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Abstract
Non-photorealistic rendering has been an active area of research for decades whereas few of them concentrate on rendering
chromatic penciling style. In this paper, we present a framework named as PencilArt for the chromatic penciling style generation
from wild photographs. The structural outline and textured map for composing the chromatic pencil drawing are generated,
respectively. First, we take advantage of deep neural network to produce the structural outline with proper intensity variation
and conciseness. Next, for the textured map, we follow the painting process of artists to adjust the tone of input images to match
the luminance histogram and pencil textures of real drawings. Eventually, we evaluate PencilArt via a series of comparisons to
previous work, showing that our results better capture the main features of real chromatic pencil drawings and have an improved
visual appearance.

Keywords: non-photorealistic rendering, image/video editing, image processing
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1. Introduction

Chromatic pencil drawing is an essential artistic style for the painting
beginner with charming and aesthetic appearance (see Figures 1
and 2). However, it is challenging to make the computer produce the
style generation automatically, especially in faithfully representing
the rich colours and the various pencil textures involved in the
art. As illustrated in the bottom row of Figure 2, in the creative
process of a real painting, the chromatic pencil work is usually
generated step by step: outline sketching, underpainting and detail
compensation. Computer-aided chromatic pencil drawing rendering
can be processed in a similar way.

For the chromatic penciling from natural photos, we observe
that three factors are crucial: outline generation, tone mapping
and texture rendering. The outlines describe the contours of the
salient objects in the fashion of hand drawing, expressed as various
thickness, grey-scale and curvature in different locations; Unlike oil
paintings or watercolour arts, visual perception elements, including
high brightness, low saturation and contrast awareness, are usually
required to express the chromatic penciling style; moreover, stroke
directions (hatching, dotting, crossing, etc.) and various material
properties such as paper texture should also be considered.

There are some penciling solutions proposed to achieve these key
factors in different ways. Yamamotoet al. [YMI04a] and Matsui
et al.[MJN05] selected the colours of pencils to present the tone for
each region, and created some stroke directions with the local infor-
mation for texture rendering. Yanget al. [YKM12] controlled the
stroke direction by determining pencil stroke flow from the objects
in the input images. Luet al.[LXJ12] proposed a monochrome pen-
ciling framework with a structural outline generation scheme and
extended it to achieve the chromatic result. However, these methods
have not adequately considered the three key factors all sidedly. For
example, outline generation was ignored in [YMI04a, MJN05] and
[YKM12]; unique tone features of chromatic pencil drawings were
not considered in [LXJ12], which probably leads to inharmonious
results or obvious artefacts.

In this paper, we present a new chromatic penciling style gen-
eration framework named as PencilArt. Our framework aims to
integrate a series of image operations to generate a chromatic pen-
ciling style which adequately considers outline generation, tone
mapping and texture rendering. The framework mimics the proce-
dure of real chromatic penciling creation. It has three main modules
as illustrated in Figure 3: (1) a convolutional neural network (CNN)
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Figure 1: Chromatic penciling style generation. From left are input image and three typical chromatic penciling results: dotted texture pattern
and monochrome outline style, dotted texture pattern and inherent-hue outline style and horizontal hatching texture pattern and inherent-hue
outline style.

Detail Compensa�onUnderpain�ngOutline Sketching

The Real Crea�ve Process

Figure 2: Top row are a typical real chromatic pencil work and its
structural outline drawing. The close-ups show the unique chromatic
penciling textures. Bottom row is to illustrate the procedure for
chromatic pencil drawing creation in a real painting scene.

to produce the proper pencil-like structural outline which provides
sufficient generalization ability for various types of input images;
(2) a penciled stylization model which mimics the colouring process
of artists and can produce a soft and light appearance similar to real
drawings and (3) a fusion module which fuses the outputs of the
former two modules to the final art.

We have evaluated PencilArt via comprehensive experiments. We
also conducted a serious study to compare PencilArt with existing
state-of-the-art work. Our experiments and user study show that our
results can capture the main features of the real chromatic pencil
drawings and have better visual appearances.

Our main contributions are summarized as follows:

� A new framework for the chromatic penciling style generation
achieving better results than present state-of-the-art methods.

� A CNN-based structural outline generation model producing
pencil-like outline drawings with great adaptability.

� A global penciled stylization model generating material texture
appearance with high brightness and low saturation close to real
chromatic drawings.

