
From General Game Descriptions to a Market
Specification Language for General Trading

Agents

Michael Thielscher 1 and Dongmo Zhang 2

1 The University of New South Wales, Australia,
mit@cse.unsw.edu.au

2 University of Western Sydney, Australia,
dongmo@scm.uws.edu.au

Abstract. The idea behind General Game Playing is to build systems
that, instead of being programmed for one specific task, are intelligent
and flexible enough to negotiate an unknown environment solely on the
basis of the rules which govern it. In this paper, we argue that this prin-
ciple has the great potential to bring to a new level artificially intelligent
systems in other application areas as well. Our specific interest lies in
General Trading Agents, which are able to understand the rules of un-
known markets and then to actively participate in them without human
intervention. To this end, we extend the general Game Description Lan-
guage into a language that allows to formally describe arbitrary markets
in such a way that these specifications can be automatically processed
by a computer. We present both syntax and a transition-based semantics
for this Market Specification Language and illustrate its expressive power
by presenting axiomatizations of several well-known auction types.

Key words: general trading agents, market specification language

1 Introduction

A novel and challenging research problem for Artificial Intelligence, General
Game Playing, is concerned with the development of systems that learn to play
previously unknown games solely on the basis of the rules of that game [1].
The Game Description Language (GDL) [2] has been developed to formalize
any finite, information-symmetric n-player game. As a declarative language,
GDL supports specifications that are modular and easy to develop, understand,
and maintain. At the same time, these specifications can be fully automatically
processed, thus allowing to develop systems that are able to play games with
hitherto unknown rules without human intervention.

The idea behind General Game Playing—to build systems that are intelligent
and flexible enough to negotiate an unknown environment solely on the basis
of the rules which govern it—has the great potential to bring to a new level
artificially intelligent systems in other application areas as well. Our specific
interest lies in General Trading Agents. These should be able to understand

mit@cse.unsw.edu.au
dongmo@scm.uws.edu.au

2 Thielscher and Zhang

the rules of unknown markets and then to actively participate in them without
human intervention. As a first step towards the design and implementation of
this new generation of trading agents, in this paper we suggest a modification
and extension of GDL into a Market Specification Language (MSL) that allows
to formally describe arbitrary markets in such a way that these specification can
be automatically processed by a computer.

GDL is designed to describe discrete games of complete and symmetric in-
formation. A suitable description language for markets requires two principal
additions to GDL:

– information asymmetry
– asynchronous actions

MSL accounts for information asymmetry by including the special role of an
(all-knowing) market maker along with a system of message passing. The lat-
ter allows to exchange private information between the market maker and the
participating agents (traders), which results in incomplete, asymmetric informa-
tion. In addition, the actions by the market maker may be underspecified, which
results in imperfect information. In order to account for asynchronous actions
by the market participants, MSL uses explicit (discrete) time.

While extending GDL, MSL inherits the crucial property of being a decidable
subset of logic programming. This implies that General Trading Agents require
just a simple, standard reasoning module to be able to understand and effectively
process a given set of rules. Moreover, due to the close relation between the
two languages, we expect that existing techniques for successful General Game
Playing systems, such as [3, 4, 5, 6], can be readily used to design and implement
General Trading Agents, too.

The rest of the paper is organized as follows. In the next section, we define a
general market model in form of a finite state machine, where state transitions
are triggered by messages coming from traders and actions executed by the
market maker. In Section 3, we define the syntax of MSL as a modification
and extension of GDL. We illustrate the use of the language by giving a fully
formal specification of the well-known English auction type. In Section 4, we
turn to the semantics of MSL and show how any set of rules can be understood
as an axiomatic description of a market model. In Section 5, we give a precise
definition of the execution of a market, and in Section 6, we provide three further
descriptions of typical markets to illustrate the use and expressivity of MSL as
a general market specification language. We conclude in Section 7.

2 Market model

Markets are a central topic in economics and finance. A market is an institution
or mechanism that allows buyers (demanders) and sellers (suppliers) to exchange
commodities such as goods, services, securities, and information. Generally, there
are two distinct roles in every market: the market maker and traders. The mar-
ket maker facilitates trade and enables the exchange of rights (ownership) of

Market Specification Language 3

Fig. 1. FIPA English Auction Interaction Protocol.

commodities at certain prices. Traders are market participants who utilize the
facilities of the market to sell or buy goods and services.

As an example, consider a very basic market in which only one commodity is
traded. There is a set of traders (agents) who have registered in the market, and
the market is manipulated by a market maker m . Each trader can be a buyer,
a seller, or even both. A buyer can send the market maker bids and a seller
can send in asks. A bid may be denoted as b(a, q, p) , representing that buyer
a requests to buy q units of the good at a maximum price of p . Similarly,
s(a, q, p) may represent that trader a wants to sell q units of the commodity
at a price no less than p . Bids and asks are often called offers (or orders).

