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Abstract

When drawing conclusions about narratives,
minimizing—to a reasonable extent—the oc-
currence of events is crucial. We argue that
unguided minimization is insufficient in case
events are causally connected, for it easily
fails to distinguish unmotivated event occur-
rences from those that have a cause. Two
solutions are offered, the first of which has
the advantage of being straightforwardly re-
alized but on the other hand has a restricted
range of applicability. Our second solution
overcomes these restrictions but requires two
uncommon and novel features. First, event
occurrences are identified as fluents, which
allows to adapt a recent causality-oriented so-
lution to the Ramification Problem so that
if an event is caused by another event then
the former is obtained as indirect effect of
what caused the latter. Second, volitional ac-
tions and natural events which have no cause
inside the reasoning context, are furnished
with a special cause, namely, the reaching of
the time-point at which they take place. We
present both a high-level narrative descrip-
tion language and an axiomatization based
on a novel Fluent Calculus in which is real-
ized this solution to the event minimization
problem.

1 INTRODUCTION

Commonsense reasoning about narratives requires, in
one way or the other, to minimize the occurrence of
events. For otherwise none of the intended and intu-
itive conclusions can be drawn. Suppose, for example,
we are told that adding hot water to a mug contain-
ing a tea bag produces tea, and furthermore that a
robot first places a tea bag into the empty mug and,

* On leave from Darmstadt University of Technology.

then, pours hot water into it. The expected conclu-
sion would be that the robot has tea afterwards. This,
however, does not follow until we explicitly exclude
the occurrence of a variety of events, such as the robot
emptying the mug in between the two actions, some-
one stealing the tea bag out of the mug, or a falling
tile striking the mug while water is being poured etc.
Any of these events falsifies the intended conclusion,
and their non-occurrence does not follow per se from
the narrative. Hence additional measures need to be
taken to conclude, by default, that none of these nor
any other intervening events materialize.

As long as events are mutually independent, mini-
mizing them wrt. a given formalized narrative in a
reasonable fashion is straightforward. Once we have
to consider causal dependencies among events, how-
ever, finding a good general minimization strategy be-
comes a non-trivial challenge. In particular, simple
global minimization is insufficient in that it may fail
to produce the intended and intuitively expected con-
clusions. Let us illustrate this point with two simple
examples, where we borrow basic notions and nota-
tions from the Event Calculus variant of [Shanahan,
1996]. The occurrence of an event e at time t is
represented by the atomic expression Happens(e,t),
and minimization is achieved by circumscribing pred-
icate Happens in a set of formulas which axiomatize
a narrative.!

Example 1 Suppose a robot walking towards a wall
will collide with it provided the robot does not stop
beforehand. Ignoring precise values for distance and
speed etc., let the formula

Happens(walk,t) A ~Happens(stop,t+ 1) (1)
D Happens(bump,t + 2)

encode this knowledge. Consider, now, a narra-
tive which consists of the sole fact that the ro-
bot starts walking towards the wall at time ¢ =25,

Tt should be stressed, however, that the problems we
elaborate in the following are of general nature and so do
also emerge in other than this specific approach.



that is, Happens(walk,5). What would one ex-
pect to happen? Since nothing indicates that the
robot stops walking at time ¢ = 6, the natural
conclusion would be that —Happens(stop, 6), hence
Happens(bump, 7). Minimizing Happens in the for-
mula N = Happens(walk,5) A (1), however, does
not suffice for this entailment. Rather it results in
two kinds of models, one with the intended course
of events and one where the opposite is true, viz.
Happens(stop,6) and —Happens(bump, 7). ]

Example 2 Suppose that if the left hand side of a
table is lifted but not the right hand side, then soup
spills out of a bowl sitting on the table; the same hap-
pens if the right hand side only is lifted:

Happens(1left,t) = —Happens(1lright,t) (2)
D Happens(spills,t)

Suppose we are told that the left hand side of the ta-
ble is lifted at time ¢t = 2, i.e., Happens(1lleft,2).
Then we should expect soup spilling out rather than a
magical simultaneous lifting of the right hand side. As
before, however, circumscribing Happens yields two
indistinguishable kinds of models and so does not al-
low this conclusion. ]

In both our two scenarios, unguided minimization does
not yield the reasonably expected conclusions because
it is too weak a minimization strategy.? In the fol-
lowing section, we show how a more elaborated min-
imization strategy is obtained by formally introduc-
ing the general distinction between actions (which
are volitional, i.e., involve a free-will decision) and
natural events. This strategy resembles the widely
used frame/non-frame categorization [Lifschitz, 1990]
in the context of the Ramification Problem [Ginsberg
and Smith, 1988a), which is employed to distinguish
caused from unmotivated indirect effects. The attrac-
tion of this categorizing events as either natural or
volitional actions lies in its being straightforwardly re-
alizable. By employing this minimization strategy a
number of problems are resolved, including our intro-
ductory ones. Yet it is still crucial that the domain
being modeled meets certain assumptions regarding
mutual independence of events, namely, that natural
events do not interfere and that actions are necessarily
causally independent.

In Section 3, we assess these assumptions by present-
ing a scenario which involves only natural events and

%It is worth mentioning that the more sophisti-
cated so-called chronological minimization [Shoham, 1988]
would solve our first but not the second example, be-
cause the two conflicting events, Happens(lright,2) vs.
Happens(spills, 2), are in no chronological order. Like-
wise, in the approach of [Stein and Morgenstern, 1994] an
event can only motivate, as it is called, another event if the
latter occurs at a later time-point, i.e., not concurrently. So
this notion of motivation, too, does not help us detecting
the unintended model in Example 2.

yet where some but not all events may be caused by
others. Furthermore, we argue that even from the
commonsense point of view actions are not necessar-
ily causeless, namely, in case they are reflexive (hence
not volitional), or in case of normative rules, stating
that an action ought to be performed under certain
circumstances. A universally applicable event mini-
mization strategy therefore requires the incorporation
of a suitable notion of causality by which it is generally
possible to tell apart caused from unmotivated event
occurrences.

