
A General First-Order Solution to the Ramification Problem

Hannes Strass
Department of Computer Science,
Dresden University of Technology

hannes.strass@inf.tu-dresden.de

Michael Thielscher
School of Computer Science and Engineering,

The University of New South Wales
mit@cse.unsw.edu.au

Abstract

We present a combined solution to the frame and ramification
problems that is independent of the underlying time struc-
ture. Indirect effects are expressed through ramification rules
that are compiled into first-order effect axioms. To cope with
the notorious problem of self-justifying cycles, we use tech-
niques known from translations of normal logic programs to
logical theories: cyclic fluent dependencies in the ramifica-
tion rules are identified, and for each such loop, a loop for-
mula is built into the effect axiom to guarantee proper treat-
ment of circular causal dependencies.

Motivation
The ramification problem of reasoning about actions has re-
ceived considerable attention since its discovery in (Gins-
berg and Smith 1987). Yet, current research into the ram-
ification problem is not in the best of states: there exists a
great quantity of approaches, most of which are formulated
in fundamentally different formalisms. They often rely on
non-standard logics and -semantics and employ isolated ex-
ample scenarios to illustrate each other’s weaknesses.

In this paper, we provide a solution to the ramification
problem that attempts to remedy this situation. Our ap-
proach integrates findings of different approaches to rami-
fication from the last ten to fifteen years. For the first time,
we present a solution that: (1) is independent of a particular
calculus, (2) is formulated in classical first-order logic, and
(3) treats cycles properly. This is achieved as follows: We
compile causal relationships (Thielscher 1997) into effect
axioms that then provide a combined solution to the frame
and ramification problems. These resulting effect axioms are
expressed in a recently proposed general action formalism,
the unifying action calculus (UAC) (Thielscher 2010). The
UAC is based on first-order logic and has been shown to en-
compass a wide range of existing action formalisms. Most
notably, it abstracts from the particular time structures un-
derlying specific calculi—it therefore provides an ideal basis
for a general treatment of ramifications. Furthermore, stay-
ing within first-order logic, we can resort to standard reason-
ing mechanisms as opposed to non-standard semantics.

Early treatments of ramifications (Ginsberg and Smith
1987; Winslett 1988; Lin and Reiter 1994) all assumed the
behavior of the world to be specified by state constraints—
static laws that must hold in all states of the world—and

relied on the principle of minimal change. Then (Lin 1995),
(McCain and Turner 1995), and (Thielscher 1995) inde-
pendently made the somewhat fundamental observation that
mere state constraints are insufficient for a proper treatment
of ramifications; the authors concluded that an explicit no-
tion of causation is needed for this purpose. (Thielscher
1997) then showed how information on causal influence
among fluents can be used to create a set of causal relation-
ships from a set of domain constraints. A state-transition se-
mantics is given there that applies causal relationships to in-
termediate, inconsistent states and ensures a consistent suc-
cessor state is reached (if such a state exists). Although our
approach is based on (a more general version of) causal re-
lationships, we are not concerned with their creation from
domain constraints. We assume that the user, when axioma-
tizing an action domain, additionally specifies a set of causal
relationships that describe the propagation of effects in the
domain.

Should these causal relationships now exhibit implicit
cyclic fluent dependencies, our approach will deal with that
appropriately, both for positive cyclic fluent dependencies
(i.e. self-supporting effects) and negative cyclic fluent de-
pendencies (i.e. self-canceling effects). The latter case man-
ifests itself in the resulting effect axioms being inconsistent,
which is an indication for a modeling error. (Compilation of
causal relationships into effect axioms therefore presents an
easy way of checking consistency of a given set of ramifi-
cation rules.) The former case is accounted for in a prepro-
cessing phase: using techniques from logic programming,
we identify positive loops in the set of ramification rules
and build their corresponding loop formulas (Lin and Zhao
2004) into the effect axiom.

The rest of the paper is organized as follows. In the next
section, we give the necessary background on the unifying
action calculus. The section thereafter introduces the effect
axiom used here; the subsequent section is devoted to in-
corporating ramifications into this effect axiom and giving a
formal assessment of this incorporation. Related and future
work are discussed in the concluding section.

Background: The Unifying Action Calculus
The unifying action calculus was proposed in (Thielscher
2010) to allow for a treatment of problems in reason-
ing about actions that abstracts from a particular calcu-

lus. It is based on a finite, sorted logic language with
equality (the domain signature) which includes the sorts
FLUENT, ACTION, and TIME along with the predicates
< : TIME × TIME, that denotes a (possibly partial) order-
ing on time points; Holds : FLUENT × TIME, that is used
to state that a fluent is true at a given time point; and
Poss : ACTION × TIME × TIME, that expresses the applica-
bility of an action for given starting and ending time points.

