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Abstract

We present a high-level programming method
FLUX which allows to design cognitive
agents that reason about their actions and
plan. Based on the established, general ac-
tion representation formalism of the Fluent
Calculus, FLUX agents maintain an explicit,
partial world model by which they control
their own behavior. Thanks to the exten-
sive reasoning facilities provided by the un-
derlying calculus, FLUX allows to implement
complex strategies with concise and modu-
lar agent programs. Systematic experiments
with problems that require to reason about
the performance of thousands of actions, have
shown that FLUX exhibits excellent compu-
tational behavior and scales up particularly
well to long-term control.

1 INTRODUCTION

One of the most challenging and promising goals of
Artificial Intelligence research is the design of au-
tonomous agents, including robots, that explore par-
tially known environments and that are able to act
sensibly under incomplete information. Autonomy in
solving complex tasks requires the high-level cogni-
tive capabilities of reasoning and planning: Exploring
their environment, agents reason when they interpret
sensor information, memorize it, and draw inferences
from combined sensor data. Acting under incomplete
information, agents employ their reasoning facilities
to ensure that they are acting cautiously, and they
plan ahead some of their actions with a specific goal
in mind.

* Parts of the work reported in this paper have been

carried out while the author was a visiting researcher at
the University of New South Wales in Sydney, Australia.

Agents whose intelligence goes beyond simple reac-
tions to stimuli, reason and plan on the basis of a
mental model of the state of their environment. As
they move along, these agents constantly update this
model to reflect the changes they have effected and
the sensor information they have acquired. Having
agents maintain an internal world model is necessary
if we want them to choose their actions not only on
the basis of the current status of their sensors but also
by taking into account what they have previously ob-
served or done. Moreover, the ability to reason about
sensor information is necessary if properties of the en-
vironment can only indirectly be observed and require
the agent to combine observations made at different
stages. The cognitive capability of planning, finally,
allows an agent to first calculate the effect of different
action sequences in order to help it choosing one that
is appropriate under the current circumstances.

Standard programming languages for agents, such as
Java, require programmers to write special-purpose
modules if they intend to endow their agents with the
cognitive capabilities of reasoning and planning for the
domain at hand. Formal theories of reasoning about
actions and change, on the other hand, have the ex-
pressive power to provide these capabilities. Examples
of existing agent programming methods deriving from
general action theories are GOLOG [Levesque et al.,
1997; Reiter, 2001], based on the Situation Calculus, or
the robot control language developed in [Shanahan and
Witkowski, 2000], based on the Event Calculus. Nei-
ther of these systems and underlying calculi, however,
provides the crucial concept of an explicit state rep-
resentation. During the execution of a program, state
knowledge is only indirectly represented via the initial
conditions and the actions which the agent has per-
formed thus far. As a consequence, evaluating condi-
tions in an agent program always necessitates to trace
back the entire history of actions, and hence requires
ever increasing computational effort as the agent pro-



gresses. Studies reported in an accompanying paper
have shown that this concept fails to scale up to long-
term agent control [Thielscher, 2002a).

An explicit state representation being a fundamental
concept in the Fluent Calculus [Thielscher, 1999], this
established and versatile action representation formal-
ism [Thielscher, 2000a] offers an alternative theory as
the formal underpinnings for a high-level agent pro-
gramming method. Actions are specified in the Fluent
Calculus by so-called state update axioms and knowl-
edge update axioms, respectively, which can be read-
ily used in agent programs for maintaining an internal
world model in accordance with the performed actions
and acquired sensor information. The Fluent Calcu-
lus is also equipped with the formal concept of action
histories, so-called situations, which can be used by
agents to solve planning tasks along their way.

In this paper, we present the high-level programming
method FLUX (for: Fluent Exzecutor) which allows the
design of intelligent agents that reason and plan on
the basis of the Fluent Calculus. Using the paradigm
of constraint logic programming, FLUX comprises a
method for encoding incomplete states along with
a technique of updating these states according to a
declarative specification of the elementary actions and
sensing capabilities of an agent. With its powerful
constraint solver, the underlying FLUX kernel pro-
vides general reasoning facilities, so that the agent
programmer can focus on designing the high-level be-
havior. Allowing for concise programs and supporting
modularity, our method promises to be eminently suit-
able for programming complex strategies for artificial
agents. Moreover, systematic experiments have shown
that FLUX exhibits excellent computational behavior
and scales up particularly well to long-term control.

The rest of the paper is organized as follows. We be-
gin with illustrating, in Section 2, the key features
of our programming methodology by an example of a
non-trivial agent program. In Section 3, the seman-
tics of FLUX is given in terms of the Fluent Calcu-
lus. Section 4 contains a description of the FLUX ker-
nel; a detailed account of the constraint solver and the
proof of its correctness is given in an accompanying pa-
per [Thielscher, 2002b]. In Section 5, we show how the
Fluent Calculus allows to define and prove soundness
of FLUX programs. In Section 6, we give an overview
of studies showing the computational merits of FLUX.
A brief outlook is given in Section 7.

The FLUX system, the example agent program, and
the accompanying papers all are available for download
at our web site http://fluxagent.org.
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Figure 1: An example scenario in a Wumpus World
where the 5 x 5-cave features three pits, the Wum-
pus in cell (3,1), and gold in cell (4,4). In the right
hand side are depicted the corresponding perceptions
(breeze, stench, glitter) for each location.