Actually this general problem shows a striking simi-
larity to the necessity of distinguishing caused from
unmotivated indirect effects as part of the broader
Ramification Problem. Research in this context has
recently produced several successful approaches which
appeal to causality (e.g., [Elkan, 1992; Geffner and
Pearl, 1992; Lin, 1995; McCain and Turner, 1995;
Thielscher, 1997]). In Section 4, we show how these
results can be exploited to successfully address the
problem considered in the present paper. The con-
ceptually crucial step towards this end is to identify
event occurrences with fluents. This allows us to in-
terpret formulas like (2) as so-called state constraints,
which then give rise to indirect effects. The problem of
deriving the right event occurrences thus becomes part
of the Ramification Problem, and so we can adapt, for
instance, our causality-based approach of [Thielscher,
1997] to provide a solution. We present a high-level
narrative description language in which is realized this
solution to the event minimization problem. In Sec-
tion 5, we furthermore illustrate how this solution can
be axiomatized by a novel use of Fluent Calculus tech-
niques. We conclude in Section 6.

2 ACTIONS VERSUS
NATURAL EVENTS

The reason for global minimization failing to produce
the intended conclusions in the introductory exam-
ples becomes apparent when we analyze the specifi-
cations (1) and (2) from a purely logical perspective.
The constraint in (2), for instance, logically entails this
formula:

Happens(1left,t) A ~Happens(spills, )
D Happens(lright,t)

This explains the existence of the unintended model,
i.e., where - Happens(spills,2) is assumed and
Happens(1right,2) follows. Similarly, formula (1) is
equivalent to the implication,

Happens(walk,t) A —~Happens(bump, ¢ + 2)
D Happens(stop,t+ 1)

sanctioning the unintended model obtained in Exam-
ple 1.



These observations indicate that both the two speci-
fications (1) and (2) just contain insufficient informa-
tion to rule out the respective anomalous model. In
fact, the reason for us rejecting some of the minimal
models is that we employ additional domain knowl-
edge to the effect that some events, like the spilling
of the soup, may be the natural consequence of cer-
tain circumstances while other events, like the lifting
of the table, require a volitional act. In other words,
the occurrence of the latter depends on a deliberate,
free-will decision of some agent. Whenever a conflict
needs to be resolved, we seem to prefer the occurrence
of a natural event rather than postulating the perfor-
mance of an action which the narrative does not neces-
sitate. This argument also applies to Example 1: The
robot bumping at the wall is a natural consequence
of its walking towards it, whereas the robot stopping
beforehand involves the explicit decision to act.

The distinction between actions on the one hand and
natural events on the other, provides the basis for a
refined strategy for event minimization in case causal
dependencies are to be taken into account. If a domain
description includes knowledge as to the category to
which each event belongs, then minimization can ex-
ploit this knowledge in order to rule out any unmoti-
vated action. What is especially appealing is that this
solution to our two introductory example problems
can be straightforwardly realized, e.g. in the approach
of [Shanahan, 1996] as follows: We first introduce two
predicates A_Happens(e,t) and E_Happens(e,t). The
former is to be used whenever e is an action, the lat-
ter whenever e is a natural event. Let N be a set of
formulas formalizing the course of events in a narra-
tive, then by using priority circumscription [Lifschitz,
1987], written CIRC[N; A_Happens > E_Happens],
A_Happens can be minimized with higher priority
than E_Happens.® This circumscription policy reflects
our intention to prefer minimization of action perfor-
mances over the occurrence of natural events.

Example 1 (continued) In accordance with the
above proposal, we rewrite (1) as follows:

A_Happens(walk,t) A ~A_Happens(stop,t + 1)
D E_Happens(bump, t + 2)

which reflects the fact that both walking and stop-
ping are actions while the robot’s bumping at the
wall is a natural event. Suppose again that the ro-
bot walks towards the wall at time ¢ = 5, which
is now represented by the fact A_Happens(walk,5).
Then our refined circumscription policy yields the
intended conclusion that —A_Happens(stop,6) and,
hence, E_Happens(bump, 7). ]

*In order that the various foundational axioms which
involve Happens need not be rewritten, the formula
Happens(e,t) = A_Happens(e,t)V E_Happens(e,t) should
be added after circumscribing, in N, the new predicates.

Example 2 (continued) We rewrite (2) as follows:

A_Happens(1left,t) = ~A_Happens(1lright,)
D E_Happens(spills,t)

Suppose again that the left hand side is lifted at
time ¢ = 2, now represented by A_Happens(1left,2).
As above, our refined circumscription policy yields
the intended conclusion that —A_Happens(1lright, 2)
and, hence, E_Happens(spills, 2). ]

3 INTERACTING EVENTS,
REFLEXIVE ACTIONS,
AND NORMATIVE RULES

Categorizing the underlying events as either actions
or natural events provides a minimization strategy so-
phisticated enough for both our two example scenarios
discussed in the introduction. As regards the gen-
eral range of applicability, a closer examination re-
veals two fundamental assumptions which an applica-
tion domain needs to satisfy in order for this strategy
to guarantee the intended results. First, there must
never be a priority between two natural events un-
less one of them, but not the other, is triggered by an
action that is known to take place. Second, actions
themselves need always be independent both of each
other and of natural events. That is to say, an action
is never caused by the performance of another action
nor by the occurrence of a natural event or any other
circumstances. As long as a domain complies with
these assumptions, the distinction between volitional
actions and natural events provides a suitable mini-
mization policy. We again stress that the value of this
strategy lies in its being amenable to straightforward
integration into existing approaches.