The following definition introduces the fundamental types
of formulas of the UAC: they allow to express properties of
action domains at given time points and executability condi-
tions as well as effects of actions.

Definition 1. Let ~t be a sequence of variables of sort TIME.

• A state formula Φ[~t] in ~t is a first-order formula with ~t
among its free variables and where
– for each occurrence of Holds(f, t) in Φ[~t] we have
t ∈ ~t and

– predicate Poss does not occur.

Let s, t be variables of sort TIME and A be a function from
any sort into sort ACTION.

• A precondition axiom for A(~x) is of the form

Poss(A(~x), s, t) ≡ πA[s] (1)

where πA[s] is a state formula in s with free variables
among s, t, ~x.

• An effect axiom for A(~x) is of the form

Poss(A(~x), s, t) ⊃
(∃~y)((∀f)(Υ+[s, t] ⊃ Holds(f, t)) ∧

(∀f)(Υ−[s, t] ⊃ ¬Holds(f, t))) (2)

in which both Υ+[s, t] and Υ−[s, t] are state formulas in
s, t with free variables among f, s, t, ~x, ~y.1

We next formalize how action domains are axiomatized
in the unifying action calculus.

Definition 2. A (UAC) domain axiomatization consists of
a finite set of foundational axioms Ω (by which the UAC is
instantiated by a concrete time structure, e.g. the branching
situations along with the usual ordering from Situation Cal-
culus), a set Π of precondition axioms (1), and a set Υ of
effect axioms (2); the latter two for all functions into sort
ACTION.

A domain axiomatization is progressing if

• Ω |= (∃s : TIME)(∀t : TIME)s ≤ t and
• Ω ∪Π |= Poss(a, s, t) ⊃ s < t .

In this paper, we are only concerned with progressing do-
main axiomatizations. To be able to reference the unique
initial time point, we use the macro Init(t) def= ¬(∃s)s < t.
We will then equip our domain axiomatizations with a set Σ0

of initial state axioms describing the state of the world at the

1The original definition of UAC effect axioms is much more
general; in this paper, we restrict their syntax for the sake of clarity.
Variables ~x and ~y can be of any sort.

initial time point. These initial state axioms are state formu-
las of the form Init(t) ⊃ Φ[t] where Φ[t] is a state formula
in t.

For presentation purposes, we will make use of the con-
cept of fluent formulas: these are standard first-order formu-
las but where terms of sort FLUENT play the role of atomic
formulas. We will denote by Φ[s] the state formula that is
obtained by replacing all fluent literals [¬]f in a fluent for-
mula Φ by [¬]Holds(f, s).

The Effect Axiom
This section presents the general, first-order effect axiom
that will be employed and elaborated throughout the paper.
This axiom is inspired by a specific example scenario from
(Thielscher 2010), which in turn, as mentioned there, was in-
spired by the work of (Giunchiglia et al. 2004). It formalizes
the idea of truth by causation: everything that is true must
be caused, and vice versa. In the most simple form of the ef-
fect axiom, we allow two causes to determine a fluent’s truth
value: persistence and direct effects. Before introducing the
axiom itself, we define two pairs of macros that formalize
the individual causes. The first pair expresses persistence.

FrameT (f, s, t) def= Holds(f, s) ∧Holds(f, t) (3)

FrameF (f, s, t) def= ¬Holds(f, s) ∧ ¬Holds(f, t) (4)

Assume the direct effects of an action are given as a set of
condition-effect pairs Φ/ψ (with Φ a fluent formula and ψ
a fluent literal) meaning that the action brings about ψ if Φ
holds at the starting time point. These expressions can easily
be translated into “causes” for the purpose of designing an
effect axiom for that action.
Definition 3. Let A be a function into sort ACTION and ΓA
be a set of expressions Φ/ψ (where Φ is a fluent formula and
ψ a fluent literal) with free variables among ~x, ~y that denote
the direct conditional (local and non-local) effects of A(~x).

DirT (f,A(~x), s, t) def=∨
Φ/F (~x,~y)∈ΓA

(∃~y)(f = F (~x, ~y) ∧ Φ[s]) (5)

DirF (f,A(~x), s, t) def=∨
Φ/¬F (~x,~y)∈ΓA

(∃~y)(f = F (~x, ~y) ∧ Φ[s]) (6)

Definition 4. Let A be a function into sort ACTION. An ef-
fect axiom with conditional effects and the frame assumption
is of the form2

Poss(A(~x), s, t) ⊃
(∀f)(Holds(f, t) ≡ CausedT (f,A(~x), s, t)) ∧
(∀f)(¬Holds(f, t) ≡ CausedF (f,A(~x), s, t)) (7)

2The attentive reader will have noticed that the syntax of axiom
(7) does not quite correspond to Definition 1. Simple syntactical
manipulations can however be conducted to transform the effect
axiom into a form that matches the structure of (2).