2 PROGRAMMING AGENTS IN
FLUX

The example agent program in this paper is set in the
artificial environment of the “Wumpus World,” follow-
ing the specification laid out in [Russell and Norvig,
1995] (see also Figure 1): An agent moves in a grid of
cells, some of which contain, initially unknown to the
agent, bottomless pits or gold, and there is one square
which houses the hostile Wumpus. Its sensing capa-
bilities allow the agent to perceive a breeze (a stench,
respectively) if it is adjacent to a cell containing a pit
(the Wumpus, respectively), and the agent notices a
glitter in any cell containing gold and it hears a scream
if the Wumpus gets killed. The elementary actions of
the agent are to enter and exit the cave at cell (1,1),
turning clockwise by 90°, going forward one square in
the direction it faces, grabbing gold, and shooting an
arrow in the direction it faces. The task of the agent
is to find and bring home gold without falling into
a pit and without encountering the Wumpus. A toy
environment, the Wumpus World nonetheless requires
crucial capabilities of intelligent agents, in particular
acting cautiously under incomplete information, inter-
preting and logically combining sensor data, and plan-
ning. In the following, we develop a complete agent
program for the Wumpus World, thereby illustrating
the various features of our programming methodology.

2.1 FLUX States

FLUX agents use states as their internal model of the
world. According to a convention in action theories,
the atomic components of states are called fluents.
Our program for the Wumpus World agent, for ex-
ample, uses seven fluents: At(z,y) and Facing(d),
representing that the agent is in cell (z,y) and faces



direction d € {1,2,3,4} (north, east, south, or west);
Gold(z,y), Pit(x,y), and Wumpus(x,y), represent-
ing that square (x,y) houses, respectively, gold, a pit,
or the Wumpus; Dead, representing that the Wum-
pus is dead; and Has(z), representing that the agent
has z € {Gold, Arrow}.

While a state is identified with all fluents that are true,
agents hardly ever have complete information about
their environment. To reflect this, incomplete states
are encoded in FLUX as open lists, that is, lists with
a variable tail, of fluents (possibly containing further
variables). These lists are accompanied by constraints
both for negated and disjunctive state knowledge as
well as for variable range restrictions. The constraints
are of the form NotHolds(f,z), indicating that flu-
ent f does not holds in state z; NotHoldsAll(f,z),
indicating that no instance of f holds in z; and
Or([f1,---, fn], %), indicating that at least one of the
fluents fi,...,fn holds in state z. Furthermore,
FLUX employs a standard constraint solver for fi-
nite domains, which includes arithmetic constraints
over rational numbers (using the equality and order-
ing predicates #=#<#> along with the standard func-
tions +,-,%), range constraints (written X::[a..b]),
and logical combinations using #/\ and #\/ for con-
junction and disjunction, respectively. Consider, for
example, the initial state of the Wumpus World agent,
who has one arrow and knows that the Wumpus is not
dead and could be in any square of the cave but (1,1),
that there are no pits in (1,1) or outside the bound-
aries of the cave, and that initially the agent is nowhere
inside of the cave and therefore not facing any direc-

tion:!

init(Z0) :- Z0 = [has(arrow) ,wumpus (WX,WY)|Z],
[WX,wy]l :: [1..5]1,
not_holds (wumpus(1,1),Z0),
not_holds_all (wumpus(_,_),Z),
not_holds(dead,Z),
not_holds(pit(1,1),2),
not_holds_all(pit(_,0),Z), %boundary
not_holds_all(pit(_,6),Z),
not_holds_all(pit(0,_),Z),
not_holds_all(pit(6,_),Z),
not_holds_all(at(_,_),Z),
not_holds_all(facing(_),Z),
duplicate_free(Z0).

hagent

The reader may notice the difference in specifying the
location of the Wumpus and the pits: While there is a
unique but unknown cell housing the former, there can
be many pits or none at all. Stipulating that pits may
not lie outside the boundaries of the cave will simplify
the specification of what it means to sense a breeze.

'The auxiliary constraint DuplicateFree(z) stipulates
that list z does not contain multiple occurrences.

2.2 TUpdate Specifications

As agents move along, they need to update their in-
ternal world model whenever they perform an action,
in order to reflect the changes that have been effected
and the sensor information that has been acquired.
This maintenance of the state is based on a specifica-
tion of the elementary actions of the agent. Follow-
ing the solution to the fundamental frame problem in
the Fluent Calculus [Thielscher, 1999], FLUX uses so-
called state update axioms, one for each action, defin-
ing the positive and negative effects and the meaning
of sensing results. To this end, the FLUX kernel pro-
vides the predicate Update(z1,9,97,22), encoding
that state 2o is the result of updating state z; by the
positive and negative effects 97 and ¥, respectively.
Both 9% and 9~ are finite, possibly empty lists of
fluents. The auxiliary predicate Holds(f, z), indicat-
ing that fluent f holds in state z, is also provided
by the kernel to be used in state update axioms. On
this basis, update axioms are encoded by defining the
predicate StateUpdate(zi,a,z2,m), defining state 2o
as the result of performing action a in state z; and
perceiving sensor information 7.

The update axioms used in our program for the Wum-
pus World agent, for example, are as follows. Entering
the cave has the effect that the agent is in cell (1,1)
facing north. Furthermore, its sensors tell it whether
it perceives a breeze, a stench, or a glitter. (The aux-
iliary predicates are defined below.):

state_update(Z1,enter,Zz2,[B,S,G]) :-
update(Z1, [at(1,1) ,facing(1)],[1,Z2),
breeze_perception(1,1,B,Z2),
stench_perception(1,1,5,22),
glitter_perception(1,1,G,Z2).

Exiting the cave has the reverse effect:

state_update(Z1,exit,Z2,[]) :-
holds (facing(D),Z1),
update(Z1,[1,[at(1,1),facing(D)]1,Z2).

Turning has the effect of facing the next direction
(clockwise) on the compass:

state_update(Z1,turn,Z2,[]) :-
holds(facing(D),Z1),
(D#<4 #/\ Di#=D+1) #\/ (D#=4 #/\ Di#=1),
update(Z1, [facing(D1)], [facing(D)],Z2).

Going forward has the effect of being in the adjacent
cell and acquiring new sensor inputs:

state_update(Z1,go,Z2,[B,S,G]) :-
holds(at(X,Y),Z1), holds(facing(D),Z1),
adjacent(X,Y,D,X1,Y1),



update(Z1, [at(X1,Y1)], [at(X,Y)],Z22),
breeze_perception(X1,Y1,B,Z2),
stench_perception(X1,Y1,5,Z2),
glitter_perception(X1,Y1,G,Z2).