Suppose that o1 = s(a1, q1, p1) is an ask and o2 = b(a2, q2, p2) is a bid.
We say that (o1, o2) is a match if p1 ≤ p2 , that is, the ask price isn’t higher
than the bid price. In such a case, q = min{q1, q2} units of goods can be sold
at some price p such that p1 ≤ p ≤ p2 . We call an offer o cleared at price p0

if o = b(a, q, p) and p ≥ p0 , or if o = s(a, q, p) and p ≤ p0 .
There is a remarkable diversity in trading mechanisms that have been used

in real-world markets. However, the most common trading mechanism is that of
an auction or variations thereof [7]. The common formalization of the trading
mechanism of an auction consists of an interaction protocol and a set of market
policies. An interaction protocol specifies the sequential communication between
traders and the market maker. As an example, Figure 1 shows the interaction
protocol of the English auction [8]. While these graphical protocols can be viewed
as a formalization of a trading mechanism, they cannot be fully automatically
processed by a computer. Hence, they are unsuited as a specification language
that can be understood by General Trading Agents without human intervention.

Market policies specify the rules that are used by the market maker to make
decisions. These include an accepting policy, matching policy, clearing policy,

4 Thielscher and Zhang

pricing policy, and so on. The accepting policy determines whether an offer is ac-
cepted or not. In many finical markets, market makers provide bid-ask quotations
to traders to guide market price (called quote-driven [9]). The matching policy
specifies how bids and asks are matched. For instance, the four-head match-
ing policy always matches the highest matchable ask with the lowest matchable
bid [10]. The clearing policy determines when matching is being made. An im-
portant distinction of auction types often made is that between continuous and
periodic clearing policies [9]. In a continuous market, matching is made contin-
uously whenever new offers arrive. In a periodic market, offers are accumulated
for simultaneous execution at a single market clearing price.

A market is dynamic in the sense that whenever a new offer comes in or a
transaction is executed, the market situation changes. Motivated by the formal
semantics of GDL as a finite state machine [11], we propose to understand any
market as a state transition system, in which the transitions are triggered by
messages from the participating traders (say, bidding and asking) and actions
by the market maker (say, matching). To this end, a state transition system
describing a market is given by the following constituents.

– s0 —an initial state.
– T —a set of terminal states.
– l(a, s, t) —a relation defining a to be a possible action by the market maker

in state s at time t (the legality relation).
– u(a,m, s, t) —an update function defining the successor state when the market

maker does action a and receives messages m in state s at time t.
– o(a,m, s, t) —the messages (output) sent by the market maker when it does

action a and receives messages m in state s at time t.

For the sake of simplicity, we assume that time is discretized and represented by
the natural numbers. The time at the initial state is set to 0.

State transition systems are sufficiently abstract to be used as a universal
model for any market and the rules that govern it. Take English auction as
an example. In the initial state, the good for sale is unallocated and the bid
pool is empty. The market maker can then broadcast a call-for-proposals, which
includes a so-called reserve price that thus becomes known to all participating
traders. Whenever a new bid is received, the market maker can update the
current state by the new highest bid price, provided the given market-specific
acceptance conditions are met. This continues for a fixed period of time, at the
end of which the market maker can announce the winner. The language defined
in the following section will allow us to formally specify the actions, messages,
and state transitions that characterize this or any other type of auction, and in
Section 3.2 we will give the full specification of English auction as an example.

3 A Market Specification Language

Having defined an abstract market model, we proceed by showing how GDL can
be modified to a suitable language that allows to specify an arbitrary market.

Market Specification Language 5

A comparison of our market model with the game model shows that the Market
Specification Language (MSL) needs to modify and extend GDL in the following
ways.

– There is a special market maker, who acts (possibly nondeterministically)
according to specified rules. In GDL, all roles are treated symmetrically.

– Rather than making moves, traders send private messages to the market
maker.

– Rather than maintaining complete state information, traders receive (private)
messages from the market maker according to specified rules.

– Time and real numbers, along with the standard arithmetic functions and
relations, are pre-defined language elements. Note that time and arithmetic
operations are not standard components in GDL.

3.1 Syntax

Just like GDL, MSL is based on the standard syntax of clausal logic, including
negation.

Definition 1. – A term is either a variable, or a function symbol applied to
terms as arguments (a constant is a function symbol with no argument).