CausedT (f,A(~x), s, t) def=
FrameT (f, s, t) ∨DirT (f,A(~x), s, t) (8)

CausedF (f,A(~x), s, t) def=
FrameF (f, s, t) ∨DirF (f,A(~x), s, t) (9)

The predicates CausedT ,CausedF will be refined in a sub-
sequent section. When speaking about effect axiom (7), we
will understand it retrofitted with their “latest version”. For
the sake of brevity, we will from now on only define the pos-
itive versions of predicate macros (for example CausedT)
since their negative versions (in the example: CausedF) are
absolutely symmetric.

The design principle underlying the axiomatization tech-
nique of this effect axiom is that of causation: a fluent holds
at a time point that is the end point of an action if and only
if there is a cause for that; similarly, a fluent does not hold if
and only if there is a cause for that, too.

From now on, when speaking about domain axioma-
tizations, we will understand all effect axioms to be of
the form (7) and have the domain axiomatizations include
uniqueness-of-names axioms for all finitely many function
symbols into sorts FLUENT and ACTION.

Incorporating Indirect Effects
We now present the basic underlying idea of our solution to
the ramification problem. It relies on an extension of our ef-
fect axiom that preserves the solution of the frame problem
and additionally accounts for ramifications by incorporating
a set of user-defined causal relationships. These relation-
ships specify certain conditions under which a change of
truth value of one fluent causes a change of truth value of
another fluent.
Definition 5. A causal relationship (or causal rule) is of the
form

Φ : χ V ψ (10)
Φ, the context, is a fluent formula, while χ, the trigger,
and ψ, the effect, are fluent literals. A causal relationship
is called open if it contains free variables, otherwise it is
closed.

The notion of a causal relationship was introduced in their
closed form in (Thielscher 1997), albeit with a different syn-
tax and for the purpose of using them in a specific action
formalism (Fluent Calculus). We now show how to integrate
these causal relationships into the general effect axiom. The
idea is to express them as implications and take care that in-
ferences in the contrapositive (i.e. non-causal) direction are
not possible. The macros IndT (f, s, t), IndF (f, s, t) ex-
press that fluent f is an indirect (positive or negative, respec-
tively) effect of an action occurring from s to t. For a causal
relationship Φ : χ V ψ, the indirect effect ψ is established
whenever the rule has been triggered, that is, whenever the
context Φ holds at the starting time point s and χ, the trigger,
has changed from untrue to true from s to t.
Definition 6. Let Φ : χ V ψ be a causal relationship and
s, t : TIME be variables.

TriggeredΦ:χVψ(s, t) def= Φ[s] ∧ ¬χ[s] ∧ χ[t] (11)

Let R be a set of causal relationships and f be a variable of
sort FLUENT.

IndT (f, s, t) def=∨
Φ(~y):χ(~y)VF (~y)∈R

(∃~y)
 f = F (~y) ∧

TriggeredΦ(~y):χ(~y)VF (~y)(s, t)
 (12)

(The corresponding definition of IndF (f, s, t) takes all
causal rules with negative effect and is symmetric.)

According to these macros, a fluent f is an indirect effect
from s to t if there is a corresponding causal relationship
with effect f that triggered from s to t. The macros are
straightforwardly integrated into the effect axiom as follows.

Definition 7. Let A be a function into sort ACTION. An
effect axiom with conditional effects, the frame assumption,
and ramifications is of the form (7), where

CausedT (f,A(~x), s, t) def= FrameT (f, s, t) ∨
DirT (f,A(~x), s, t) ∨ IndT (f, s, t) (13)

We use a slight modification of a simple, well-known ram-
ification domain (Baker 1991) to illustrate how our effect
axioms work.

Example 1 (Walking Turkeys). Consider the fluents
Alive(y) and Walking(y) along with the action Shoot(x) of
shooting x that has the effects ΓShoot(x) = {>/¬Alive(x)}
(meaning the object shot at is not alive any more) and the
precondition axiom Poss(Shoot(x), s, t) ≡ s < t. The
causal relationship below says that for any object, not to be
alive is sufficient cause for it not to be walking:

> : ¬Alive(y) V ¬Walking(y)

Applying Definition 6 results in

IndF (f, s, t) = (∃y)(f = Walking(y) ∧
Holds(Alive(y), s) ∧ ¬Holds(Alive(y), t))

Since Shoot(x) has no positive effect and there is also no
causal relationship with positive effect, the effect axiom thus
constructed for our action is now given by

CausedT (f, Shoot(x), s, t) = FrameT (f, s, t)
CausedF (f, Shoot(x), s, t) = FrameF (f, s, t) ∨

f = Alive(x) ∨ IndF (f, s, t)

We add an initial state axiom stating that two turkeys, Fred
and Harry, are initially both alive and walking.