On the other hand, the aforementioned basic as-
sumptions are not of universal nature. Consider,
as an example for interfering natural events, the
three events tile falls (a tile falls from the roof),
tile hits plant (the tile breaks a rare plant in the
yard), and tree falls (a tree falls down). Suppose
the falling tile hits the plant unless, curiously enough,
the tree falls down at the very same time, crossing the
trajectory of the tile:

E_Happens(tile falls,t)
A—E_Happens(tree falls,t)
D E_Happens(tile hits plant,t)

What should be concluded e.g. from the sole fact that
E_Happens(tile falls,2)? Obviously, the tile hit-
ting the plant is much more likely in this case than
the tree falling at the very time. Since, however,
all three involved events are natural, categorization-
based minimization does not arrive at this conclu-
sion. Rather it produces an additional model where
—FE_Happens(tile hits plant,2) and, consequently,
E_Happens(tree falls,2) hold. This illustrates that



natural events may interfere without the explicit per-
formance of any action.

Regarding the second requirement for the applicability
of the categorization-based approach, consider, e.g.,
actions which are reflezive. These may well be the nat-
ural consequence of events. If, for example, we touch
the working hot plate of a stove, then this causes us
to involuntarily withdraw our hand. Nonetheless this
withdrawing our hand cannot in general be considered
a natural event because it may of course be a volitional
act in other situations. The assumption that actions
are always independent both of other actions and of
events in general, does also not apply in case one in-
tends to reason with normative rules, stating that an
action ought to be performed in specific situations.
The design of a robot’s behavior might be given as set
of such rules. Then again categorization-based min-
imization can no longer be guaranteed to distinguish
action occurrences that are to be expected and those
which a narrative does not necessitate.

4 EVENT MINIMIZATION
AND CAUSALITY

Due to its formal elegance, categorization-based event
minimization can be easily realized in existing frame-
works. We have seen how this strategy solves the
problem of unintended models whenever the distinc-
tion between actions and natural events is guaranteed
to always help telling apart events whose occurrence
admits a causal explanation. The spilling of the soup
in Example 2, for instance, is a natural event caused
by the lifting of the table on the left hand side, while
the latter does not have the ‘capability’ of causing the
volitional action of lifting up the right hand side of the
table. On the other hand, in the preceding section we
have met examples where our principle of categoriza-
tion turned out too weak to identify event occurrences
which are caused. Much like we have just argued, we
can say that the tile’s falling from the roof may cause
the event that the plant breaks but cannot cause the
simultaneous falling of the tree. And yet the two lat-
ter events both are natural, hence indistinguishable by
the categorization principle. It therefore seems that a
universal solution to the problem of unintended mod-
els resulting from event minimization needs to directly
appeal to the notion of causality.

Fortunately, there is no need to start from scratch to
this end. A ready approach is furnished by an exist-
ing solution to a related aspect of a different problem.
Namely, the situation we arrived at shows a striking
similarity to the problem of deriving undesired indi-
rect effects in the context of the Ramification Prob-
lem [Ginsberg and Smith, 1988b]. Generally, indirect
effects of actions, or of events, are not explicitly repre-
sented in some effect specification but follow from gen-
eral laws, so-called state constraints, which describe

certain state-independent relations among fluents.* A
well-known challenge in this context is to select only
the intended ones among all the potential indirect ef-
fects a state constraint suggests from a purely syn-
tactic perspective. A categorization principle has
been proposed as a solution to this problem, too,
(see [Lifschitz, 1990]) and is widely used (e.g., [del
Val and Shoham, 1993; Brewka and Hertzberg, 1993;
Kartha and Lifschitz, 1994; Sandewall, 1995])—but it
just as well turned out applicable to a certain extent
only [Thielscher, 1997]. Recent research results on
the Ramification Problem show how this limitations
can be overcome by directly appealing to causality
(e.g., [Elkan, 1992; Geffner and Pearl, 1992; Lin, 1995;
McCain and Turner, 1995; Thielscher, 1997]). In the
following, we exploit these results for the development
of a causality-based solution to the problem of deriving
the wrong event occurrences.

In order that this can be done, we first have to resolve
an apparent fundamental difference between events on
the one hand, and (indirect) effects—updates of value
assignments to fluents—on the other hand. A small
but conceptually crucial step achieves this: Event oc-
currences are identified as fluents. That is to say,
each state of the world is also characterized by the
events which currently happen, if any. By this we
adapt the actions-as-fluents paradigm, which has been
propagated, for instance, in [Lin and Shoham, 1992;
GroBe, 1994; Thielscher, 1995]. To emphasize this
shift, we will write event fluents using the sym-
bol happens instead of Happens. Relations among
events, like the one formalized in equation (2), can now
be considered state constraints, which supposedly hold
in all states, e.g.”

happens(lleft) = —happens(lright)
D happens(spills)

Becoming state constraints, relations among event
occurrences may give rise to indirect effects. If,
for instance, happens(lleft) becomes true, then
this additionally causes the indirect effect that
happens(spills) according to the aforementioned
constraint. Of course we need means to avoid the alter-
native conclusion that this constraint instead triggers
the indirect effect happens(lright). In this way the
key problem of the present paper has become part of
the Ramification Problem, and so is amenable to the
existing causality-based techniques developed in that
context. In particular, we can, and will, adopt our

*A fluent is an atomic property (of some object) which
may change in the course of time.

®Relations among events which refer to different time-
points, like the one formalized in equation (1), cannot
be reformulated solely by means of state constraints but
by combining those with effect propositions (see below).
Event occurrences triggered by such relations are then ob-
tained as a combination of indirect and so-called delayed
effects.



theory of causal relationships [Thielscher, 1997] and
combine it with the events-as-fluents paradigm. The
resulting theory is first presented as a formal, high-
level narrative description language in the spirit of A
[Gelfond and Lifschitz, 1993] or £ [Kakas and Miller,
1997] etc. Thereafter, in Section 5, we show how this
theory can be axiomatized on the basis of a novel vari-
ant of the Fluent Calculus.