– An atom is a predicate symbol applied to terms as arguments.
– A literal is an atom or its negation.
– A clause is an implication h ⇐ b1 ∧ . . . ∧ bn where head h is an atom and

body b1 ∧ . . . ∧ bn a conjunction of literals (n ≥ 0).

As a tailor-made specification language, MSL uses a few pre-defined predicate
symbols. These are shown in Table 1 together with their informal meaning.

trader(A) A is a trader

init(P) P holds in the initial state
true(P) P holds in the current state
next(P) P holds in the next state

legal(A) market maker can do action A

does(A) market maker does action A

message(A,M) trader A can send message M

receive(A,M) receiving message M from trader A

send(A,M) sending message M to trader A

time(T) T is the current time
terminal the market is closed

Table 1. MSL keywords.

In addition, we take both natural numbers and real numbers as pre-defined
language elements. These are accompanied by the basic arithmetic functions
+,−, ∗, /, mod and relations <,≤,=,≥, > with the standard interpretation.

6 Thielscher and Zhang

Throughout the paper, we adopt the Prolog convention according to which
variables are denoted by uppercase letters and predicate and function symbols
start with a lowercase letter. In the following, we illustrate the use of the key-
words by giving a complete set of MSL rules describing a very simple auction.

3.2 Example: English Auction

English auction is one of the most commonly used market models. Assume that
there is a single item from a single seller. The market maker (auctioneer) accepts
buyers to bid openly against one another, with each subsequent bid higher than
the previous one. The market maker terminates the market either when a fixed
clearing time is reached or when for three units of time no further bid is made.
The following MSL rules specifies the auction mechanism formally.

trader(a 1)⇐
. . .

trader(a m)⇐

init(counter(0))⇐

accept(bid(A,P)) ⇐ receive(A,my bid(P)) ∧ ¬ reject(P)
reject(P) ⇐ P≤ RESERVE PRICE

reject(P) ⇐ true(bid(A,P1)) ∧ P≤ P1

reject(P) ⇐ receive(A,my bid(P1)) ∧ P < P1

reject(P) ⇐ true(counter(3))

legal(clearing(A,P)) ⇐ true(counter(3)) ∧ true(bid(A,P))

legal(call) ⇐ true(counter(C)) ∧ C < 3

next(B) ⇐ accept(B)

next(bid(A,P)) ⇐ true(bid(A,P)) ∧ ¬ outbid
next(counter(0)) ⇐ outbid

next(counter(C+1)) ⇐ true(counter(C)) ∧ does(call) ∧ ¬ outbid
outbid ⇐ accept(B)

message(A, my bid(P)) ⇐ trader(A) ∧ P≥ 0

send(A, bid accepted(P)) ⇐ accept(bid(A,P))

send(A, bid rejected(P)) ⇐ receive(A,my bid(P)) ∧ reject(P)

send(A, call(C)) ⇐ trader(A) ∧ true(counter(C)) ∧ does(call)

send(A, best price(P)) ⇐ trader(A) ∧ true(bid(A1,P))

send(A, winner(A1,P)) ⇐ trader(A) ∧ does(clearing(A1,P))

terminal ⇐ true(counter(4))

terminal ⇐ time(MAX TIME)

Market Specification Language 7

The intuition behind this complete and fully formal specification of English
auction is as follows. A state of this market is just a single bid(A,P) instance
(the currently highest bid, initially none) along with an instance of the special
feature counter(C) (modeling the usual calls “1” → “2” → “3” in an English
auction, initially 0).

The rule for accept(bid(A,P)), in conjunction with the rules for reject(P),
specifies the accepting policy of the market: when a bid from a trader is received
(receive(A,my bid(P)), then the new bid price, P, must be higher than the
existing highest bid price (or, if it is the first bid, it needs to be no less than the
given RESERVE PRICE). Also, P must be higher than any other bid that ar-
rives simultaneously, and the bid comes too late when the counter has reached 3
(it takes one unit of time for a bid to be processed after accepting it).

The clearing policy is specified via predicate legal. The auctioneer makes a
call for new bids whenever the market has not been cleared. Once a bid is not
overbid after three calls, the market maker clears the market (the first legal(A)
clause). Otherwise, the market maker issues the next call according to the second
clause for legal(A).

The next clauses specify the state update, triggered either by a trader mes-
sage, the call action, or the clearing action: an accepted bid becomes the
new highest one, whereas if none gets accepted then the previously highest bid
stays. The counter is set back to 0 whenever a new bid is accepted, otherwise
its value is incremented upon every call action.

The message clause specifies the format and legality of messages that can be
sent to the market maker. The clauses for send detail the outgoing messages.
Finally, the two clauses for terminal describe the conditions (on the current
state and the global time) for the market to get closed.