Init(t) ⊃
(Holds(Alive(Fred), t) ∧Holds(Walking(Fred), t) ∧
Holds(Alive(Harry), t) ∧Holds(Walking(Harry), t))

Now taking Σ to be the domain axiomatization comprised
of the above-mentioned effect, precondition, and initial state
axioms, we can conclude that shooting at Fred yields the

desired result that he immediately dies and stops walking all
the while Harry stays alive and walking.

Σ |= (Init(t0) ∧ Poss(Shoot(Fred), t0, t1)) ⊃
(¬Holds(Alive(Fred), t1) ∧ ¬Holds(Walking(Fred), t1) ∧
Holds(Alive(Harry), t1) ∧Holds(Walking(Harry), t1))

While the compilation of causal relationships into effect
axioms presented so far works well for simple ramification
domains and easily copes with instantaneous effect propa-
gation, it still harbors a serious flaw: it cannot handle cyclic
fluent dependencies. This is shown using the following
example from (Van Belleghem, Denecker, and Theseider-
Dupré 1998).
Example 2 (Gear Wheel Domain). There are two inter-
locked gear wheels, that can be separately turned and
stopped. Let the fluents W1,W2 express that the first
(resp. second) gear wheel is turning. The actions to initi-
ate/end this are Turni,Stopi with effects ΓTurni = {>/Wi},
ΓStopi

= {>/¬Wi}, i = 1, 2; there also exists a trivial ac-
tion Wait without any direct effects, ΓWait = ∅. The causal-
ity relating the interlocked gear wheels is described as fol-
lows: whenever the first wheel is turned, it causes the sec-
ond one to turn, and vice versa; whenever the first wheel is
stopped, it causes the second one to stop as well, and vice
versa. The respective causal relationships are:

> : W1 V W2,> : ¬W1 V ¬W2

> : W2 V W1,> : ¬W2 V ¬W1

Let us compile the (positive half of the) effect axiom for the
Wait action. Since there are no direct effects, Definitions 6
and 7 yield

CausedT (f,Wait, s, t) ≡ FrameT (f, s, t) ∨ IndT (f, s, t)
with

IndT (f, s, t) =
(f = W2 ∧ ¬Holds(W1, s) ∧Holds(W1, t)) ∨

(f = W1 ∧ ¬Holds(W2, s) ∧Holds(W2, t))

Assume both wheels initially stand still:

Init(t) ⊃ (¬Holds(W1, t) ∧ ¬Holds(W2, t))

and consider the interpretation I with

TIMEI = {T0, T1} , T0 <
I T1, PossI = {(Wait, T0, T1)}

HoldsI = {(W1, T1), (W2, T1)}

It is a model for effect axiom (7) for Wait where both wheels
magically start turning—one being the cause for the other
and vice versa. This is undesired as Wait is intended to have
no effect at all.

Loops and Loop Formulas
Much as in the case of Clark’s completion of normal logic
programs, our compilation of causal relationships into ef-
fect axioms allows too many models for predicates/fluents
that cyclicly depend on each other. We propose a solution
to our problem that is in the spirit of loop formulas (Lin

and Zhao 2004) for normal logic programs. In order for
the approach to stay practical, we however have to restrict
the syntax of the causal relationships R. Firstly, we require
that for any r1 6= r2 ∈ R, we have Var(r1) ∩Var(r2) = ∅.
This is not an actual constraint but merely for technical rea-
sons. The second restriction stipulates that for each rule
Φ : χ V ψ ∈ R, we have Var(χ) ⊆ Var(ψ), that is, there
may not be local variables in rule triggers. Thirdly, we
do not use proper function symbols as arguments of sort
FLUENT. The latter two constraints guarantee the existence
of a finite, complete set of loops (Chen et al. 2006).

Throughout the following definitions, we will make ex-
plicit use of substitutions, unifiers, and most general unifiers
(mgus). Their domains and ranges are understood to be built
from the domain signature used for specifying the causal re-
lationships. For unification, negation is treated as a unary
function symbol.
Definition 8. Let R be a set of open causal rules. The
influence graph GR of R is the infinite directed graph
GR def= (V,E), where V is the set of all terms µθ with µ
a fluent literal mentioned in R and θ a substitution; a pair
(µ, ν) ∈ E if there exists a rule Φ : χ V ψ ∈ R and a sub-
stitution θ with µ = χθ and ν = ψθ. A finite, nonempty set
L of literals constitutes a loop in R if for all µ, ν ∈ L there
is a directed path from µ to ν in GR.