Grabbing gold has the positive effect of having gold
and the negative effect of clearing the cell:

state_update(Z1,grab,z2,[]) :-
holds (at (X,Y),Z1),
update(Z1, [has(gold)], [gold(X,Y)],Z2).

Finally, shooting has a conditional effect, depending
on whether the Wumpus is hit by the arrow, which is
indicated by the perception of a scream. In either case
the agent looses its arrow:

state_update(Z1,shoot,Z2,[S]) :-
( S=true, update(Z1,[dead], [has(arrow)],Z2)
; S=false, update(Z1,[], [has(arrow)],z2) ).

Both the FEnter action and the Go action use aux-
iliary predicates defining the meaning of perceiving a
breeze, a stench, or a glitter at the new location:

breeze_perception(X,Y,Percept,Z) :-

XE#=X+1, XW#=X-1, YN#=Y+1, YS#=Y-1,

( Percept=false, not_holds(pit(XE,Y),Z),
not_holds(pit(XW,Y),Z),
not_holds (pit(X,YN),Z),
not_holds(pit(X,YS),Z) ;

Percept=true,
or([pit(XE,Y),pit (X,¥N),
pit(XW,Y),pit(X,Y$)1,2) ).

The clause for sensing a stench is identical but with
Pit being replaced by Wumpus, whereas perceiving
glitter indicates the presence of gold in the very cell:

glitter_perception(X,Y,Percept,Z) :-
Percept=false, not_holds(gold(X,Y),Z) ;
Percept=true, holds(gold(X,Y),Z).

The update axiom for Go uses a further auxiliary
predicate defining the notion of adjacent cells wrt. the
different directions:

adjacent(X,Y,D,X1,Y1) :-
[X,Y,X1,Y1]::1..5, D::1..4,
(D#=1) #/\ (X1#=X)  #/\ (Y1#=Y+1) % north
#\/ (D#=3) #/\ (X1#=X) #/\ (Yi#=Y-1) Y% south
#\/ (D#=2) #/\ (X1#=X+1) #/\ (Yi#=Y) Y% east
#\/ (D#=4) #/\ (X1#=X-1) #/\ (Yi#=Y). Y west

2.3 Agent Programs

Agent programs written in FLUX use the fundamental
command FEzecute(a, 21, 22). Resolving this predicate
triggers the actual performance of action a. Further-
more, the update of the current state z; to state 2o

is inferred on the basis of the state update axiom
for a. The expressive power of high-level agent pro-
gramming becomes apparent when using the inter-
nal world model to control the continuation of a pro-
gram. Conditioning in FLUX is based on the founda-
tional predicates Knows(f,z), KnowsNot(f,z), and
KnowsVal(Z, f, z), representing that the agent knows
that fluent f holds (respectively, does not hold) in
state z, and that there exist ground instances of the
variables in Z such that fluent f is known to be true
in state z. In the following we implement a simple
strategy for a Wumpus World agent, allowing it to
systematically and cautiously explore the cave. The
program maintains three parameters: a list of choice-
points; a list of cells already visited; and the current
path the agent has taken, which is used for backtrack-

ing.

To begin with, the agent enters the cave and sets the
choicepoints for cell (1,1), i.e., north and east; the lists
of visited cells and the backtrack path are initialized
accordingly:

:- init(Z0), execute(enter,Z0,Z1),
Cpts=[1,1,[1,2]]1, Vis=[[1,1]1], Btr=[],
main_loop(Cpts,Vis,Btr,Z1).

main

In the main loop, the agent systematically selects a di-
rection to explore from its current location. If this step
is successful, then the agent tries to hunt the Wumpus
and checks if gold is known to be in the current square;
if so, it grabs the gold and goes home, otherwise choi-
cepoints are created for the new location and both the
list of visited nodes and the backtrack path are ex-
tended. If, on the other hand, the selected choicepoint
cannot safely be explored, then it is removed; and if
there are no choicepoints left for the current location,
then the agent backtracks:

main_loop([X,Y,Choices|Cpts],Vis,Btr,Z) :-
Choices=[Dir|Dirs] ->
% choicepoint exists
(explore(X,Y,Dir,Vis,Z,Z1) ->
% successful choicepoint
knows_val ([X1,Y1],at(X1,Y1),Z1),
hunt_wumpus (X1,Y1,71,Z2),
(knows (gold (X1,Y1) ,22) ->
execute(grab,Z2,Z3), go_home(Z3)

; Cpts1=[X1,Y1,[1,2,3,4]1,X,Y,Dirs|Cpts],
Visi=[[X1,Y1]|Vvis], Btri=[X,Y|Btr],
main_loop(Cpts1,Vis1,Btrl,Z2) )

% unsuccessful choicepoint

; main_loop([X,Y,Dirs|Cpts],Vis,Btr,Z) )
% no choicepoints left
; backtrack(Cpts,Vis,Btr,Z).

Let us first consider the procedure for exploring a cer-
tain direction, which the agent does only if it has not



yet visited the adjacent square and if the new location
is safe. Acting cautiously, the agent shall enter a cell
only if the latter is known to be free of a pit and if ei-
ther the Wumpus is known to be elsewhere or known
to be dead:

explore(X,Y,D,V,Z1,Z2) :-
adjacent(X,Y,D,X1,Y1), \+ member([X1,Y1],V),
knows_not (pit(X1,Y1),Z1),
(knows_not (wumpus (X1,Y1) ,Z1) ;knows (dead ,Z1) ),
turn_to(D,Z1,Z), execute(go,Z,Z2).
turn_to(D,Z1,Z2) :-
knows (facing(D) ,Z1) -> Z2=Z1
; execute(turn,Z1,Z), turn_to(D,Z,Z2).