Altogether, these rules constitute a fully formal, logic-based specification of
the interaction protocol of the market shown in Figure 2. (Note that, for the pur-
pose of illustration, this is a slightly simplified version of the FIPA specification
given in Figure 1).

3.3 Syntactic restrictions

MSL imposes some syntactic restrictions on the use of the pre-defined predicates
from Table 1 in much the same way GDL is restricted to ensure effective deriv-
ability of all information necessary for legal game play. These restrictions are
based on the notion of a dependency graph for a given set of clauses (see, e.g.,
[12]).

Definition 2. The dependency graph for a set G of clauses is a directed, labeled
graph whose nodes are the predicate symbols that occur in G and where there is
a positive edge p +→ q if G contains a clause p(s) ⇐ . . . ∧ q(t) ∧ . . ., and a
negative edge p −→ q if G contains a clause p(s)⇐ . . . ∧ ¬q(t) ∧

Definition 3. A valid MSL specification is a finite set of clauses M that sat-
isfies the following conditions.

8 Thielscher and Zhang

Fig. 2. Simplified interaction protocol of English auction.

– trader only appears in the head of clauses that have an empty body;
– init and message only appear as head of clauses and are not connected, in the

dependency graph for G, to any of the keywords in Table 1 except for trader;
– true and time only appear in the body of clauses;
– does and receive only appear in the body of clauses and are not connected,

in the dependency graph for G, to legal or terminal;
– next and send only appear as head of clauses.

Moreover, in order to ensure effective derivability, M and the corresponding
dependency graph Γ must obey the following restrictions.

1. There are no cycles involving a negative edge in Γ (this is also known as
being stratified [13, 14]);

2. Each variable in a clause occurs in at least one positive atom in the body
(this is also known as being allowed [15]);

3. If p and q occur in a cycle in Γ and G contains a clause

p(s) ⇐ b1(t 1) ∧ . . . ∧ q(v1, . . . , vk) ∧ . . . ∧ bn(t n)

then for every i ∈ {1, . . . , k},
– vi is variable-free, or
– vi is one of s1, . . . , sm (:= s), or
– vi occurs in some t j (1 ≤ j ≤ n) such that bj does not occur in a cycle

with p in Γ .

Stratified logic programs are known to admit a specific standard model ; we
refer to [13] for details and just mention the following properties:

Market Specification Language 9

1. To obtain the standard model, clauses with variables are replaced by their
(possibly infinitely many) ground instances.

2. Clauses are interpreted as reverse implications.
3. The standard model is minimal while interpreting negation as non-derivability

(the “negation-as-failure” principle [16]).

The further syntactic restrictions for MSL guarantee that agents can make ef-
fective use of a market specification by a simple derivation mechanism based on
standard resolution for clausal logic (see again, e.g., [12]).

4 Semantics

We are now in a position to formally define how a valid MSL specification deter-
mines a market model. In the following, derivability means entailment via the
standard model of a stratified set of clauses.

To begin with, the derivable instances of trader(A) define the traders. The
derivable instances of message(A,M) define the possible messages M for trader A
that are understood and processed by the market maker. The five components
of the state transition system (cf. Section 2) are then formally determined as
follows.

1. The initial state s0 is the set of all derivable instances of init(P) along
with timepoint 0.

2. In order to determine whether a state belongs to the set of terminal states T ,
this state (including the current timepoint) has to be encoded first using the
keywords true and time. More precisely, let s = {p1, . . . , pn} be a finite
set of terms (e.g., the derivable instances of init(P) at the beginning) and
t ∈ N, then by struet we denote the facts

true(p1)⇐
. . .
true(pn)⇐
time(t)⇐

(1)

Let these be added to the given MSL specification, then state s at time t
is terminal just in case terminal can be derived.

3. Similarly, the possible legal moves of the market maker in state s at
time t—relation l(a, s, t)—are given by the derivable instances of legal(A)
after adding struet to the given market rules.

4. In order to determine a state update—function u(a,M, s, t) —the action a
by the market maker and the messages M from the traders have to be
encoded first, using the keywords does and receive. More precisely, let
M = {(α1,m1), . . . , (αn,mn)} be a (possibly empty) set of (agent, message)-
pairs and a an action by the market maker, then by adoes ∪Mreceive we
denote the clauses

10 Thielscher and Zhang

receive(α1,m1)⇐
. . .
receive(αn,mn)⇐
does(a)⇐

(2)

The market maker may also perform no action at the time of the state
update, in which case the last clause is omitted. Let these clauses, plus
the clauses (1) for given state s and time t, be added to the given MSL
specification, then the updated state u(a,M, s, t) is given by all derivable
instances of next(P).

