ξ′
1) . It follows that RankΞ′

1
(β) > 0 . According to Lemma A.1,

it must then be the case that either⊢ α → β or RankΞ1(α → β) > RankΞ1(¬α) .
If ⊢ α → β , then according to Lemma A.1 we have thatRankΞ′

2
(β) =

RankΞ2(β) + m2 > 0 .
If RankΞ1(α → β) > RankΞ1(¬α) , then alsoRankΞ2(α → β) > RankΞ2(¬α)

since Ξ2 is epistemically equivalent toΞ1 . Again, it follows from Lemma A.1 that
RankΞ′

2
(β) > RankΞ1(α → β) − RankΞ1(¬α) > 0 .

The above discussion shows thatBel (Ξ′
1) ⊆ Bel (Ξ′

2) . The converse,Bel (Ξ′
2) ⊆

Bel(Ξ′
1) , can be shown symmetrically.

Proposition 3.8. Let Ξ1, Ξ2 be two equivalent EE bases and〈α, m〉 some new infor-
mation, then

Ξ1 ∗r 〈α, m〉 ∼= Ξ2 ∗r 〈α, m〉

Proof. A direct consequence of Lemma A.1.
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Theorem 3.9. For reinforcement base revision, the problem of CF is∆p
2 [O(log n)] -

complete.

Proof. We first show that the problem is in∆p
2 [O(log n)] . It is easy to see that in

order to compute a revised EE baseΞ1 = Ξ ∗r 〈α, m〉 , we mainly need to calculate
RankΞ(¬α) (cf. Algorithm 2 in Appendix B). Algorithm 1 in Appendix B shows that
RankΞ(¬α) can be computed with at most logarithmic many NP-oracle calls. Once
the revised EE baseΞ1 has been computed, we just need one additional NP-oracle to
decide whetherΞ1 entails β . Therefore, the problem is in∆p

2 [O(log n)] .
To show that the problem is∆p

2 [O(log n)] -hard, we give a polynomial (many-to-
one) reduction from the problem of CF for cut base revision (which is ∆p

2 [O(log n)] -
hard[Nebel, 1994]). Given any prioritized base〈B,≤B〉 , we can construct a EE base
Ξ = 〈B, f〉 by assigning evidence degree1 to all sentences in the lowest class and
evidence degree2 to all sentences in the next higher class, and so on. It is easyto
see that for any sentencesα and β : 〈B,≤B〉 ∗cut α ⊢ β iff Ξ1 entails β where
Ξ1 = Ξ ∗r 〈α, 1〉 . Thus, it follows that the problem of CF for reinforcement base
revision is ∆p

2 [O(log n)] -hard.

Theorem 3.10. For reinforcement base revision, the problem of computing arevised
belief state isNP-equivalent.

Proof. The proof of Theorem 3.9 shows that the problem is NP -easy. Toshow that it is
also NP-hard, it suffices to observe that the problem of satisfiability of an arbitrary sen-
tenceβ can be reduced to the problem of computing the revision{〈β, 1〉} ∗r 〈⊤, 1〉 :
According to (7), the revised belief base includes〈β, 1〉 iff cut{〈β,1〉}(⊥) = {β} and
Rank{〈β,1〉}(⊥) = 0 . The latter is equivalent toβ being satisfiable according to (5)
and (4).

Proposition 4.1. Consider a possibility distributionπ revised by a new non-
tautological evidenceα with possibility degreew . Let π1 = π∗

〈α,w〉 , then

Nπ1(α) = Nπ(α) + w − w × Nπ(α)

Proof. Assume Nπ(α) = 1 − Ππ(¬α) = w′ . According to (14), we have
max({π(W ) |W |= ¬α}) = 1−w′ . From (17), it follows thatmax({π1(W ) |W |=
¬α}) = (1−w′)×(1−w) . Then (14) impliesΠπ1(¬α) = (1−w′)×(1−w) . Thus,
according to (15), we haveNπ1(α) = 1− (1−w′)× (1−w) = w+w′−w×w′ .

The following observation is needed for the proof of Theorem4.2.

Lemma A.2. Let k be an OCF, andP(k) the possibility distribution as defined by
(16), then for any sentenceα :

Ππk
(α) = e−k(¬α)

Proof. Recall that Ππ(α) is defined asmax({π(W ) |W |= α}) . Let W1 be a
possible world such thatπk(W1) = Ππk

(α) = max({πk(W ) |W |= α}) . Since
f(x) = e−x is monotonically decreasing, we havek(W1) = min({k(W ) |W |=
α}) . It follows from (9) thatk(W1) = k(¬α) . Thus Ππk

(α) = e−k(¬α) .
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Theorem 4.2. Suppose thatk is an OCF and〈α, m〉 (with m ∈ N
+ ) some input

information. Letk∗
〈α,m〉 be the revised OCF using reinforcement OCF revision, then

for any possible worldW :

πk∗
〈α,m〉

(W ) = πk(W |r〈α, 1 − e−m〉)

Proof. Assume W |= α . According to (16), πk∗
〈α,m〉

(W ) = e−k∗
α,m(W ) . It fol-

lows from (11) that e−k∗
α,m(W ) = e−(k(w)−k(¬α)) . On the other hand, (17) im-

plies πk(W |r〈α, 1 − e−m〉) = πk(W )
Ππk

(α) . It follows from (16) and Lemma A.2 that

πk(W |r〈α, 1 − e−m〉) = e−k(w)

e−k(¬α) . Henceπk∗
〈α,m〉

(W ) = πk(W |r〈α, 1 − e−m〉) .