Next, consider the procedure for backtracking, which
simply means to go back to the first square in the
list of backtracking points. If the list happens to be
empty, then the agent has reached the home square
and therefore exits the cave:

backtrack(_,_,[]1,Z) :- execute(exit,Z,_).
backtrack(Cpts,Vis, [X,Y|Btr] ,Z) :-
go_back(X,Y,Z,Z1), main_loop(Cpts,Vis,Btr,Z1).
go_back(X,Y,Z1,Z2) :-
holds(at(X1,Y1),Z1), adjacent(X1,Y1,D,X,Y),
turn_to(D,Z1,Z), execute(go,Z,Z2).

A simple strategy for hunting the Wumpus, if it is still
alive, is to check if the cell is known where it hides
and if the agent happens to be in the same row or
column. If so, then our agent turns into the direction
of the Wumpus and shoots; otherwise, no action is
performed and, hence, the state does not change:

hunt_wumpus(X,Y,Z1,Z2) :-
\+ knows(dead,Z1),
knows_val ([WX,WY] ,wumpus (WX,WY) ,Z1),
in_direction(X,Y,D,WX,WY)
-> turn_to(D,Z1,Z), execute(shoot,Z,Z2)

; Z2=Z1.

in_direction(X,Y,D,X1,Y1) :-

[X,Y,X1,Y1]::1..5, D::1..4,
(D#=1) #/\ (X1#=X) #/\ (Y1#>Y) ¥ north

#\/ (D#=3) #/\ (X1#=X) #/\ (Y1#<Y) % south
#\/ (D#=2) #/\ (X1#>X) #/\ (Yi#=Y) Y% east
#\/ (D#=4) #/\ (X1#<X) #/\ (Yi#=Y). ¥ west

With just the procedure GoHome remaining to be
defined, the FLUX program illustrates how high-level
strategies for intelligent agents can be encoded in a
concise and modular fashion. In particular, the reader
may appreciate that there is no need to program any
inference capabilities—these are fully provided by the
underlying FLUX kernel. This allows the agent pro-
grammer to focus on specifying complex behaviors on
the basis of the elementary actions of an agent.

Applied to the scenario depicted in Figure 1, the pro-
gram runs as follows: After entering the cave the agent
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Figure 2: Exploring the cave depicted in Figure 1,
our agent eventually reaches the cell with the gold,
having shot the Wumpus along its way and inferred
the locations of two pits. The northwest corner of the
cave is still unknown territory.

first goes north to (1,2). Since it senses a breeze and
cannot decide whether there is a pit in (1,3) or (2,2),
or both for that matter, the agent backtracks and then
goes to (2,1). Sensing no breeze there, the agent con-
cludes that (2,2) does not house a pit and that the
breeze in (1,2) must have come from (1,3). More-
over, sensing a stench in (2,1) without having experi-
enced one in (1,2), the agent infers that the Wumpus
isin (3,1). The agent shoots its arrow in that direc-
tion, making it possible to step over the dead Wumpus
later on, and continues to explore the cave. Eventu-
ally, the agent arrives at (4,4), where it senses a glitter
and grabs the gold. At this stage, the current back-
tracking path is as depicted in Figure 2. Furthermore,
the agent has acquired knowledge about the contents
of all but four cells.

2.4 Planning

The ability to devise plans adds a second dimension to
high-level agent programming. A useful application of
planning in our example domain is to have the agent
find a direct route home after claiming gold: While
the agent could just follow its backtracking path, this
usually involves a considerable detour, as the situation
in Figure 2 illustrates.

Since unrestricted planning with incomplete states is
a notoriously hard problem, FLUX allows to define
compound actions and to specify domain-dependent
search trees for planning problems. For instance, to
plan a short but safe route home, our Wumpus World
agent uses the compound action of going to any ad-
jacent cell, thereby postponing to execution time the
task of finding the right number of Turn actions. The
virtual action of going to square (z,y) has the effect
of changing the agent’s location:



state_update(Z1,go_to(X,Y),Z22,[1) :-
holds (at(X1,Y1),Z1),
update(Z1, [at(X,Y)], [at(X1,Y1)],Z2).

Search trees for planning problems are specified in
FLUX by defining the predicate PlanProc(g,p), where
g denotes a planning task and p describes the search
space. Adopting key notions and notations from
GOLOG [Levesque et al., 1997], the concept of a search
space in FLUX is defined as follows. An elementary
action, a compound action, and a test ?(yp) are search
spaces, and if ej,eq,..., e, are search spaces, then so
are erjftes (nondeterministic choice) and [eq,...,ey)
(sequencing; n > 0). The search space for our exam-
ple planning problem can thus be specified as follows.
(The auxiliary tests are defined below.):

plan_proc(find_path(Vis) ,P) :-
P = (?(home) #
[?(poss_go(X,Y,Vis,Visl)), go_to(X,Y),
find_path(Vis1)]).

Put in words, a successful plan is either to be home
or to go to an adjacent cell, if possible, followed by a
plan to go home from there. The planning procedure
employs a list of visited nodes to avoid running into a
loop.

The tests 7(yp) occurring in the specification of a
search space need to be accompanied by definitions
for ¢ to hold in the current situation, that is, af-
ter performing the current sequence of actions s in
the initial state zy of the planning problem. To this
end, a clause with head P(Z, z, sg) needs to be defined
for every test ?(P(Z)). The FLUX kernel provides
definitions of the standard predicates Knows(f, s, zg),
KnowsNot(f,s,20), and KnowsVal(Z, f, s, z9), which
carry the additional situation argument, too. On this
basis, the tests needed for our example planning prob-
lem can be defined as follows:

home(S,Z) :-
knows(at(1,1),S,Z).
poss_go(X1,Y1,Vis,Vis1,S,Z) :-
knows_val ([X,Y],at(X,Y),S,Z),
(D=1 ; D=2 ; D=3 ; D=4 ),
adjacent(X,Y,D,X1,Y1),
\+ member ([X1,Y1],Vis),
knows_not (pit(X1,Y1),Z),
( \+ knows(dead,Z)->knows_not (wumpus (X1,Y1) ,Z)
; true ),
Vis1=[[X,Y]|Vis].