5. Similarly, the messages which the market maker sends to the traders when
doing action a and receiving messages M in state s at time t—function
o(a,M, s, t) —are given by the derivable instances of send(A,M) after adding
the clauses struet and adoes ∪Mreceive to the given market rules.

5 Market Execution

The execution of an MSL market subtly differs from the execution of a game
model determined by a GDL specification, for two reasons. First, traders send
messages asynchronously. Given discretized time, this means that at any time-
point a trader may or may not make a move. Second, while the conditions for
the actions of the market maker are specified in the rules, the market maker may
have the choice among several possibilities. This means that the market maker
chooses exactly one among the possible legal actions whenever the triggering
conditions for one or more of its actions are satisfied.

A possible execution of a market is therefore given by an evolving sequence
of states

s0 → s1 → . . .→ sn

(where si denotes the state at time i) and messages

o0, . . . , on−1

(where oi are the messages sent by the market maker at time i) such that

– s0 is the initial state;
– sn ∈ T is the first terminal state in the sequence;
– let M be the set of all (agent,message)-pairs received by the market maker

at time i, then
– si+1 = si and oi is empty if M is empty and no a satisfies l(a, si, i),
– si+1 = u(a,M, si, i) and oi = o(a,M, si, i) if M is not empty and/or an

action a can be selected (by the market maker) that satisfies l(a, si, i).

It is worth pointing out that, while all traders start with the same, complete
information about the initial state, the messages received and sent by the market
maker are private. This will usually result in asymmetric, incomplete information
about later states. Moreover, if the market maker has more than one legal action
in a state, it makes an arbitrary selection (from the trader’s point of view), which
results in imperfect knowledge.

Market Specification Language 11

6 Specifications of Typical Markets

In this section, we present three further examples of market specifications given
in MSL in order to illustrate its general expressivity: one for Sealed Bid Auction,
one for Call Markets and the other for Continuous Double Auction. All of them
are commonly used in financial markets for exchanging securities or futures.

6.1 Sealed-Bid Auction

Sealed-bid auction is one of the simplest market mechanisms used in the real
world. It differs from English auction in that traders’ bids are concealed from
each other. The following MSL code specifies a first-price sealed-bid auction
where the highest bidder gets the award and pays the amount he bid.

trader(a 1)⇐
. . .

trader(a m)⇐

accept(bid(A,P)) ⇐ receive(A,my bid(P)) ∧ time(1)

legal(clearing(A,P)) ⇐ true(bid(A,P)) ∧ bestbid(P) ∧ time(2)

next(bid(A,P)) ⇐ accept(bid(A,P))

next(bid(A,P)) ⇐ true(bid(A,P))

bestbid(P) ⇐ true(bid(A,P)) ∧ ¬ outbid(P)
outbid(P) ⇐ true(bid(A,P1)) ∧ P1 > P

message(A, my bid(P)) ⇐ trader(A) ∧ P≥ 0

send(A, call for bid) ⇐ trader(A) ∧ time(0)

send(A, bid received(P)) ⇐ receive(A,my bid(P))

send(A, winner(A1,P)) ⇐ trader(A) ∧ does(clearing(A1,P))

terminal ⇐ time(3)

At time 0, the market maker sends a call-for-bid to all traders. Only the
bids that are received at time 1 are accepted. Once a bid is accepted, a private
acknowledgement is sent to the bidder who submitted it. The auction is cleared
at time 2. The trader who sent in the highest bid wins the auction. Note that if
there is more than one highest bid, the market maker choose one of them. The
auction terminates at time 3.

We remark that although the market specification is known to all market
participants, the individual bids are private information, which can only be seen
by the respective sender and the market maker. This is fundamentally different
from General Game Playing, where each player’s move is announced to every

12 Thielscher and Zhang

player. In the above example, the call-for-bid and winner announcement are sent
to every trader but the acknowledgment of a bid is sent only to the trader who
submitted it.