AssumeW 6|= α . Similar to the above, according to (16) and (11),πk∗
〈α,m〉

(W ) =

e−(k(W )+m) . It follows from (17) that πk(W |r〈α, 1 − e−m〉) = πk(W ) × e−m .
(16) implies πk(W |r〈α, 1 − e−m〉) = e−k(W ) × e−m . Hence πk∗

〈α,m〉
(W ) =

πk(W |r〈α, 1 − e−m〉) .

Theorem 4.4. Suppose thatΣ is a possibilistic base andπΣ the possibility distri-
bution induced fromΣ . Let 〈α, w〉 be any new information, then for any possible
world W :

πΣ(W |r〈α, w〉) = πΣ1 (W )

where Σ1 = Σ �r 〈α, w〉 .

Proof. Analogous to the proof of Theorem 3.3.

Theorem 5.1. Let k be an OCF and〈α, m〉 some new information, then for any
possible worldW :

kc,∗
α,m(W ) =

{

kr,∗
α,m−k(α)(W ) if k(α) < m

((kr,∗
¬α,m′)r,∗

α,m)(W ) otherwise

where m′ ∈ N
+ is an arbitrary positive integer.

Proof.
Assumek(α) < m , then it follows directly from (21) and (11) thatkc,∗

α,m(W ) =
kr,∗

α,m−k(α)(W ) .
Assumek(α) ≥ m . SupposeW |= α . According to (21),kc,∗

α,m(W ) = k(W ) −
k(¬α) , whereas (11) implies that((kr,∗

¬α,m′)r,∗
α,m)(W ) = kr,∗

¬α,m′(W ) − kr,∗
¬α,m′(¬α) .

Again, (11) implies thatkr,∗
〈¬α,m′〉(W ) = k(W ) + m′ . From item 3 of Theorem 3.5, it

follows that kr,∗
¬α,m′(¬α) = k(¬α) + m′ . Therefore,((kr,∗

¬α,m′)r,∗
α,m)(W ) = k(W ) −

k(¬α) . Thus, ((kr,∗
¬α,m′)r,∗

α,m)(W ) = kc,∗
〈α,m〉(W ) .

SupposeW 6|= α . It follows from (21) that kc,∗
α,m(W ) = k(W ) − k(α) + m ,

whereas (11) implies that((kr,∗
¬α,m′)r,∗

α,m)(W ) = kr,∗
¬α,m′(W )+ m . According to (11),

kr,∗
¬α,m′(W ) = k(W ) − k(α) . Therefore,((kr,∗

¬α,m′)r,∗
α,m)(W ) = k(W ) − k(α) + m .

Thus, ((kr,∗
¬α,m′)r,∗

α,m)(W ) = kc,∗
〈α,m〉(W ) .
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Theorem 5.2. For conditionalization, the problem of CF is∆p
2 [O(log n)] -complete.

Proof. It suffices to show thatΞ ∗r α ≡ Ξ ∗c α for any EE baseΞ and new
information 〈α, m〉 . If B 0 α , this holds trivially. AssumeB ⊢ α . Then
Ξ ∗r α ≡ Ξ ≡ Ξ ∗c α , since both conditionalization and reinforcement base revi-
sion satisfy the AGM postulates.

Theorem 5.3. For adjustment, the problem of CF is∆p
2 [O(log n)] -complete.

Proof. It suffices to show thatΞ ∗r α ≡ Ξ ∗j α for any EE baseΞ and new informa-
tion 〈α, m〉 . AssumeB ⊢ α . Then Ξ ∗r α ≡ Ξ ≡ Ξ ∗j α , since both adjustment
and reinforcement base revision satisfy the AGM postulates. AssumeB 0 α . The
only difference betweenΞ ∗r α and Ξ ∗j α is that the former contains additional
sentences of the formα ∨ βi . Since both revised bases containα , it follows that
Ξ ∗r α ≡ Ξ ≡ Ξ ∗j α .
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B Algorithms

Input : Ξ = {〈β1, ei〉, . . . , 〈βn, en〉} such thatei ≤ ei+1 , β

Output : RankΞ(β)

begin
if {β1, · · · , βn} 0 β then return 0 ;
else if ⊢ β then return ∞ ;
else

i = 1; j = n ;
while i ≤ j do

k = i + ⌈ j−i

2 ⌉ ;
if Ξek ⊢ β then

if Ξek+1 0 β then
return ek ;

else i = k + 1 ;
else j = k ;

end
end

end

Algorithm 1: ComputingRankΞ(β)

Input : Ξ = {〈β1, ei〉, . . . , 〈βn, en〉}, α, m

Output : Ξ1 such thatΞ1 = Ξ ∗r 〈α, m〉

begin
Ξ1 = { } ;
r = RankΞ(¬α) ;
for i = 1 . . . n do

if ei > r then
Ξ1 = Ξ1 ∪ {〈βi, ei − r〉} ;

end
Ξ1 = Ξ1 ∪ {〈βi ∨ α, ei + m〉} ;

end
Ξ1 = Ξ1 ∪ {〈α, m〉} ;
return Ξ1 ;

end

Algorithm 2: Reinforcement base revision
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