
An Agent Team Based on FLUX

for the ProMAS Contest 2007

Stephan Schi�el, Michael Thielscher, Doan Thu Trang

Dresden University of Technology
Dresden, Germany

fstephan.schiffel,mitg@inf.tu-dresden.de
tieuyen@gmail.com

Abstract. FLUX is a constraint logic programming system based on a
general calculus for reasoning about actions. FLUX supports the devel-
opment of agents that base their decisions on their own knowledge state
and update this state in accordance with a declarative speci�cation of
their primitive actions and sensing capabilities. This is the second time
we participate in the Multi-Agent Programming Contest with a team of
FLUX agents, and in this paper we describe an improved system archi-
tecture for competing in the Gold Mining Domain.

1 Introduction

Intelligent agents have the ability to generate actions based on their own knowl-
edge about the environment that they inhabit. Since last year, the Multi-Agent
Programming Contest provides the research community with an opportunity to
apply and compare di�erent approaches and methodologies for the design of in-
telligent agents. This is the second time we participate in the contest with a team
of FLUX agents, and in this paper we describe an improved system architecture
for competing in the Gold Mining Domain.

FLUX [1] is a constraint logic programming system based on a general cal-
culus for reasoning about actions. It supports the development of agents that
base their decisions on their own knowledge state and update this state in ac-
cordance with a declarative speci�cation of their primitive actions and sensing
capabilities. A FLUX agent is a logic program consisting of three parts. A gen-
eral kernel provides the basic reasoning facilities by means of an encoding of the
foundational axioms of the action formalism known as 
uent calculus [2]. The
domain-speci�c background theory is used to maintain the internal knowledge
state of an agent. It consists of a declarative speci�cation of the actions and
sensing capabilities of an individual agent. Finally, the strategy part of a FLUX
program guides the behavior of the agent. The quality of a team of agents is
crucially dependent on the quality of the strategy of each individual agent and
how these work together.

This paper is organized as follows. Following this introductory section, we
give an overview of the System Design, where we show how the three parts of



each FLUX agent are constructed, including the strategy of the whole team as
well as of each individual agent. Thereafter, we give details about our software
architecture, describing the tools and environment that are being used for the
FLUX agent team with which we participate in the Multi-Agent Programming
Contest 2007.

2 System Analysis and Design

As described above, an agent developed using the FLUX framework is a logic
program consisting of three modules: the fundamental reasoning facilities based
on the 
uent calculus, the speci�cation of the e�ects of actions, and the strategy.
Since the �rst part is application-independent and is therefore provided by the
general FLUX system, developing a FLUX agent amounts to programming the
latter two modules. In what follows, we give an overview of these modules of the
FLUX agents for the Gold Mining Domain.

FLUX Agent Team Our FLUX agent team consists of six agents and a leader.
The role of the leader is to help the other agents in sharing information about
the environment and to coordinate the other agents. To reduce communication
complexity, the agents do not communicate directly with each other. Instead,
the leader collects and distributes all new information among the agents.

Each agent has intentions that change over time based on sensor informa-
tion and executed actions. The next action of an agent depends on the current
intentions of that agent and the current state of the world.

sim _start
call start_simulation

request action
call request_action

action
action

[Act, Msg, Int]
[Act, Msg, Int]

[Int+,Int-]

[Int+,Int-]

sim _end
call end_simulation

Server Comm. module Core agent Leader

Fig. 1. Messages within Flux Agents



In order for the agents to cooperate, after an agent decides on its next action it
sends new information it got and its current intention to the leader. In return the
leader sends information gathered by the other agents to the agent. Additionally
the leader might request the agent to change its intentions for coordinating the
agents of the team. Figure 1 shows how the agents of the FLUX Team exchange
messages with each other.

scan, goto

scan

scannext

gohome

goto gohome, goto

Fig. 2. Intentions of agents

Figure 2 shows how intentions of agents are changed. The solid arrows in-
dicate the modi�cations of intentions that are decided by the leader, and the
broken arrows mean that the transitions are done by the agents themselves. The
main intentions of an agent are to scan an area of the grid, to go to some lo-
cation either for scanning the area around it or for collecting a gold item, or to
go home, i.e., go to the depot. The intentions can change when gold is picked
up or dropped or an area was scanned completely. The intentions are sometimes
changed upon request of the leader in order to assign areas to the agents for
exploration or to resolve con
icts between the agents' intentions.