A rule r = Φ : χ V ψ ∈ R leads into the loop L iff
• there exists a µ ∈ L and a substitution θ−r with
θ−r = mgu(ψ, µ) and

• for all substitutions θ′ with (∃θ′′)θ′ = θ−r θ
′′ we have

{χ} θ′ ∩ Lθ′ = ∅.
ThenR−L def= {rθ−r | r ∈ R and r leads into the loop L}.

Note that, in contrast to the notions from normal logic
programs, the nodes of our dependency graphs are literals
instead of only positive atoms. Also, the head of the rule
(the effect) does not depend on the whole body (trigger plus
context) but only on the trigger.
Example 2 (Continued). The causal relationships of the
gear wheel domain give rise to two loops:

L1 = {W1,W2} and L2 = {¬W1,¬W2}

Having defined the loops for a given set of causal rela-
tionships, we can now proceed to define the corresponding
loop formulas. The idea of loop formulas is to eliminate the
models that arise due to “spontaneous” activation of loops
for which no external support exists. In the case of logic
programs, the external support that counts as “legal” cause
for loop activation is a program rule leading into the loop. In
our case, the direct effects of an action have to be taken into
account as potential reasons for loop activation, too. A loop
can also be activated by another loop—but then the union of
the two is again a loop, so this case is implicitly catered for.

When translating a logic program into a logical theory, the
loops are added to the predicate completion of the program.
In case of general effect axioms with their standard first-
order semantics, loop formulas are “built into” the axioms.
This is done as follows: we enforce the frame assumption
for all fluent literals that could possibly change their truth

value due to spontaneous loop activation. To achieve this
for a given literal µ, we specify non-activation of all loops
that are relevant for µ (namely those that contain either µ or
¬µ) as a sufficient cause for persistence of µ’s truth value.

We use the notation L(~y) to explicitly refer to the free
variables ~y mentioned in the loop L. As far as loop activa-
tion through an indirect effect (macro IndActivated) is con-
cerned, we have to check whether the corresponding ground
instance of a rule leading into the loop has fired. This is done
in the last line of (14) in the construction of loop formulas:
Definition 9. Let R be a set of causal relationships,
Loops(R) be the set of all loops of R, L ∈ Loops(R), s, t
be variables of sort TIME.

IndActivatedL(~y, s, t) def=∨
Φ(~z):χ(~z)Vψ(~z)∈R−L

(∃~z)
 TriggeredΦ(~z):χ(~z)Vψ(~z)(s, t) ∧

∨
µ(~y)∈L(~y)

ψ(~z) = µ(~y)
 (14)

Let A be a function into sort ACTION.

ActivatedL(~y,A(~x), s, t) def= IndActivatedL(~y, s, t)

∨
∨

F (~y)∈L(~y)

DirT (F (~y), A(~x), s, t)

∨
∨

¬F (~y)∈L(~y)

DirF (F (~y), A(~x), s, t) (15)

Let f : FLUENT be a variable.

LoopFrameT (f,A(~x), s, t) def= Holds(f, s) ∧∨
L∈Loops(R),

¬F (~y)∈L(~y)

(∃~y)
 f = F (~y) ∧

¬ActivatedL(~y,A(~x), s, t)
 (16)

Equality for fluent literals is just an abbreviation—if both
are positive or both are negative, we compare their affirma-
tive components; if they have different signs, they cannot be
equal.

ϕ = ψ def=

{
|ϕ| = |ψ| if ϕ = |ϕ| iff ψ = |ψ|
⊥ otherwise

Note that if the specified causal relationships do not give rise
to any loops, both (16) and its negative version are equiva-
lent to ⊥. The new causes are added to the effect axiom in
the usual way.
Definition 10. Let A be a function into sort ACTION. An
effect axiom with conditional effects, the frame assumption,
and ramifications is of the form (7), where

CausedT (f,A(~x), s, t) def= FrameT (f, s, t) ∨
DirT (f,A(~x), s, t) ∨ IndT (f, s, t) ∨

LoopFrameT (f,A(~x), s, t) (17)

Effect axioms taking special care in loop activation are
now able to treat the gear wheel domain correctly.
Example 2 (Continued). The Wait action has no direct ef-
fects and for neither of the loops L1, L2 exists a rule leading
into the loop, hence

ActivatedL1(Wait, s, t) = ActivatedL2(Wait, s, t) = ⊥
Accordingly, the new causes added to the effect axiom
state that through performing Wait, the truth value of
the loop literals must persist: LoopFrameT (f,Wait, s, t)
is equivalent to Holds(f, s) ∧ (f = W1 ∨ f = W2);
LoopFrameF (f,Wait, s, t), in turn, is equivalent to
¬Holds(f, s) ∧ (f = W1 ∨ f = W2).