The rest of this paper is organized as follows. Section 2 re-
views previous work related to penciling style rendering. Section
3 details the method of CNN-based structural outline generation.
Section 4 describes the penciled stylization model. Section 5
presents our results and makes a comprehensive comparison with
several state-of-the-art methods to demonstrate the effectiveness of
PencilArt. Section 6 introduces two other potential applications.
Section 7 concludes the work.

2. Related Work

Pencil drawing rendering is generally associated with Non-
Photorealistic Rendering. In the past three decades, a great deal of
research has been proposed to transform images/videos into artistic-
style rendered content. A full review of this topic is beyond the
scope of this paper. A recent survey can be referred to [KCWI12].
The following are several representative work. Durandet al. pre-
sented an interactive system which can simulate a class of styles
including pencil drawing in [DOM*01]. Semmoet al. [SRT*16]
presented a GPU-based framework that parametrizes image filters
at three levels of control. In addition to traditional methods, image
analogies [HJO*01] can also produce pencil drawing results from
input images. This method requires extra training image pairs. More
recently, Gatyset al.[GEB16] introduced an artificial system which
applies deep neural networks to create the artistic images.

Most of existing work mainly aims at general art styles and has
no specific module tailored to chromatic pencil drawing. Therefore,
it is not easy for these methods to obtain decent penciling style
rendering results. Next, we briefly review the prior work related to
image-based pencil drawing rendering from three aspects.

2.1. Line drawing

Apart from traditional edge detection algorithms, researchers have
proposed extensive line drawing methods in recent years. [SKLL07]
imitated the human line drawing process with two modules: line
extraction and line rendering. This technique can generate various
kinds of line drawings from 2D images through the control over
detail, focus and style. Bhatet al.[BZCC10] presented an optimiza-
tion framework which unifies multiple ideas in the gradient-domain
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Figure 3: The framework of PencilArt. Convolutional neural network is employed to produce the structural outline; penciled stylization model
including three sequential processes, underpainting generation, detail enhancement and pattern-based pencil texture rendering, is utilized to
satisfy the key features of chromatic pencil drawings in terms of tone mapping and texture rendering; outline and textured map fuse together
and generate the final art.

literature through a single optimization formulation. They also pro-
posed a novel metric for measuring local gradient saliency that gives
rise to long coherent edges. Another class should be mentioned is
Difference-of-Gaussians (DoG) filter-based method, which is gen-
erally considered to be initiated by Marr and Hildrethet al.[MH80].
Among this line of work, Winnemolleret al.[WLOG06] generalized
DoG for general colour images and videos. Kanget al.[KLC07] pre-
sented a flow-based anisotropic DoG (F-DoG) filtering technique.
Winnemolleret al.[WKO12] extended DoG to achieve results span-
ning a variety of styles and a range of subtle artistic effects. Gen-
erally, the above work is not quite applicable to shape hand-drawn-
style pencil outlines. More recent deep learning-based methods such
as [SWW*15, BST15, XT15, ZXSY16] and [YPC*16], focus on
contour detection, not pencil-like outline generation in this paper.

There are also a couple of work focused on pencil outline sketch-
ing. Zhou and Li [ZL05] proposed a computationally efficient algo-
rithm for gradient estimation to automatically generate pencil-like
structural outlines from personal photos. The convolution frame-
work in [LXJ12] generates line strokes with the essential charac-
teristics of pencil sketch. Both of these two work is not strong at
producing satisfactory outline details.

2.2. Pencil texture rendering

Physical models that attempt to mimic the physical properties of ma-
terials such as graphite and paper were widely used in early attempts
to model the texture of real pencil drawing. Sousa and Buchanan
[SB99] presented a blender and eraser model to enhance the ren-
dering results, producing realistic looking graphite pencil tones and
textures. Takagiet al. [TNF99] proposed a volume graphics model
for chromatic pencil drawing, describing the microstructure of pa-
per, pigment distribution on paper and pigment redistribution in a

volumetric fashion. But physical models require a lot of computa-
tion, and it is difficult to control it to produce satisfying results.

Beyond the physical models, Line Integral Convolution (LIC)
plays an important role in most previous work about pencil texture
generation. Maoet al. [MNI01] first used LIC to produce the pen-
cil shading effect based on the local structure orientation. Li and
Huang [LH03] generated a pencil drawing using the feature geo-
metric attributes obtained by analysis of image moment and texture
of each region. Yamamotoet al. [YMI04b] proposed an extension
to LIC to solve the inconsistent segmentation problem, by dividing
a source image into layers of successive intensity ranges, generating
a stroke image for each layer and adding them together to obtain
the final pencil drawing. Chenet al. [CZG*08] alternatively con-
sidered superposition of edges, unsharp masked image and texture
for region-based LIC. Yanget al. [YKM12] developed a swing bi-
lateral LIC (SBL) filter to express the styled pencil drawings. But
LIC is unstable for highly textured or noisy regions, as the right
convolution direction is hard to decide.