Knowledge Update Depending on the type, each member of the FLUX agent
team behaves di�erently when updating its own knowledge about the environ-
ment. A knowledge update for the leader is triggered whenever an agent sends
new information. The information that the leader receives contains all new in-
formation that the agent learned as well as the agent's intentions and action.
Based on this, the leader updates its current knowledge of the grid as well as of
the states of the agents. A knowledge update for an agent, on the other hand,
is done whenever it executed an action. The knowledge state of an agent is up-
dated using a FLUX implementation of a so-called Knowledge Update Axiom in
the 
uent calculus. To deal with the nondeterministic nature of actions due to
random action failures it is su�cient to check whether the position of the agent
and the number of nuggets it carries di�ers from the expectation. The Knowl-



edge Update Axiom incorporates all sensor information about the contents of
the cells surrounding the agent into its state.

3 Software Architecture

FLUX agent team

Contest Server

Communication Server

agent leader

Java

Prolog

player 1

Java

Prolog

player 2

Java

Prolog
. . .

Fig. 3. Software Architecture

Each agent of the team of agents consists of two processes communicating via
streams. One process runs a Java program responsible for communicating with
the contest server and the other agents. The other process executes the actual
strategy of the agent. The latter is implemented in (ECLiPSe)-Prolog using
the FLUX framework. The agents of a team communicate with asynchronous
messages using a simple self-implemented communication framework based on
sockets. This architecture has a couple of advantages. It allows the individual
agents to run on di�erent computers across a network. All the other agents
remain functional if one the agents crashes. Only failure of the leader agent will
result in a less e�cient strategy because of the coordination of the agents is
missing. The system can be used easily for di�erent numbers of agents.

4 Agent Team Strategy

The goal of the team is to collect as much gold as possible in a match. However,
given the complexity and nondeterministic nature of the domain, it is di�cult
to come up with a plan for each agent of the team which maximizes the overall
score of the team taking the unpredictable and widely hidden activities of the op-
ponent team into account. Therefore, the agents mostly act greedily. Competing
interests of exploration and predictable and fast traveling are only rudimentarily
incorporated into the path planning algorithm. Con
icts between the agents of
our team are resolved in two ways. First, the leader coordinates the agents by



assigning areas to the agents for exploration. Second, small scale con
icts such
as when several agents try to get into the same cell, are resolved using �xed pri-
orities of the agents without the direct help of the leader. In order for the agents
to be able to cooperate, it is necessary that the individual goals and intentions
of the agents are communicated between each other. To keep the communication
complexity low, there is no peer-to-peer communication between the agents. In-
stead all information is collected and distributed by the leader agent. Apart from
the communication with the simulation server each agent (except for the leader)
sends and retrieves just one message per step. The obvious weak point in this
setup is the leader agent. The complexity of the leader agent and computation
power of the computer also limit the maximal number of agents that can be
added to the system.

5 Discussion

Our successful participation in the ProMAS Contest 2007 has shown that FLUX
- originally designed as a single agent framework - can be used as a basis for true
multi-agent systems. The only weak spot we discovered was that FLUX lacks an
integrated mechanism for communication between the agents.

The contest provides a useful testbed for multi-agent systems. However, it
doesn't cover all aspects of uncertainty which agents normally have to face in an
environment. In particular, the nondeterministic nature of the actions is easily
resolved using the sensor information in the next step of the simulation. As a
consequence, several important features of agent programming systems, like the
support for nondeterministic actions, were not covered by the ProMAS Contest.

6 Conclusion

We have given an overview of an approach to the design of intelligent agents that
participate in the ProMAS Contest 2007. In comparison with our contribution
to the previous competition [3], the FLUX team has been signi�cantly improved
in the way the agents communicate with each other in order not to just follow
their individual strategy but to also build a joint strategy for the entire team.
The behavior of each agent is written in Prolog while the communication mod-
ule has been implemented in Java. Thanks to the interface between Java and
Prolog supported by ECLiPSe Prolog, single agents developed using the FLUX
methodology can be easily joined in a team for multi-agent settings.

References

1. Thielscher, M.: FLUX: A logic programming method for reasoning agents. Theory
and Practice of Logic Programming 5 (2005) 533{565

2. Thielscher, M.: From situation calculus to 
uent calculus: State update axioms as a
solution to the inferential frame problem. Arti�cial Intelligence 111 (1999) 277{299

3. Schi�el, S., Thielscher, M.: Multi-agent FLUX for the gold mining domain (system
description). Volume 4371 of LNCS., Hakodate, Japan, Springer (2006)