For the undesired interpretation I seen earlier we
now have I |= LoopFrameF (W1,Wait, T0, T1) but
I 6|= ¬Holds(W1, T1); hence I is no model for the effect
axiom any more, just as desired.

Formal Assessment
In order to provide an assessment of our solution to the
ramification problem, we now develop a formal correspon-
dence between the solution of (Van Belleghem, Denecker,
and Theseider-Dupré 1998) and ours for a particular class
of action domains. Their approach is well-suited for this
purpose because it is a general, time-independent solution
that can cope with cyclic dependencies. Yet, due to its non-
standard semantics, it is (until now) not clear how existing
action calculi can benefit from it. Our correspondence result
thus takes an important step towards integrating that solution
into specific formalisms that can be obtained as instances of
the unifying action calculus.

To begin with, we introduce a class of action domains that
both formalisms can treat, but which is still independent of
a specific notion of time. The restriction to propositional ac-
tions stems from (Van Belleghem, Denecker, and Theseider-
Dupré 1998), where parametric actions play no role. They
however consider more general specifications of indirect ef-
fects where the trigger is a fluent formula instead of a fluent
literal. (They also consider simultaneous actions, which we
could emulate by defining appropriate new actions.)
Definition 11. Let F be a finite set of function symbols, A
be a finite set of action constants, E be a family of sets ΓA
of expressions Φ/ψ (one for each A ∈ A), andR be a set of
causal relationships.

The UAC axiomatization of (F ,A, E ,R) consists of a do-
main signature where the sort FLUENT coincides with F and
the sort ACTION coincides with A, and a set Υ of effect ax-
ioms incorporatingR according to Definitions 9 and 10, one
for each A ∈ A.

The domain definition Ξ for (F ,A, E ,R) according to
(Van Belleghem, Denecker, and Theseider-Dupré 1998)
consists of: F and A as they are; for all actions
A ∈ A and Φ/ψ ∈ ΓA, a statement A causes ψ if Φ;
for each causal relationship Φ : χ V ψ ∈ R, a statement
initiating χ causes ψ if Φ.

For a domain definition Ξ, an action A ∈ A, and a state3

S over F , (Van Belleghem, Denecker, and Theseider-Dupré
3A state is a maximally consistent set of fluent literals.

1998) define the successor state SuccΞ(A,S) of S afterA as
(S \ {µ | Init(A,S,¬µ)}) ∪ {µ | Init(A,S, µ)}.4 There,
Init(A,S, µ) means “action A in state S initiates truth of
fluent literal µ” and is roughly defined via the following in-
ductive definition rules:5

• for each direct effect expression A causes ψ if Φ, the
rule Caus(A,S, ψ)← Ho(Φ, S);

• for each initiating χ causes ψ if Φ, the rule
Caus(A,S, ψ)← Init(A,S, χ),¬Ho(χ, S),Ho(Φ, S);

• the rules Init(A,S, µ)← Caus(A,S, µ),¬Ho(µ, S) for
all fluent literals µ.

For the details we must refer the reader to the original work
(Van Belleghem, Denecker, and Theseider-Dupré 1998) due
to a lack of space. We remark however that calculating Init
really only provides the indirect effects, the frame assump-
tion is subsequently implemented by set arithmetics.

The main assessment result now states that our auto-
matically created effect axioms correctly capture the state-
transition semantics of (Van Belleghem, Denecker, and
Theseider-Dupré 1998) for the class of domains defined
above.
Theorem 1. Let F be a finite set of function symbols, A be
a finite set of action constants, E be a family of sets ΓA of
expressions Φ/ψ (one for eachA ∈ A),R be a set of causal
relationships, Υ the set of effect axioms (7) from the UAC ax-
iomatization of (F ,A, E ,R), Ξ be the domain definition for
(F ,A, E ,R) according to (Van Belleghem, Denecker, and
Theseider-Dupré 1998), and S1, S2 be states over F .

Now for some A ∈ A, let ΥA[s, t] ∈ Υ be A’s effect
axiom. Define an interpretation I for ΥA[τ1, τ2] as follows:
TIMEI def= {τ1, τ2}, τ1 <

I τ2, PossI def= {(A, τ1, τ2)},
HoldsI def= {(F, τi) | F ∈ Si} , i = 1, 2. We now have:

I |= ΥA[τ1, τ2] iff SuccΞ(A,S1) = S2

Proof. See the appendix for a sketch.

Discussion
We proposed a treatment of ramifications that is neither tied
to a particular action calculus nor to a particular notion of
time. Indirect effects are specified through causal relation-
ships, that express effect propagation in a concrete action
domain. These rules are then compiled into effect axioms
that provide a combined solution to the frame and ramifica-
tion problems. We assessed the solution by providing a for-
mal correspondence with a previously established general,
calculus-independent solution.