Fluents are the only basic entity of domain descrip-
tions in our language; events, and hence actions, are
just a particular kind of fluent. As opposed to most
‘ordinary’ ones, event fluents have, however, a spe-
cial characteristics: They are not subject to the com-
monsense law of persistence, which states that usually
the value of a fluent ‘tends to persist,’ i.e., is stable
unless an actual event effects a change. Event flu-
ents are different in that they ‘tend to disappear.’ In
this way event occurrences are always forced to have
a cause. Following standard terminology, we call mo-
mentary all fluents of the latter kind, as proposed in
[Lifschitz and Rabinov, 1989]. The other fluents we
call static. Each momentary fluent has a designated
default value, which it takes on unless, for an instant,
something causes a different value.®

A state is composed of assignments of values to fluents.
The atomic statement that a certain fluent f is of
value v, written f=wv, is called a fluent expression. If
f is a binary fluent with the domain {false, true},
then we abbreviate f=false by —f and f=true
simply by f. One more notation will be useful for
later purpose: If S is a set of fluent assignments, then
by S|;2, we denote the set which is identical to S
except for fluent f possessing value v.

Fluent expressions can be considered the underlying
atoms for constructing fluent formulas using the stan-
dard logical connectives. The notion of fluent formulas
being true in a state S is then based on defining a flu-
ent expression f=v to be true if and only if f=v € S.
State constraints are fluent formulas which have to be
satisfied in all states that are possible in a domain.

Domain descriptions include propositions which spec-
ify the direct and indirect effects of events. The for-
mer are given by effect propositions, which indicate
circumstances under which certain fluent changes are
effected when moving on from one state to the next.
An example is the effect proposition

happens(spills) A stain=small
effects stain=large

meaning that if soup spills out with the tablecloth
already being lightly stained, then the situation gets
worse during the next state transition. Our language

6In what follows, we assume for the sake of uniformity
that all momentary fluents be binary with the value domain
{false,true} and false being the default. This is just
for the sake of clarity of presentation.

supports the specification of non-deterministic effects,
as in

happens(spills) A stain=none
effects stain®small|stain=large

meaning that the spilling soup will produce either a
small or large stain on a clean tablecloth.

Indirect effects of events are described by causal rela-
tionships [Thielscher, 1997], such as

happens(lleft) causes happens(spills)
if —happens(1lright)

which indicates that if happens(lleft) occurs
as direct or indirect effect of a state transi-
tion, then this triggers the additional, indirect ef-
fect happens(spills), provided —happens(lright)
holds. Notice a crucial difference between the specifi-
cations of direct and indirect effects: Cause and effect
in effect propositions refer to two consecutive states,
and to one and the same state in causal relationships.

Definition 1 A domain description consists of

1. a set F = F, UF,, of static and momentary
fluents, each of which is associated with a non-
empty domain;

2. a set of effect propositions of the form
C effects Ei|...|E,

where the conditton C is a fluent formula and
the (alternative) effects FE; all are finite (possibly
empty) sequences of fluent expressions (n > 0);”

3. a set of causal relationships of the form
€ causes o if ®

where ¢, o (the effect and the ramification, re-
spectively) are fluent expressions and the conteat
® is a fluent formula;

4. a set C of fluent formulas, called the state con-
straints.

A state is a set of assignments f=v such that to each
f € F is assigned a value of its domain. A state S
satisfies C iff each constraint is true in S. [

Intuitively, an effect proposition C effects Ei|...|E,
means that if C holds in some state, then exactly one
of Ei,...,FE, materializes in the next state. Thus
disjunction is interpreted as exclusive; inclusive dis-
junction can of course be obtained by simply mov-
ing from, say, two alternatives e; |ez to three, viz.
e1|ez|e1,e2. The intuitive meaning of a causal rela-
tionship e causes g if ® is that if ¢ occurs as (direct

"If some E; is empty, then one possibility for what
happens if C holds is—nothing.



or indirect) effect and context ® holds, then the in-
direct effect o is additionally obtained. For causal
relationships whose context is a logical tautology we
use the short-hand form e causes .8

Example 2 (continued) Consider the two static flu-
ents F, = {clock, stain} with the natural numbers
and {none, small large} as the respective domain
(where the latter indicates how badly the tablecloth
is stained, if at all). Consider further the three mo-
mentary (hence binary) fluents F,, = {happens(e) :
e € {11eft, 1right,spills}}. Then the following
components together constitute a domain description.

e The state constraint,

happens(lleft) = —happens(lright)

(3)

D happens(spills)

e The corresponding causal relationships,

happens(1left) causes happens(spills)
if —happens(lright)

(4)

happens(lright) causes happens(spills)
if —happens(lleft)

e The effect propositions,

happens(spills) A stain=none
effects stain®small|stain=large
happens(spills) A “stainZnone

(5)

effects stain=large
clock=t effects clock=t+1
clock=1 effects happens(1lleft)

The last but one effect proposition is a representa-
tive of all instances where ¢ is a natural number.
The very last proposition formalizes the initiation
of a 1left action at time 2.

The effect proposition in (5) with condition clock=1
illustrates how causal chains of events are initiated:
Volitional actions or natural events which common
sense prefers to consider causeless? are caused just by

8Causal relationships are typically rooted in state
constraints but provide additional causal information.
In [Thielscher, 1997] we have shown that it is not necessary
to draw up causal relationships by hand. Rather these can
be fully automatically extracted from a given set of state
constraints plus suitable knowledge as to which fluents have
the potential to causally affect what other fluents. Later
on we will discuss this point in greater detail.