The reader may notice how the agent plans it safe, that
is, only those locations are searched which are known
to be free of a pit and of the alive wumpus. For the
sake of efficiency, these tests refer to the initial state of
the planning problem as they are not affected by the
planned actions.

What remains to be done is to define the cost ¢ of
a plan p for a planning problem g, using the stan-
dard FLUX predicate PlanCost(g,p,c). Furthermore,
the execution of a virtual action a leading from state
z1 to state zo is to be defined using the standard
FLUX predicate ExecuteCompoundAction(a,z1,22).
The cost of a plan to go home is simply its length,
while its execution requires to find the right number
of turns prior to going to the adjacent cell:

plan_cost(find_path(_),P,C) :-
length(P,C).
execute_compound_action(go_to(X,Y),Z1,Z2) :-
holds(at(X1,Y1),Z1), adjacent(X1,Y1,D,X,Y),
turn_to(D,Z1,Z), execute(go,Z,Z2).

Employing the FLUX predicates Plan(g,p,z1) and
Ezxecute(p, 21, 22), agents can be programmed so as to
find a plan p for problem ¢ in state z; and to ac-
tually execute this plan, thereby updating state z; to
2. In our example,

go_home(Z) :-
plan(find_path([]),Plan,Z),
execute(Plan,Z,Z1), execute(exit,Z1,_).

Applied to the state depicted in Figure 2, the agent
finds and executes the plan to go straight down
to (4,1), to turn, and to walk straight to (1,1).

3 A FLUENT CALCULUS
SEMANTICS FOR FLUX

3.1 Fluents and States

The Fluent Calculus is a many-sorted predicate logic
language with four standard sorts: FLUENT, STATE,
ACTION, and sSIT (for situations). States are com-
posed of fluents (as atomic states) using the standard
function o : STATE X STATE — STATE and constant
0 : sTATE (denoting the empty state). In order to
capture the intuition of identifying a state with the flu-
ents that hold, the special connection function of the
Fluent Calculus should obey certain properties which
resemble the union operation for sets:2

Definition 1 The foundational axioms Y44 of the
Fluent Calculus are,

1. Associativity, commutativity, idempotence, and

*Free variables in formulas are assumed universally
quantified. Variables of sorts FLUENT, STATE, ACTION,
and sIT shall be denoted by the letters f, z, a, and s,
respectively. The function o is written in infix notation.



unit element:

(21022)023 = 2’10(2’202’3)
2102y = 2202
20z = 2z
zol) = z

2. Empty state axiom:

—Holds(f, )

3. Irreducibility and decomposition:

Holds(f1, f2) D fi=f2
Holds(f,z1 o z2) D Holds(f,z1) V Holds(f, z2)

4. State equality and state existence:

[Holds(f,z1) = Holds(f,2z2)] D 21 = 22
(V®)(32)(V) (Holds(f,2) = @(f))

where ® is a second-order predicate variable of sort
FLUENT while the macro Holds means that a fluent
holds in a state:

Holds(f,z) & (32') z = fo 2 (1)
O

The very last, second-order axiom above stipulates the
existence of a state for all possible combinations of
fluents.

On this basis, the semantics of a state specification in
FLUX of the form

z = [fi,.-., fr|Z"], DuplicateFree(z)

is given by the equational axiom z = fio...0 fr 02/,
where 2,2’ are of sort STATE and the f;’s are
of sort FLUENT. The meaning of the FLUX atom
Holds(f,z) is as in macro (1), while the semantics
for the constraints NotHolds(f,z), NotHoldsAll(f,z),
and Or([fi,-..,fn],#) is given by the following ax-
ioms:

—Holds(f,z); (VZ)—-Holds(f,z); \H/Holds(fi,z)

i=1

where Z are the free variables in f. For example,
the initial state in the Wumpus World is suitably de-
scribed by the following Fluent Calculus axiom (c.f.
Section 2.1):

(3z,y,2)
( State(Sy) = Has(Arrow) o Wumpus(x,y) o z A

1<z<5A1<y<5A

—Holds( Wumpus(1,1),29) A

(Vz',y") = Holds( Wumpus(z',y'),z) A

—Holds(Dead, z) A —Holds(Pit(1,1),z) A

(V') (—~Holds (Pit(x',0), z) A (2)
—Holds(Pit(z',6),2)) A

(Vy") (=Holds(Pit(0,y'),2) A
—Holds(Pit(6,y'),2)) A

(Vx',y") —=Holds(At(z',y'), z) A

(Vd) —~Holds(Facing(d), z))

The axiomatization of states in the Fluent Calculus
via the foundational axioms paves the way for an ex-
tensional definition of addition and removal of (finitely
many) fluents from states, which in turn lays the foun-
dation for an effective solution to the fundamental
frame problem in the presence of incomplete states.
The following definition introduces the macro equation
21 —T = 2z with the intended meaning that state z» is
state z; minus the fluents in the finite state 7. The
compound macro zs = (21 — 97) + 9T means that
state zo is state z; minus the fluents in ¥~ plus the
fluents in 9T

def

n-0=n==n=n
2= f =2

(=2 V zmof=n) A -Holds(f,z)
21— (fiofao...0fn) =2

@) e=n—fAn=z2-(f0...0f)
(1 =07)+ 0t =2

@) (=20 A m =200

where both 9+, 9~ are finitely many FLUENT terms
connected by “o”. The crucial item is the second one,
which defines removal of a single fluent f using a case
distinction: Either z; — f equals 2; (which applies in
case —Holds(f,z1)),or z1—f plus f equals z; (which
applies in case Holds(f,z1)). On this basis, the se-
mantics of the FLUX predicate Update(z1,97,97, 22)

is given by the equation zy = (z; —97) + 9.

3.2 Actions and Situations

Adopted from the Situation Calculus, the two stan-
dard sorts ACTION and SIT are used to axiomatize
sequences of actions. The standard function Do :
ACTION X SIT — SIT denotes the situation reached
by performing an action in a situation, and the con-
stant Sp : SIT denotes the initial situation. The stan-
dard function State : SIT — STATE, which features
uniquely in the Fluent Calculus, serves as denotation
for the state of the environment in a situation.