Some notes on related work are in order. (Thielscher
1997) introduced the concept of (closed) causal relation-
ships and provided a solution to the ramification problem, al-
beit restricted to a specific formalism. (Van Belleghem, De-

4The successor state is assumed to be undefined when the re-
sulting set of literals is not a valid state or when computation of
Init revealed an inconsistency in the (direct and indirect) effect
specifications.

5Caus(A,S, µ) means “A in S causes µ”; Ho(Φ, S) denotes
the truth value of Φ in S.

necker, and Theseider-Dupré 1998) provide a way of model-
ing indirect effects that is independent of a specific calculus;
they however use a three-valued semantics in form of a state
transition function. (Shanahan 1999) shows how to han-
dle a particular class of ramifications in the event calculus
(Kowalski and Sergot 1986), limited however in that it ad-
mittedly cannot treat self-justifying cycles. This is also true
for (McCain and Turner 1995) and (Giunchiglia et al. 2004),
who addressed the ramification problem with the help of a
special causal logic; our general first-order axiom for indi-
rect effects (but without loop formulas) was in fact inspired
by their concept of causality. In an approach basically simi-
lar to ours, (Pinto 1999) aims at compiling ramification con-
straints into effect axioms by some preprocessing, yet it does
not integrate causality. (McIlraith 2000) uses an implicit
notion of causation, but the approach resorts to a minimal-
model policy and is not able to deal with cyclic fluent de-
pendencies, since it requires stratification of the ramification
constraints. More recently, (Herzig and Varzinczak 2007)
dealt with indirect effects of actions through static laws in a
special formalism based on modal logic. (Forth and Miller
2007) proposed a treatment of indirect effects in the event
calculus based on nested circumscription—the general solu-
tion there is hence not always expressible in first-order logic.
Additionally, being formulated in the event calculus, the ap-
proach is bound to linear time and a narrative-based seman-
tics. Most recently, (Baumann et al. 2010) provide a treat-
ment of ramifications in a general-purpose formalism which
is independent of the underlying time structure. They trans-
late causal relationships into Reiter defaults (Reiter 1980)
and then use reasoning methods from default logic to infer
indirect effects. The approach treats cycles properly (due
to the groundedness of extensions in default logic), but it is
again outside of the scope of classical logic.

Summing up the novel aspects of our approach, it is: (1)
independent of the underlying time structure, (2) formulated
in pure first-order logic, and (3) it can cope with the impor-
tant and challenging problem of cyclic fluent dependencies.

References
Baker, A. B. 1991. Nonmonotonic Reasoning in the
Framework of Situation Calculus. Artificial Intelligence
49:5–23.
Baumann, R.; Brewka, G.; Strass, H.; Thielscher, M.; and
Zaslawski, V. 2010. State Defaults and Ramifications in the
Unifying Action Calculus. In Proceedings of the Twelfth
International Conference on the Principles of Knowledge
Representation and Reasoning. To appear.
Chen, Y.; Lin, F.; Wang, Y.; and Zhang, M. 2006. First-
Order Loop Formulas for Normal Logic Programs. In Pro-
ceedings of the Tenth International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR
2006), 298–307. AAAI Press.
Clark, K. L. 1978. Negation as Failure. In Gallaire, H., and
Minker, J., eds., Logic and Data Bases, 293–322. Plenum
Press.
Forth, J., and Miller, R. 2007. Ramifications: An Extension