6.2 Call market

A call market, also known as clearing house (CH), is a market institution in
which each transaction takes place at predetermined intervals and where all
bids and asks are aggregated and transacted at once. The market maker de-
termines the market clearing price based on the bids and asks received during
this period [17]. A call market is actually a type of periodic double auction. The
following rules specify a simplified call market with a single type of commodities.

trader(a 1)⇐
. . .
trader(a m)⇐

accept(ask(A,Q,P)) ⇐ receive(A,my ask(Q,P)) ∧ trader(A)

accept(bid(A,Q,P)) ⇐ receive(A,my bid(Q,P)) ∧ trader(A)

legal(clearing(P)) ⇐ time(T) ∧
T mod TIME INTERVAL = TIME INTERVAL-1 ∧ P>0

cleared(A,Q,P) ⇐ does(clearing(P1)) ∧ true(bid(A,Q,P)) ∧ P ≥ P1

cleared(A,Q,P) ⇐ does(clearing(P1)) ∧ true(ask(A,Q,P)) ∧ P ≤ P1

next(B) ⇐ accept(B)

next(ask(A,Q,P)) ⇐ true(ask(A,Q,P)) ∧ ¬ cleared(A,Q,P)
next(bid(A,Q,P)) ⇐ true(bid(A,Q,P)) ∧ ¬ cleared(A,Q,P)

message(A, my ask(Q,P)) ⇐ trader(A) ∧ Q>0 ∧ P ≥ 0

message(A, my bid(Q,P)) ⇐ trader(A) ∧ Q > 0 ∧ P ≥ 0

send(A, quote(P)) ⇐ trader(A) ∧ does(clearing(P))

send(A, cleared(Q,P)) ⇐ cleared(A,Q,P)

terminal ⇐ time(MAX TIME+1)

The specification shows that the market maker accepts any incoming bids and
asks (accepting policy) and clears the market periodically using a single price.
Note that the clearing price is public information broadcast to all agents at all
times. However, the information of how the market maker decides the market
price (pricing policy) is not given, which can be seen from the fact that the
actual clearing price, viz. the argument in clearing(P), is not fully specified.
From the perspective of the participating agents, this action is nondeterministic.
(We remark that the specification has been simplified in that we did not consider
limited orders: no restrictions have been put on quantity or price of an offer.)

Market Specification Language 13

6.3 Continuous double auction

Continuous double auction (CDA) is the most commonly used market model in
financial markets like the New York Stock Exchange. Different from a call mar-
ket, trading in a continuous auction market is carried out continuously through
the market maker who collects bids and asks from traders and matches existing
orders whenever possible.

trader(a 1)⇐
. . .
trader(a m)⇐

accepts(ask(A,Q,P)) ⇐ receive(A,my ask(Q,P)) ∧ P<ASK QUOTE

accepts(bid(Id,A,Q,P)) ⇐ receive(A,my bid(Q,P)) ∧ P>BID QUOTE

legal(match(A1,Q1,P1,A2,Q2,P2,Q,P)) ⇐ true(ask(A1,Q1,P1)) ∧
true(bid(A2,Q2,P2)) ∧
P1 ≤ P2 ∧ minimum(Q1,Q2,Q) ∧
P1 ≤ P ∧ P ≤ P2

minimum(Q1,Q2,Q1) ⇐ Q1 ≤ Q2

minimum(Q1,Q2,Q2) ⇐ Q1 > Q2

cleared(ask(A1,Q1,P1)) ⇐ does(match(A1,Q1,P1,A2,Q2,P2,Q,P))

cleared(bid(A2,Q2,P2)) ⇐ does(match(A1,Q1,P1,A2,Q2,P2,Q,P))

next(Offer) ⇐ accepts(Offer)

next(Offer) ⇐ true(Offer) ∧ ¬ cleared(Offer)

next(ask(A1,Q1-Q,P1)) ⇐ true(ask(A1,Q1,P1)) ∧
does(match(A1,Q1,P1,A2,Q2,P2,Q,P)) ∧
Q1 > Q

next(bid(A2,Q2-Q,P2)) ⇐ true(bid(A2,Q,P2)) ∧
does(match(A1,Q1,P1,A2,Q2,P2,Q,P)) ∧
Q2 > Q

message(A, my ask(Q,P)) ⇐ trader(A) ∧ Q>0 ∧ P>0

message(A, my bid(Q,P)) ⇐ trader(A) ∧ Q>0 ∧ P>0

send(A1, clearing(Q1,P1,Q,P)) ⇐ does(match(A1,Q1,P1,A2,Q2,P2,Q,P))

send(A2, clearing(Q2,P2,Q,P)) ⇐ does(match(A1,Q1,P1,A2,Q2,P2,Q,P))

terminal ⇐ time(MAX TIME+1)

According to this specification, the market maker sets an ASK QUOTE and
a BID QUOTE as the threshold for accepting bids and asks (offers). Similar
to the pricing policy in a call market, the market maker can either keep the
quotes as private information or release them by providing the algorithms for
calculating the quotes.

14 Thielscher and Zhang

Once an offer (bid or ask) is accepted, it appears in the next state (offer
pool). The market maker continuously searches for possible matches among the
existing offers. For each match, a fully satisfied offer is removed from the state
while partially satisfied offers remain in the pool with the residual quantity. As
in the preceding specification for call markets, the actual pricing policy is left
underspecified.