®While the universal causal law stipulates that every-
thing has a cause, common sense always considers only a
fraction of the whole universe and, hence, only a fraction
of the entire history of events. Anything whose cause lies
outside this fraction is considered causeless.

reaching the time-point at which they occur. Obvi-
ously, the fluent clock is crucial for this purpose, and
so we assume it to be contained in any domain descrip-
tion. The time structure underlying our approach is
left-bound, linear, and discrete; a challenge for future
research is the generalization to continuous time and
change.

Next we define the notion of successor states, which
are obtained according to underlying effect laws
and causal relationships. Since we allow for non-
determinism, a state may admit several possible suc-
cessors. We begin by defining so-called preliminary
successor states, in which all direct effects have been
accounted for but which require further investigation
to accommodate possible indirect effects.

Definition 2 Consider a domain description with
static and momentary fluents F, and F,,, respec-
tively; effect propositions €; and state constraints C.
Let S be a state satisfying C, then any state S’
which obtains as follows is called a preliminary suc-
cessor of S: For each C effects Fy|...|E, € € such
that C holdsin S, select one E; (1 <i<n). Let E
be the entire set of assignments thus obtained. Then
S' consists of

1. all assignments in E,

2. all assignments f=false for f € ¥, such that
E contains no assignment for f,

3. all assignments f=v € S for f € F, such that
E contains no assignment for f.

Put in words, the preliminary successors are obtained
by first making a selection among the alternative out-
comes of all applicable effect propositions and, then,
by realizing all these effects, by setting all unaffected
momentary fluents to their default value, and by let-
ting all unaffected static fluents persist.®

Example 2 (continued) Consider this state:

5(1) = { "happens(1left), —happens(1lright),
happens(spills), clock=1, stain=none }

Of the effect propositions in (5) three are applicable,

10Tt is noteworthy that in case of contradictory effect
propositions the resulting set of assignments may be incon-
sistent in that it contains some f=v; together with f=v,
such that vi # va. Then this set is not a state, hence
does not constitute a preliminary successor according to
the definition. States therefore may admit no preliminary
and also no successor states at all.



namely,

happens(spills) A stain=none
effects stain®small|stain=large

clock=1 effects clock=2

clock=1 effects happens(1lleft)

The topmost proposition being indeterminate, we ob-
tain two preliminary successor states, viz.

{ happens(1left), —happens(lright),
—happens(spills), clock=2, stain=small}

{ happens(1left), —happens(lright),
—happens(spills), clock=2, stain=large }

Notice how the momentary fluent happens(spills) is
automatically set to its default value, false. Notice
further that neither of the two preliminary successors
satisfies the state constraint (3), for we have not yet
considered the possibility of indirect effects. [

In order to account for indirect effects, preliminary
successors are taken as starting points for ‘causal prop-
agation,’ that is the successive application of causal
relationships until overall satisfactory successor states
obtain [Thielscher, 1997]. Formally, causal relation-
ships operate on pairs (S, E), where S denotes an
intermediate state, in which some but not yet all indi-
rect effects have been realized, and where E contains
all direct and indirect effects computed so far:'!

Definition 3 Consider a pair (S, E) consisting of a
state S and a set of fluent expressions FE. A causal
relationship ¢ causes g if ® is applicable to (S, E) iff
® A—p istruein S and ¢ € E. Its application yields
the pair (S|, E|,). ]

That is to say, a causal relationship is applicable if
the associated condition ® holds, the particular in-
direct effect o is currently false, and its cause ¢ is
among the current effects. If R is a set of causal rela-
tionships, then by (S, E) ~+g (S, E') we indicate that
there is a (possibly empty) sequence of elements of R
so that the successive application to (S, E) results in
(S', E'). Tt is easy to verify that if S is a state and F
is consistent (i.e., contains no double assignments to
fluents), then (S, E) g (S', E') implies that S’ is a
state and E' is consistent, too.

Now suppose given a set of fluent expressions S as
the result of having accounted for all direct effects E
via the given effect propositions. This preliminary
successor S may violate the state constraints. Ad-
ditional, indirect effects are then accommodated by
(non-deterministically) selecting and (serially) apply-
ing causal relationships until a state satisfying all state
constraints obtains.

1 For a clarification of the crucial role of the second com-
ponent, E, as well as for further details we suggest to con-
sult [Thielscher, 1997].

Definition 4 Consider a domain description with
causal relationships R and state constraints C. Fur-
thermore, let S be a state satisfying C. A state T is
a possible successor state of S iff there exists a prelim-
inary successor S’ obtained through direct effects E
and such that

1. (8", FE) >x (T, E') for some E’', and
2. T satisfies C. [

Example 2 (continued) Starting off from the two
preliminary successors of our state S(1) from above,
on the basis of the causal relationships and state con-
straints (4) and (3), respectively, we obtain two possi-
ble successor states, viz.

{ happens(1left), —happens(lright),
happens(spills), clock=2, stain=small}

{ happens(1left), —happens(lright),
happens(spills), clock=2, stain=large }

Both these two successor states are obtained by appli-
cation of the causal relationship

happens(lleft) causes happens(spills)
if —happens(1lright)

It applies as —happens(1lright) A —happens(spills)
holds in the respective preliminary successor state, and
on account of happens(1lleft) being among the direct
effects. ]

Obtaining the intended result by applying causal re-
lationships to accommodate indirect effects depends,
to state the obvious, on a suitable set of these rela-
tionships. This set should be complete in that it cov-
ers all indirect effects that reasonably follow from the
state constraints, and, in particular, it should be sound
in that it does not sanction indirect effects which do
not follow from the standpoint of causality. Our two
causal relationships of equation (4), for instance, con-
stitute such a suitable set. Notice, however, that from
a purely syntactical point of view state constraint (3)
suggests additional, unintended causal relationships,
such as

happens(lleft) causes happens(lright)
if —happens(spills)