and Correspondence Result for the Event Calculus. Journal
of Logic and Computation 17(4):639–685.
Gelfond, M., and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databases. New Genera-
tion Computing 9:365–385.
Ginsberg, M. L., and Smith, D. E. 1987. Reasoning about
Action I: A Possible Worlds Approach. Artificial Intelli-
gence 35:233–258.
Giunchiglia, E.; Lee, J.; Lifschitz, V.; McCain, N.; and
Turner, H. 2004. Nonmonotonic Causal Theories. Artificial
Intelligence 153(1-2):49–104.
Herzig, A., and Varzinczak, I. J. 2007. Metatheory of ac-
tions: Beyond consistency. Artificial Intelligence 171(16–
17):951–984.
Kowalski, R. A., and Sergot, M. J. 1986. A Logic-based
Calculus of Events. New Generation Computing 4(1):67–
95.
Lin, F., and Reiter, R. 1994. State Constraints Revisited.
Journal of Logic and Computation 4(5):655–677.
Lin, F., and Zhao, Y. 2004. ASSAT: Computing Answer
Sets of a Logic Program by SAT Solvers. Artificial Intelli-
gence 157(1-2):115–137.
Lin, F. 1995. Embracing Causality in Specifying the
Indirect Effects of Actions. In Proceedings of the Four-
teenth International Joint Conference on Artificial Intelli-
gence (IJCAI-95), 1985–1993. Morgan Kaufmann.
McCain, N., and Turner, H. 1995. A Causal Theory
of Ramifications and Qualifications. In Proceedings of
the Fourteenth International Joint Conference on Artificial
Intelligence (IJCAI-95), 1978–1984. Montréal, Québec,
Canada: Morgan Kaufmann.
McIlraith, S. 2000. Integrating Actions and State Con-
straints: A Closed-Form Solution to the Ramification Prob-
lem (Sometimes). Artificial Intelligence 116(1–2):87–121.
Pinto, J. 1999. Compiling Ramification Constraints into
Effect Axioms. Computational Intelligence 15:280–307.
Reiter, R. 1980. A Logic for Default Reasoning. Artificial
Intelligence 13:81–132.
Shanahan, M. 1999. The Ramification Problem in the
Event Calculus. In Proceedings of the Sixteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-
99), 140–146. Morgan Kaufmann.
Thielscher, M. 1995. Computing Ramifications by Post-
processing. In Mellish, C. S., ed., Proceedings of the Four-
teenth International Joint Conference on Artificial Intelli-
gence (IJCAI-95), 1994–2000. Montreal, Canada: Morgan
Kaufmann.
Thielscher, M. 1997. Ramification and Causality. Artificial
Intelligence 89(1–2):317–364.
Thielscher, M. 2010. A Unifying Action Calculus. Artifi-
cial Intelligence. To appear.
Van Belleghem, K.; Denecker, M.; and Theseider-Dupré,
D. 1998. A Constructive Approach to the Ramification
Problem. In Reasoning about Actions; Foundations and
Applications, 1–17.

Winslett, M. 1988. Reasoning about Action Using a Pos-
sible Models Approach. In Proceedings of the Seventh Na-
tional Conference on Artificial Intelligence (AAAI-88), 89–
93.

Appendix
Proof of Theorem 1 (Sketch). Throughout the proof,
we use fluent literals and the literal versions of
the cause-macros Caused , Frame , Dir , Ind ,
LoopFrame; for example, for the fluent literal
µ = ¬f , Caused(µ, a, s, t) = CausedF (f, a, s, t) and
Caused(¬µ, a, s, t) = CausedT (f, a, s, t). An important
observations concerning the proof is that by definition of I ,
for all fluent literals, we have µ ∈ Si iff I |= µ[τi], i = 1, 2.
This can be generalized to fluent formulas Φ: Ho(Φ, S1)
iff I |= Φ[τ1]. Atoms of the form Ho(Φ, S1) form the
leaves of proof trees, that define the semantics of Init in
(Van Belleghem, Denecker, and Theseider-Dupré 1998).
The proof itself is much simplified by the below lemmata,
all of which use the presumptions of Theorem 1. The first
one can be proved by induction on the height of the (true)
proof tree in the “only if” direction and induction on the
length of the causal chain leading to µ in the converse.

Lemma 2. For I |= ΥA[τ1, τ2] and a fluent literal µ,
we have that Init(A,S1, µ) is true if and only if
I |= ¬µ[τ1] ∧ µ[τ2].

The proof of the second lemma is fairly straightforward
since the only definition rules with head Caus are the ones
created through grounding of direct and indirect effect rules.

Lemma 3. Let SuccΞ(A,S1) = S2 and µ be a flu-
ent literal. Caus(A,S1, µ) is true if and only if
I |= Dir(µ,A, τ1, τ2) ∨ Ind(µ, τ1, τ2).

The last lemma is an easy corollary of an observation of
(Van Belleghem, Denecker, and Theseider-Dupré 1998).

Lemma 4. Let SuccΞ(A,S1) be a state and µ be a fluent
literal. Init(A,S1, µ) is true if and only if Caus(A,S1, µ)
is true and µ /∈ S1.

The claim of Theorem 1 is now straightforwardly
shown. In the “if” direction, we can use the
presumption SuccΞ(A,S1) = S2 and Lemmata 4
and 3 to show that for all fluent literals µ, we
have I |= µ[τ2] iff I |= Caused(µ,A, τ1, τ2) and
I |= ¬Caused(¬µ,A, τ1, τ2). This is done via a case dis-
tinction on why µ ∈ SuccΞ(A,S1)— either Init(A,S1, µ)
is true or µ ∈ S1 and Init(A,S1,¬µ) is not true. In the
“only if”-direction, the presumption I |= ΥA[τ1, τ2] enables
the use of Lemma 2. To show SuccΞ(A,S1) ⊆ S2, we
again make a case distinction on why µ ∈ SuccΞ(A,S1)
and in each case employ Lemma 2; SuccΞ(A,S1) ⊇ S2 can
be shown by a case distinction whether µ ∈ S1 and (in each
case) use of Lemma 2.