7 Summary

We have introduced a general market specification language (MSL) by modify-
ing and extending the Game Description Language that is used in the context of
General Game Playing to formalize the rules of arbitrary games in a machine-
processable fashion. We have specified syntax and semantics for MSL, and we
have given formalizations of three standard auction types to illustrate the use-
fulness of this language as a foundation for General Trading Agents.

There is a variety of potential applications of MSL. Firstly, the rules of an
e-market can be specified in MSL and made publicly available. With a simple
logical reasoning module, any autonomous trading agent can understand the
specification and enter the market for business. Secondly, a market can change
its rules dynamically as long as the new market specification is sent to all partic-
ipating traders. Thirdly, the language can be used for designing market games
such as the Trading Agent Competition (TAC) [18, 19]. MSL provides the ba-
sis for turning this competition into a much more challenging one where the
detailed problem specification is no longer revealed in advance, requiring the
participating agents—or teams of agents—to compete in a previously unknown
setting.

There have been a number of attempts at building electronic markets under
general market specifications [20, 21, 22]. However, none of them uses a logical
language to describe market rules even though logical approach has been widely
applied to the specification of extensive games or bargaining games [23, 24, 25].

This is an on-goning work with many aspects that have not been fully in-
vestigated. Firstly, the semantics of the interaction between the market maker
and the traders cannot be fully specified in MSL. As a general issue, there are a
variety of formal languages that have been proposed for specifying agent com-
munication protocols [26, 27, 28]. Although these languages are not especially
designed for market specifications, the communication primitives that have been
intensively discussed in the context of agent communication languages, such as
tell, inform, ask, and etc., can be introduced to specify interaction in a mar-
ket. Secondly, all examples we presented in this paper are concerned with the
exchange of a single good. However, we strongly believe that the language is
sufficiently expressive to describe more complicated markets, such as combina-
torial auctions [29, 30, 31]. Thirdly, the design and implementation of market
policies for different business demand, especially e-business, has been intensively
investigated in recent years [22, 18]. However, the design of market rules using a
purely logical and machine-processable language has not been studied in general.

Market Specification Language 15

Acknowledgments. This research was partially supported by the Australian Re-
search Council through Discovery Project DP0988750 and by Deutsche For-
schungsgemeinschaft under Contract TH 541/16-1.

References

1. Genesereth, M., Love, N., Pell, B.: General game playing: Overview of the AAAI
competition. AI Magazine 26(2) (2005) 62–72

2. Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General Game
Playing: Game Description Language Specification. Technical Report LG–2006–
01, Stanford Logic Group, Computer Science Department, Stanford University, 353
Serra Mall, Stanford, CA 94305 (2006) Available at: games.stanford.edu.

3. Kuhlmann, G., Dresner, K., Stone, P.: Automatic heuristic construction in a com-
plete general game player. In: Proceedings of the AAAI National Conference on
Artificial Intelligence, Boston, AAAI Press (July 2006) 1457–1462

4. Clune, J.: Heuristic evaluation functions for general game playing. In: Proceedings
of the AAAI National Conference on Artificial Intelligence, Vancouver, AAAI Press
(July 2007) 1134–1139

5. Schiffel, S., Thielscher, M.: Fluxplayer: A successful general game player. In:
Proceedings of the AAAI National Conference on Artificial Intelligence, Vancouver,
AAAI Press (July 2007) 1191–1196

6. Björnsson, Y., Finnsson, H.: CADIAPLAYER: A simulation-based general game
player. IEEE Transactions on Computational Intelligence and AI in Games 1(1)
(2009) 4–15

7. Friedman, D.: The double auction market institution: A survey. The Double
Auction Market: Institutions, Theories, and Evidence (1993) 3–25

8. FIPA00031: Fipa english auction interaction protocol specification. Technical
report, Foundation for Intelligent Physical Agents (2001)

9. Madhavan, A.: Trading mechanisms in securities markets. The Journal of Finance
XLVII(2) (1992) 607–641

10. Wurman, P.R., Walsh, W.E., Wellman, M.P.: Flexible double auctions for elec-
tronic commerce: theory and implementation. Decision Support Systems 24(1)
(November 1998) 17–27

11. Schiffel, S., Thielscher, M.: A multiagent semantics for the game description lan-
guage. In Filipe, J., Fred, A., Sharp, B., eds.: Proceedings of the International
Conference on Agents and Artificial Intelligence (ICAART), Porto, Springer (2009)
44–55