Precisely this is the motivation for employing causal
relationships, which convey more information than the
mere state constraints. In [Thielscher, 1997] we have
argued that causal relationships need not be drawn
up all by hand but can be automatically generated on
the basis of additional domain knowledge as to poten-
tial causal influence of some fluents upon others. In
its simplest form, this knowledge is formally provided
by a binary relation Z on fluents, called influence in-
formation. If (f1,f2) € Z, then this is intended to
denote that a change of f;’s value potentially causally



affects the value of f;. In our running example, the
suitable influence information is to let Z consist of
the two elements (happens(lleft), happens(spills))
and (happens(lright), happens(spills)). That is to
say, the events 1left and lright may causally af-
fect the event spills but not vice versa, nor do they
mutually interfere. If applied to the state constraint
of equation (3), the two causal relationships (4) are
obtained. For further details we refer the reader to
[Thielscher, 1997].12

The formal definition of successor states completes
the crucial part of our narrative description language.
What remains to be done is to introduce observation
statements and, then, to give a precise notion of mod-
els, which are histories, and of entailment. Reflect-
ing the intention to never consider event occurrences
without a cause, we require that each momentary flu-
ent takes on its default value at the initiation of a
history. In so doing we employ the general principle
of initial minimization (see, e.g., [Shanahan, 1995b;
Thielscher, 1996]). It is further assumed that the clock
always shows the right time.

Definition 5 A formal narrative is a domain de-
scription augmented by a set of observations, which
are expressions of the form [t] F where t is a time-
point and F' a fluent formula. A history is an infinite
sequence of states S(0),S5(1), S(2),... Such a history
is a model of a formal narrative iff

1. each momentary fluent is false in S(0),
each S(t+1) is a successor state of S(t) (¢ > 0),

clock=t € S(t) for each t > 0, and

Ll S

for each observation [t] F, fluent formula F is
true in state S(2).

An observation is entailed iff it holds in all models.

Example 2 (continued) Let us add to our example
domain description the effect proposition

clock=0 effects happens(spills) (6)

Consider the narrative consisting of the resulting do-
main description plus the observation that initially the
tablecloth is not badly stained, i.e.,
[0] -stain=large (7)

Then any model must have initial state
5(0) = { “happens(1left), ~happens(lright), (8)
—happens(spills), clock=0, stain=v}

'2The method described in [Thielscher, 1997] is origi-
nally defined only for state constraints over two-valued flu-
ents, but the generalization is straightforward. An unsat-
isfactory property is that this method may yield different
sets of causal relationships for semantically equivalent state
constraints. Following a suggestion by Javier Pinto, inde-
pendence of syntax is achieved by processing the prime
implicants of a set of constraints.

where v is either none or small. Following (6),
a spills event occurs at time ¢ = 1. According
to the topmost two effect propositions in (5), this
event in turn produces a small or a large stain in
case stain=none € S(0), and a large stain in case
stain=small € S(0). Hence the narrative entails

[2] stain®small V stain=large (9)

Now, according to the bottommost effect proposition
in (5), a 11eft event occurs at the same time, which,
as we have seen, has the indirect effect of yet another
spills event. Therefore, knowing that (9) holds in
all models, we see that our narrative also entails

[3] stain=large

As an important feature our notion of entailment sup-
ports explanatory reasoning, i.e., reasoning backwards
in time, as far as incomplete knowledge of static flu-
ents is concerned. For instance, if the observation
[2] stainZsmall were added to the example narrative
from above, then it is easy to see that the observation
[0] stainZnone would be entailed.

What cannot be plainly derived from a mnarra-
tive are events which are not caused by what is
known to happen. For instance, if the observation
[2] ~happens(spills) were added to our example nar-
rative, then the latter would admit no models at all
because the observation cannot be explained without
granting a new causeless event. Additional means are
needed to abduce a suitable explanation, e.g., that a
lright event occurs at time ¢ = 2 in addition to the
lleft event.

This property of our high-level language and semantics
carries over to the axiomatization to be presented in
the next section. If it concerns values of static fluents,
an explanation for observed facts will be deductively
derivable. Abduction will be required to explain ob-
servations by uncaused event happenings.

5 A FLUENT CALCULUS
AXIOMATIZATION

Having presented a high-level language for describ-
ing and reasoning about narratives, we will now il-
lustrate a way of axiomatizing narratives described
in this language so that our specific notion of entail-
ment becomes entailment in classical logic and, hence,
the reasoning can be carried out by fully automated
deduction. Just like our narrative description lan-
guage does it, the resulting axiomatization success-
fully copes with the problem of causally connected
events. We restrict ourselves to deterministic domains,
i.e., where all states admit a unique successor state.
Due to lack of space, we illustrate the axiomatization



merely by example. General correctness wrt. the no-
tion of entailment in our high-level language is proved
in [Thielscher, 1998a).

Our axiomatization is based on a novel use of Flu-
ent Calculus, which was introduced in [Hélldobler and
Schneeberger, 1990] and so christened in [Bornscheuer
and Thielscher, 1997]. While historically the Fluent
Calculus arose from approaches to the Frame Prob-
lem using non-classical, linear logics, in [Thielscher,
1998b] we argue that it can alternatively be viewed
as a development of the Situation Calculus in order
to cope with both the representational and the infer-
ential aspect of the Frame Problem, without leaving
classical logic. The key to this new Fluent Calculus
is to reformulate successor state axioms [Reiter, 1991]
applying the principle of reification, which means to
use terms instead of atoms as the formal denotation
of statements. To be more specific, reification in the
Fluent Calculus means not only to denote single fluent-
value assignments f=v as terms (which we will write
as (f,v)), but also conjunctions of them. Required to
this end is a binary function, denoted by the symbol
“o0” and written in infix notation, by which conjunc-
tion is reified. The great advantage of so doing is that
term variables can occur in state descriptions to indi-
cate incomplete knowledge of the state at hand, as in,
e.g., the specification

Jz,v[So = (clock,0) o (stain,v) oz A v # large]

which says that of state Sp it is merely known that
clock=0 holds and that stain=large is false.