Generalizing previous approaches [Bibel, 1986;
Holldobler and Schneeberger, 1990], the fundamen-
tal frame problem is solved in the Fluent Calculus
by axioms which specify the difference between the
states before and after an action [Thielscher, 1999].
Let Poss : ACTION x STATE denote that an action is
possible in a state, then a precondition axiom for an
action A(Z) is of the form

Poss(A(%),z) = II(z)

where TI(z) is a first-order formula with free vari-
able z. The following is the general form of a state
update axiom for a (possibly nondeterministic) action
A(%) with possibly conditional effects:3

Poss(A(F),s) D
(3 (Ar(s) A
State(Do(A(Z), s)) = (State(s) —97) +971)
V...V
(3) (An(s) A
State(Do(A(%T), s)) = (State(s) —9;,,) + 9, )

)
First-order formulas A;(s) specify the conditions on
State(s) under which A(Z) has the positive and neg-
ative effects 9] and ¥;, respectively. Both o
and ¥; are STATE terms consisting of FLUENTS only

(1<i<n; n>1).

Regarding our Wumpus World agent, consider the fol-
lowing precondition axioms:

Poss(Enter,z) = (Vx,y) ~Holds(At(x,y), z)
Poss(Exit,z) = Holds(At(1,1),2)

Poss(Turn, z) = (3z,y) Holds(At(z,y), 2)
Poss(Go,z) = (Ad,z,y,z',y")

(Holds(At(z,y), z) A Holds(Facing(d), z) A
Adjacent(z,y,d,x',y") A ~Holds(Pit(xz,y),z) A
[—Holds( Wumpus(z,y), z) V Holds(Dead, z)] )

Poss(Grab,z) = (3z,y) (Holds(At(xz,y),2) A
Holds(Gold(x,y),z))
Poss(Shoot, z) = Holds(Has(Arrow), z)

where Adjacent(z,y,d,z',y") shall be defined as in
Section 2.2.

The state update axioms are straightforward, following
the description in Section 2.2. For example, the effect
of Go on the state can be axiomatized as follows:
Poss(Go,s) D
(3d,z,y,2',y") (Holds(At(x,y), State(s)) A
Holds(Facing(d), State(s)) A Adjacent(z,y,d, ', y")A
State(Do(Go, s)) = (State(s)— At(x,y))+At(z',y"))

The reader may notice that sensor information is not
incorporated in state update axioms as sensing does
not affect the state itself.

3Below, Poss(a,s) 4 Poss (a, State(s)).

3.3 Knowledge and Sensing

The basic Fluent Calculus has been extended in
[Thielscher, 2000b] by the foundational predicate
KState : SIT x STATE to allow for both representing
state knowledge and reasoning about actions which in-
volve sensing. An instance KState(s,z) means that,
according to the knowledge of the agent, z is a possi-
ble state in situation s. For example, the initial knowl-
edge of our Wumpus World agent can be specified by
this axiom:

(VZ(]) (KState(So,Zo) = \I’(Z())) (3)

where W(zp) is formula (2) with State(Sp) replaced
by variable zo. That is to say, all states which satisfy
the initial specification are to be considered possible
by the agent. In particular, the agent has no further
prior knowledge of the cave.

Based on the notion of a knowledge state, a fluent is
known to hold in a situation (not to hold, respectively)
just in case it is true (false, respectively) in all possible
states:

Knows(f,s) = (Vz) (KState(s, z) D Holds(f,z))
Knows(—f,s) % (Vz) (KState(s, z) D —Holds(f, 2))

Moreover, a value of a fluent is known just in case a
particular instance holds in all possible states:

def

KnowsVal(Z, f,s) =
(3%)(Vz)(KState(s, z) D Holds(f,z))

For example, the axiomatization of the initial knowl-
edge entails that the agent knows that the Wumpus
must be somewhere,

Estate U {(3)} IZ
KState(So, 20) D (Fz,y) Holds( Wumpus(z,y), z0)

but the agent does not know where,

Zstate U {(3)} |=
= KnowsVal(x,y, Wumpus(z,y), So)

The frame problem for knowledge is solved by axioms
that determine the relation between the possible states
before and after an action. More formally, the effect
of an action A(Z), be it sensing or not, on the knowl-
edge of the agent is specified by a so-called knowledge
update axiom,*

Knows(Poss(A(F)),s) D
(KState(Do(A(%F),s),z) = (4)
(321)(KState(s, z1) A ¥(z,21) ATI(z,5)))

“Below, macro Knows(Poss(a),s) stands for the for-
mula (Vz) (KState(s, z) D Poss(a, 2)).



where ¥ specifies the physical state update while II
restricts the possible states so as to agree with the
actual state State(s) on the sensed properties. For
example, this is the knowledge update axiom for action
Go of our Wumpus World agent:

Knows(Poss(Go),s) D (KState(Do(Go,s),z) =
(ada z,Y, xla yla 21) (KState(Sa 21) A
Holds(At(z,y),21) A Holds(Facing(d),z1) A
Adjacent(z,y,d,z',y") A
z = (21 — At(z,y)) + At(z',y') A

[Breeze(z',y',z) = Breeze(z',y', State(s))] A
[Stench(z',y',z) = Stench(z',y', State(s))] A
[Glitter(z',y', z) = Glitter(z',y’, State(s))]))

where

Breeze(z,y, 2)
Holds(Pit(

+1,y),2) V Holds(Pit(z,y +1),2) V
Holds(Pit( Yy

x
z —1,y),2) V Holds(Pit(xz,y — 1), 2)

Likewise for Stench(z,y, z), while
Glitter(x,y,z) = Holds(Gold(z,y), 2)

The other knowledge update axioms are straightfor-
ward and correspond to the encoding in Section 2.2.