12. Lloyd, J.: Foundations of Logic Programming. second, extended edn. Series Sym-
bolic Computation. Springer (1987)

13. Apt, K., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge.
In Minker, J., ed.: Foundations of Deductive Databases and Logic Programming.
Morgan Kaufmann (1987) 89–148

14. van Gelder, A.: The alternating fixpoint of logic programs with negation. In: Pro-
ceedings of the 8th Symposium on Principles of Database Systems, ACM SIGACT-
SIGMOD (1989) 1–10

15. Lloyd, J., Topor, R.: A basis for deductive database systems II. Journal of Logic
Programming 3(1) (1986) 55–67

16. Clark, K.: Negation as failure. In Gallaire, H., Minker, J., eds.: Logic and Data
Bases. Plenum Press (1978) 293–322

16 Thielscher and Zhang

17. Amihud, Y., Mendelson, H.: Trading mechanisms and stock returns: An empirical
investigation. Journal of Finance 42(3) (July 1987) 533–53

18. Niu, J., Cai, K., Gerding, E., McBurney, P., Parsons, S.: Characterizing effective
auction mechanisms: Insights from the 2007 TAC Mechanism Design Competition.
In Padgham, Parkes, M ü ller, Parsons, eds.: Proceedings of the 7th International
Conference on Autonomous Agents and Multiagent Systems. (2008) 1079–1086

19. Wellman, M.P., Greenwald, A., Stone, P.: Autonomous Bidding Agents: Strategies
and Lessons from the Trading Agent Competition. MIT Press (2007)

20. Esteva, M., de la Cruz, D., Sierra, C.: Islander: en electronic institutions editor. In
Cristiano Castelfranchi, W.L.J., ed.: Proceedings of the First International Joint
Conference on Auton omous Agents and Multiagent Systems. Volume 3., ACM
PRESS (2002) 1045–1052

21. Fasli, M., Michalakopoulos, M.: e-game: A platform for developing auction-based
market simulations. Decision Support Systems 44(2) (2008) 469–481

22. Wurman, P.R., Wellman, M.P., Walsh, W.E.: A parameterization of the auction
design space. Games and Economic Behavior 35(1/2) (2001) 304–338

23. Koller, D., Pfeffer, A.: Representations and solutions for game-theoretic problems.
Artificial Intelligence 94 (1997) 167–215

24. Kraus, S., Sycara, K., Evenchik, A.: Reaching agreements through argumentation:
a logical model and implementation. Artificial Intelligence 104 (1998) 1–69

25. Zhang, D.: Reasoning about bargaining situations. In: Proceedings of the 22nd
AAAI Conference on Artificial Intelligence (AAAI-07). (2007) 154–159

26. Endriss, U., Maudet, N., Sadri, F., Toni, F.: Protocol conformance for logic-based
agents. In: Proceedings of the 18th International Joint Conference on Artificial
Intelligence (IJCAI-2003), Morgan Kaufmann Publishers (2003) 679–684

27. Labrou, Y., Finin, T.: Semantics and conversations for an agent communication
language. In: Readings in agents. Morgan Kaufmann Publishers Inc. (1998) 235–
242

28. Mcginnis, J., Miller, T.: Amongst first-class protocols. In: Engineering Societies
in the Agents World VIII, Springer (2008) 208–223

29. Boutilier, C., Hoos, H.H.: Bidding languages for combinatorial auctions. In:
Proceedings of the 17th international joint conference on Artificial intelligence
(IJCAI’01), San Francisco, CA, USA, Morgan Kaufmann Publishers Inc. (2001)
1211–1217

30. Cerquides, J., Endriss, U., Giovannucci, A., Rodŕıguez-Aguilar, J.A.: Bidding lan-
guages and winner determination for mixed multi-unit combinatorial auctions. In:
Proceedings of the 20th international joint conference on Artifical intelligence (IJ-
CAI’07), San Francisco, CA, USA, Morgan Kaufmann Publishers Inc. (2007) 1221–
1226

31. Uckelman, J., Endriss, U.: Winner determination in combinatorial auctions with
logic-based bidding languages. In: Proceedings of the 7th international joint confer-
ence on Autonomous agents and multiagent systems (AAMAS ’08). (2008) 1617–
1620

	From General Game Descriptions to a Market Specification Language for General Trading Agents
	Michael Thielscher, Dongmo Zhang
	Introduction
	Market model
	A Market Specification Language
	Syntax
	Example: English Auction
	Syntactic restrictions

	Semantics
	Market Execution
	Specifications of Typical Markets
	Sealed-Bid Auction
	Call market
	Continuous double auction

	Summary
	References