Central to the Fluent Calculus variant of [Thielscher,
1998b] is a function State(s) which assigns to each
situation a state term. This allows to rewrite successor
state axioms to so-called state update azxioms. These
are of the form A[s] D T'[State(Do(a, s)), State(s)],
where A[s] describes the conditions on situation s
under which the state associated with s is updated
according to T' to become the state associated with
situation Do(a, ).

A most interesting feature of this new Fluent Calcu-
lus is that by a slight modification it can be adapted
from its branching time structure, which is typical for
the Situation Calculus, to linear time, which brings it
closer to the Event Calculus. The basic idea is to let
the function State range over time-points instead of
situations. For instance, the following is an assertion
about the initial state by which is axiomatized obser-
vation (7) of our example narrative at the end of the
preceding section:

Jz,v [ State(0) = (stain,v) oz A v # large]

The binary function which reifies the logical conjunc-
tion needs to inherit from the latter an important
property. In logical conjunctions the order is irrele-
vant in which the elements are given. Formally, order

ignorance is ensured by stipulating the laws of asso-
ciativity and commutativity, that is,

Ve,y,2. (xoy)oz = @zo(yoz)

Ve, y. Zoy = you

It is convenient to also reify the empty conjunction, a
logical tautology, by a constant denoted @ and which
satisfies

Ve.zol = =

The three equational axioms, jointly abbreviated AC1,
in conjunction with the standard axioms of equality
entail the equivalence of two state terms whenever
they are built up from an identical collection of rei-
fied fluents.'®

A new feature required for our solution to the event
minimization problem is the notion of momentary flu-
ents. These are declared using a unary predicate
Momentary(f) in conjunction with a binary predicate
Default Value(f,v) determining the default value v of
fluent f. A third predicate, InDomain(f,v), is used
to specify domains for the fluents. For our running ex-
ample, adequate definitions of these three predicates
are the following:1*

Momentary(f) = f = happens(e)
Default Value(f,v) f = happens(e) A v = false
InDomain(f,v)
= f =happens(e) A (v = true Vv = false)
V f=clock A Jt. v =1t
V f = stainA
(v = none Vv = smallV v = large)

The above being domain-dependent axioms, we now
introduce two foundational axioms which define the
space of possible states. First, in a state to each fluent
must be assigned a value of its domain:

Jv. InDomain(f,v)
D Jz,v' [ State(t) = (f,v') o z A InDomain(f,v')]

Second, no two values shall be assigned to the same
fluent:
State(t) # (f,v) o (f,v') oz

In order to increase readability of statements about
states, we introduce a predicate Holds(f,v,s) as an

13The reader may wonder why function o is not ex-
pected to be idempotent, i.e., Vz. z 0 £ = z, which is yet
another property of logical conjunction. The (subtle) rea-
son for this is given below.

14In what follows, variables will be denoted by (possibly
primed) lower-case letters. The particular variable ¢ shall
range over the natural numbers, including 0. Free vari-
ables in formulas are assumed universally quantified. For
the sake of readability, we will furthermore use a variable e
which can be replaced by either of our three events 1lleft,
lright, or spills.



abbreviation, meaning that fluent f has value v in
state s:

Holds(f,v,8) = Jz.s=(f,v)o0z

A simple use of this macro is to ascertain that time
and the value of the fluent clock coincide:

Holds(clock, t, State(t))

Effect propositions are axiomatized by implications of
the form A[s] D Effects(f,v,v',s), where Als] is a
specification of the conditions that must be satisfied in
state s in order that fluent f changes its value from v
to v'. For example, the three effect propositions

happens(spills) effects stain=large
clock=t effects clock=t+1
clock=1 effects happens(1lleft)

are axiomatized as follows:

Holds(happens(spills), true, s) A Holds(stain, v, s)
D Effects(stain, v, large, s)

Holds(clock,t,s) D Effects(clock,t,t+1,s)

Holds(clock, 1, s) A Holds(happens(1left), v, s)
D Effects(happens(lleft), v, true, s)

In addition, a foundational axiom ensures that each
momentary fluent changes to its default value if cur-
rently it enjoys another value and if no effect proposi-
tion implies its getting a non-default value:

Momentary(f) A Default Value(f,v) A Holds(f,v', s)
A v # v A—(Effects(f,v',v",s) Av £ ")
D Effects(f,v',v,s)

The effect propositions are assumed to constitute a
complete description of what changes when moving
from one state to the next. In order to reflect this as-
sumption, we circumscribe the predicate Effects, and
so solve the representational aspect of the Frame Prob-
lem. The crucial next step is to solve the inferential
aspect, too.

Taken together, the single effects can be viewed as a
sound and complete set of constraints on two terms 7
and ¢ in which are conjoined, via “o”, the assignments
that terminate to hold and the assignments that are
initiated, respectively. These terms are then employed
for updating the current state so as to arrive at the
successor. Updating means that all unaffected fluent-
value pairs remain untouched in the new state. Thus
the inferential Frame Problem gets solved. The defin-
ition for 7 and ¢ is as follows:

Effects(f,v,v', State(t))

(=]

Change(t, 1,1) =

= dz,z

If only direct effects were to be considered, then the
concept of successor states could now be modeled by
the elegant schematic implication State(t) = 702z D
State(t+1) = zoe. Incidentally, this scheme is the rea-
son for not stipulating that o be idempotent. For if
it were, then, given that State(t) includes the fluent-
value assignments 7, the equation State(t) = 7oz
would be satisfied if z is substituted by State(t).
Hence equating State(t + 1) with 2z o ¢ would not
guarantee that all assignments in 7 terminate.