4 THE FLUX KERNEL

Figure 3 gives an overview of the architecture of FLUX
programs: The basic statements in agent programs are
testing knowledge (predicate Knows etc.) and per-
forming actions (predicate FEzecute), both of which
are defined in the FLUX kernel. Maintaining the
state when performing an action relies on the speci-
fication of update axioms, which in turn use the basic
FLUX predicate Update. FLUX itself appeals to the
paradigm of constraint logic programming, which en-
hances logic programs by mechanisms for solving con-
straints. In particular, so-called Constraint Handling
Rules [Friithwirth, 1998] (CHRs) support declarative
specifications of rules for processing the FLUX con-
straints which express negative and disjunctive state
knowledge. In turn, these rules use finite domain
constraints for handling variable arguments of fluents,
which can be natural or rational numbers or of any
user-defined finite domain.

4.1 States and Update

The basic definitions for states and update in the
FLUX kernel are as follows:

holds(F,[FI_]1).
holds(F,Z) :-

nonvar(Z), Z=[F1|Z1], \+F==F1, holds(F,Z1).
holds(F,[FIZ],2).
holds(F,Z, [F1|Zpl) :-
nonvar(Z), Z=[F1|Z1], \+F==F1, holds(F,Z1,Zp).
minus(Z, [1,2).
minus(Z, [F|Fs],Zp) :-
(knows_not(F,Z)->Z1=Z; holds(F,Z,Z1)),
minus(Z1,Fs,Zp) .
plus(z,[1,2).
plus(Z, [F|Fs],Zp) :-
(knows_not(F,Z)->Z1=[F|Z]; holds(F,Z), Z1=Z),
plus(Z1,Fs,Zp).

update(Z1,P,N,Z2) :- minus(Z1,N,Z),plus(Z,P,Z2).

The accompanying paper [Thielscher, 2002b] contains
a proof of correctness of these clauses wrt. the founda-
tional axioms Y g.te of the Fluent Calculus and the

axiomatic characterization of fluent removal and addi-
tion.

Knowledge in FLUX is identified with logical entail-
ment wrt. incomplete state specifications, employing
the principle of negation-as-failure:

knows (F,Z)
knows_not (F,Z)
knows_val (X,F,Z)

:= \+ not_holds(F,Z).
:— \+ holds(F,Z).
:= holds(F,Z), \+ nonground(X).

Again we refer to [Thielscher, 2002b] for the formal
correctness of this definition wrt. the theory of knowl-
edge in the Fluent Calculus as outlined in Section 3.3.

Finally, action execution is defined as follows, whereby
the predicate Perform(a,n) is assumed to trigger the
actual performance of elementary action a with sens-
ing values m returned:

execute(E,Z1,Z22) :-
E=[] -> Z2=71 ;
E=[A|P] -> execute(P,Z1,Z), execute(A,Z,Z2) ;
elementary_action(E) ->
perform(E,SV), state_update(Z1,E,Z2,SV) ;
execute_compound_action(E,Z1,Z2).

The FLUX constraint solver consists in a small set
of progression and evaluation CHRs dealing with the
constraints for negative and disjunctive state knowl-
edge. By these rules, constraints are constantly sim-
plified and combined in the course of a program in
order to draw new inferences and to detect inconsis-
tencies. See [Thielscher, 2002b] for the complete set of
CHRs. Thanks to their declarative nature, correctness
of these rules is easily verified against the foundational
axioms of the Fluent Calculus.

4.2 Planning

Planning in FLUX is based on searching for a situa-
tion, represented by a list of actions, which matches
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Figure 3: The architecture of a FLUX program. The actual performance of an action, triggered by Perform,
connects the program to the effectors and sensors of the physical agent.

the specification of a search space (c.f. Section 2.4).
To this end, the predicate DO(g, s, s,20) defines
situation sp plus action sequence s as a solution
to planning problem ¢ in state 2z5. The defi-
nition follows closely the corresponding clauses in
GOLOG [Levesque et al., 1997]:

do(E,S0,S,Z20) :-
E=[] -> $=S0 ;
E=[E1|L] -> do(E1,S0,81,Z0), do(L,S1,S,Z0) ;
E=(E1#E2)-> (do(E1,S0,S,Z0); do(E2,S0,5,Z0)) ;
plan_proc(E,E1) -> do(E1,S0,S,20) ;

E=7(P) -> P =.. [Pred|Args],
append(Args, [S0,Z0] ,ExtArgs),
P1 =.. [Pred|ExtArgs], call(P1),
5=S0 ;

elementary_action(E) -> S=[E|SO0] ;
compound_action(E)  -> S=[E|S0].

Since at planning time the outcome of sensing actions
cannot be predicted, all possibilities need to be taken
into account. To this end, FLUX uses the predicate
Res(s, 29, 2), denoting that incomplete state z is a
possible result of performing, in state zg, the actions
of situation s. In this way, a property of a future
situation is known just in case there is no possible
result in which the property could be false:

res([1,Z,Z).
res([A]|S],Z20,Z) :-

res(S,Z0,Z1), state_update(Z1,A,Z,_).
knows(F,S,Z0) :-

\+ ( res(S,Z0,Z), not_holds(F,Z) ).
knows_not (F,S,Z0) :-

\+ ( res(S,Z0,Z), holds(F,Z) ).

Finally, given a specification of the cost of a plan, the
search for an optimal plan is done by a standard search
procedure that uses backtracking until no further so-
lution can be found:

plan(Proc,Plan,Z0) :-
assert (plan_search_best(void,0)),
plan_search(Proc,Z0),
plan_search_best(Plan,_),
retract(plan_search_best(Plan,_)),
Plan \= void.

plan_search(Proc,Z0) :-
do(Proc, [],Plan,Z0),
plan_cost(Proc,Plan,Cost),
plan_search_best(BestPlan,BestCost),
( BestPlan \= void -> Cost < BestCost

; true ),

retract(plan_search_best (BestPlan,BestCost)),
assert(plan_search_best(Plan,Cost)), fail
; true.