In addition to the direct effects, ramifications need
to be accounted for. The definition of how to ob-
tain successor states therefore employs the predicate
Ramify(s,e,s') as introduced in [Thielscher, 1997],
which is meant to be true if the successive application
of causal relationships to (S, E) eventually results in
a pair whose first component, S’, satisfies the domain
constraints—where s, e, and s’ are reifications of S,
E, and S’, respectively. With this predicate, to be de-
fined below, the following foundational axiom models
the definition of successor states according to Defini-
tion 4:

Change(t, T,1) A State(t) = T o z A Ramify(z o0¢,t,8)
D State(t+1) =3

The definition of Ramify can be directly adopted
from [Thielscher, 1997] as being the transitive clo-
sure of a predicate Causes(s,e,s’,e’'), which in turn
is meant to be true iff there is an instance of a causal
relationship which is applicable to (S, E) and whose
application yields (S’, E') —where s,e,s', e’ are reifi-
cations of S, E, S’, E'. The causal relationships in our
example domain, c.f. equation (4), are thus suitably
axiomatized as follows:
Causes(s,e, s',¢€')
= Jz. e = (happens(1left), true) o z
A Holds(happens(1lright), false, s)
A s = (happens(spills), false)oy
A 8' = yo (happens(spills), true)
A e' = e o (happens(spills), true)
V Jz. e = (happens(1lright), true) oz
A Holds(happens(1lleft), false, s)
A s = (happens(spills),false)oy
A 8' = yo (happens(spills), true)
A e' = e o (happens(spills), true)

Transitive closure cannot be expressed in first-order
logic, which is why predicate Ramify is defined using
the standard way of encoding transitive closure by a
second-order formula:
Ramify(s,e, s') =
Possible(s') A VII.
VS]_, €1. H(Sla €1, 81, 61)
A
VS]_, €1, 82,€2, 83,€3
[II(s1,e1, 82,€2) A Causes(sa, €3, 83, €3)
D II(517 €1, 83, 63)]
D)
II(s,e, s',€')




That is, Ramify(s,e,s') is trueiff s' satisfies the state
constraints and there is some e’ such that (s, e, s’ €’)
belongs to the transitive closure of Causes.

What remains to be axiomatized are the state con-
straints of a domain description, which in our example
looks as follows:

Possible(s)
Holds(happens(1left), true, s)
= = Holds(happens(1lright), false, s)
D Holds(happens(spills), true, s)

This completes our axiomatization. We refer to
[Thielscher, 1998a] for a proof of general correctness—
wrt. our narrative description language—of axiomati-
zations based on the ideas illustrated here. Let us just
mention the following specific result:

Theorem 6 Let ¥ be the conjunction of all Flu-
ent Calculus formulas above. Then CIRC|X; Effects]
entatils

Holds(stain, large, State(2))

6 CONCLUSION

Coming from the observation that straightforwardly
minimizing events in narratives is insufficient in case
of causal dependencies among events, we have pro-
posed two refined minimization strategies. The first of
which exploits the distinction between two categories
of events, namely, volitional actions vs. natural events.
The range of applicability of this approach has been
discussed, and we have then developed a general solu-
tion which helps telling apart caused event occurrences
by directly appealing to the notion of causality.

Our first, categorization-based minimization strategy
is particularly appealing because it can be easily in-
tegrated into existing approaches, which we have il-
lustrated with the Event Calculus axiomatization of
[Shanahan, 1996]. For our second, more general strat-
egy we have identified event occurrences with flu-
ents, which then has allowed us to apply an existing
causality-based solution to the Ramification Problem.
We have presented a high-level narrative description
language and a novel Fluent Calculus axiomatization
in which is realized this solution to the event mini-
mization problem.

Regarding related work, we first note that arguments
in favor of the theory of causal relationships as a solu-
tion to the Ramification Problem, and a through com-
parison to other approaches, can be found in the ar-
ticle [Thielscher, 1997]. In particular, there we have
argued that excluding uncaused indirect effects, and
not minimizing change, is the real issue of dealing with
ramifications. This is especially crucial in case of so-
called stabilizing state constraints [Thielscher, 1998c].
As for comparisons with existing event minimization

strategies, it has already been mentioned that chrono-
logical minimization [Shoham, 1988] is not applicable
to specifications like (2), i.e., which involve concurrent
events. This argument applies to Motivated Action
Theory [Stein and Morgenstern, 1994], too.

Our novel Fluent Calculus appears to be related in
several interesting respects to the Event Calculus, in
particular to the variant of [Shanahan, 1995a)], where
an explicit notion of state is used. A detailed com-
parison of the two is an important aspect of ongoing
research.

Finally, we should stress that reasonably minimizing
events is of great importance not only for reasoning
about narratives, where it is a mere convention that
events do not happen unless they follow from what
has been said. It is also essential for setting up plans:
Suppose a planning goal be to produce a stain in the
tablecloth. A reasonable plan would be, say, to lift up
the left hand side of the table on which the bowl of
soup is located. Yet this plan can be concluded suc-
cessful only under the assumption that no intervening
agent lifts the right hand side simultaneously. Gen-
erally, it is difficult if not impossible to devise plans
that are perfectly reliable in reality. Assuming away
disturbing events for which there is no indication that
they will occur, is therefore the only way to come up
with plans which at least by default can be concluded
to achieve a goal. Of course things may not turn out as
expected when a plan is being executed. Agents there-
fore need to constantly update, e.g. by abduction, their
knowledge about the actual course of events.
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