5 SOUNDNESS OF FLUX
PROGRAMS

In this section, we give a brief overview of how prop-
erties of FLUX programs can be formally established
with the help of the underlying Fluent Calculus se-
mantics. We assume the reader to be familiar with
basic notions and notations of logic programming with
negation and constraints. In particular, we consider
the standard left-to-right selection rule and so-called
SLDNF-derivation trees, which consist of a main tree
along with a number of subsidiary trees for negated
literals [Apt and Bol, 1994].

The notion of a situation provides the semantics for
the execution of a FLUX agent program.

Definition 2 Let T be the derivation tree for
a FLUX program and query P U {Q}. An eze-
cution mode in T is a node whose selected atom
is Init(r) or Ezecute(a,T1,72). In the latter case,



term « is called the ezecuted action. If N is a
node in T, then the situation associated with N is
Do(ay,...,Do(ay,Sp)...) iff the path leading to N,
but without N itself, satisfies the following:

1. the first execution node is of the form Init(r);

2. no other execution node is of the form Init(7);
and

3. a1,...,a, is the ordered sequence of executed
actions.

If the path does not contain an execution node, then
the situation associated with N is Sp; in any other
case the associated situation is undefined. a

The following notion of soundness describes a generally
desirable property of FLUX agent programs. Infor-
mally speaking, all executed actions should be possi-
ble and there should be no backtracking over executed
actions.

Definition 3 A FLUX program P with query @
is sound wrt. a Fluent Calculus axiomatization 3 iff
each execution node N = Ezxecute(a,71,72) in the
computation tree for P U {Q} satisfies the following:

1. a is a ground ACTION term;

2. the situation o associated with N is defined and
satisfies ¥ |= Poss(a,0);

3. N is in the main tree;

4. N lies on a branch that does not fail. O

Our agent program of Section 2 for the Wumpus World
can be proved sound in this sense wrt. the Fluent Cal-
culus axiomatization of Section 3.

Theorem 4 The Wumpus World agent program
with query {Main} is sound.

Proof (sketch):

1. The only occurrence of an execution node of the
form Init is as the first atom in the body of the
clause for Main.

2. All executed actions are constants of sort ACTION.

3. Action Enter is executed only as the first action,
which is possible according to (2) and the precon-
dition axioms.

4. Action Fzit is executed only if the agent has ei-
ther returned to square (1,1) by unrolling the
backtrack path or has planned and executed a
route to this square. In both cases, the action
is possible.

5. Action Turn is executed only after Enter and
prior to FEwxit.

6. Action Go is executed only if there is an adjacent
cell which is known to be free of a pit and if the
Wumpus is known to be elsewhere or dead.

7. Action Grab is executed only if the agent is in a
square that is known to contain gold.

8. Action Shoot is executed at most once, where the
agent still has the arrow.

9. No negated literal depends on the atoms Init
or Execute in the program; hence, all execution
nodes are in the main tree.

10. The program always ends with success and there
is no backtracking over execution nodes. ]

6 COMPUTATIONAL BEHAVIOR

Studies have shown that FLUX exhibits excellent com-
putational behavior beyond problems of toy size. In
the accompanying paper [Thielscher, 2002a], we re-
port on experiments with a special variant of FLUX
for complete states applied to a robot control program
for a combinatorial mail delivery problem. The re-
sults show that FLUX can compute the effects of hun-
dreds of actions per second. Most notably, the average
time for selecting an action and inferring the effects re-
mains essentially constant as the program progresses,
which shows that FLUX scales up effortlessly to arbi-
trarily long sequences of actions. This result has been
compared to GOLOG [Levesque et al., 1997], where
the curve for the computation cost suggests a polyno-
mial increase over time. The analysis shows that the
paradigm of a state-based representation is necessary
for programs to scale up well to the control of agents
and robots over extended periods of time: By main-
taining an explicit state term throughout the execu-
tion of the program, fluents can be directly evaluated
in FLUX programs, whereas an implicit state repre-
sentation as in [Levesque et al., 1997] or [Shanahan
and Witkowski, 2000] leads to ever increasing compu-
tational effort as the program proceeds.

The computational behavior of FLUX in the presence
of incomplete states has been analyzed in [Thielscher,



2002a] with a combinatorial problem that involves ex-
ploring a partially known environment and acting cau-
tiously under incomplete information, much like in the
Wumpus World. Although incomplete states pose a
much harder problem, FLUX proves to scale up im-
pressively well again: During a first phase, where the
agent enhances its knowledge of the environment wan-
dering around, there is a mere linear increase of the
computation cost as the knowledge base grows. This
result is particularly remarkable since the agent needs
to constantly perform theorem proving tasks when
conditioning its behavior on what it knows about the
environment. Linear performance has been achieved
due to a careful design of the state constraints sup-
ported in FLUX; the restricted expressiveness makes
theorem proving computationally feasible. During the
second phase of the aforementioned program, where
the agent acts under the still incomplete knowledge,
the average time for making decisions and inferring the
effects of actions remains constant again. This shows
that general FLUX, too, scales up effortlessly to long
sequences of actions.

Planning with incomplete states, on the other hand,
is a notoriously hard problem in FLUX, too. If the
domain-dependent search space contains just a lin-
ear number of nondeterministic choices, there are ex-
ponentially many plans to be searched, and hence
planning cannot scale up. Following an argument al-
ready put forward in [Giacomo and Levesque, 1999],
the consequence for the agent programmer is that the
planning facilities should be used restrictively and for
bounded sub-problems only, in order not to spoil the
computational merits of FLUX.

7 FUTURE WORK

Several crucial aspects of acting in real-world environ-
ments have not been tackled in this paper, such as the
fact that actions may fail unexpectedly. An approach
to this problem has been presented in [Thielscher,
2001b], where default assumptions regarding exe-
cutability have been added to the theory of the Fluent
Calculus. Incorporating this technique into agent pro-
grams is an important aspect of future work, as is mod-
eling dynamic environments that constantly evolve
around agents.
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