2.3. Pencil drawing colourization

A few studies consider the colour processing of chromatic pen-
cil drawings. The method [YMI04a] automatically selects the best
colour set for individual regions in a source image and then builds
the target colour through optical blending. [MJN05] first determines
which colours of pencils to use and how deep to push the pencils,
then draws several types of strokes such as strokes for outlines,
basecoats and shading. This method allows drawn strokes to over-
lap each other. [YKM12] achieves the colour customization of the
pencil stroke flow by executing a bilateral convolution filter to a
colour noise. Kimet al. [KWY14] proposed a coloured pencil filter
with small amount of computations to create images in coloured
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pencil style. In contrast, our penciled stylization model is much
more efficient and has better visual quality.

3. Pencil-Like Outline Generation

The artists often draw outlines at the first stage of penciling. An
example of a penciling outline is provided in the upper left corner
of Figure 2. With reference to [ZL05], the essential properties of a
chromatic penciling outline include: (1) Only the most character-
istic lines are drawn. (2) The grey-scale and thickness of outlines
are used to depict various types of transitional boundaries and are
roughly proportional to the local gradient. (3) The strokes are long,
continuous and significant. (4) Textured regions are depicted by a
collection of short lines.

Unfortunately, existingN -order edge detectors (e.g. Canny, So-
bel) are not capable to satisfy these requirements. Results produced
by these edge detectors are usually noise sensitive (i.e. it is hard
to obtain desired clean outlines steadily) and have broken lines.
Some improved DoG algorithms and machine learning–based con-
tour detectors can generate clean outlines, but they tend to neglect
the proper grey-scale and thickness variations. It results the loss of
the penciling appearance in practices.

As aforementioned, the convolution framework proposed by Lu
et al. [LXJ12] can produce structural outlines with a good imitation
of human drawing, but this framework is a parameter-dependent
solution where specific parameters are required for individual input
images. Moreover, its parameters are non-local (not adaptable to the
data). For example, [LXJ12] fits fixed-length line segments, whose
length is specialized by a parameter, to all contour lines in the
input image’s gradient map, which could easily lead to overlength
intersections at lines with large curvature (see the number ‘40’ in
the first picture of Figure 4b). Although shorter line segments may
alleviate this phenomenon, it may make the outlines with small
curvature lose pencil-like appearances (see the outer contours in the
middle picture of Figure 4b).

In this paper, we propose a CNN-based outline generation model
to produce pencil-like structural outline drawings. It has three major
characteristics. First, our model is end-to-end (i.e. the model directly
outputs structural outlines from the input image, without pre- or
post-processing). Secondly, the result generated by our model is
not parameter-dependent (i.e. our model is completely adaptable to
input images). It learns the optimal parameters implicitly from the
data, thus does not require the user to manually set up parameters.
Lastly, our model has trained multiple convolution kernels in various
sizes and can produce outlines with more pencil-like details for
various image contexts.

3.1. Vectorized convolutional network

The pencil-like outline generation is transformed as an image-to-
image problem. We adopt an efficient vectorized convolutional neu-
ral network (VCNN) model [RX15] to generate structural outlines.
The convolution operation of VCNN can be formulated as follows:

[yi ]i = σ ([φ(x)]i ∗ [Wi ]i + [bi ]i), (1)

(a)

(b)

(d)

(c)

Figure 4: (a) Input images. (b) The two images on the left are the
results of [LXJ12] with long and short line segments, respectively,
and the right is ours. (c) and (d) The left are the results of [LXJ12],
while the right are ours. The middle are the comparisons of close-
ups. This figure shows that our deep learning model can generate
more stable and satisfactory results.

wherex is the input of convolution layer andyi is the ith output.
σ is a non-linear transfer function, which is ReLU in our model.
Wi is theith convolution kernel,bi is theith bias vector,φ refers
to the vectorization operator and the operator [.]i assembles vectors
with index i to form a matrix. This operation is a simplification of
extracting matrix from original data or feature maps. The generative
process of the structural outlineE from an input image is defined
as

E = F (I ), (2)

whereI is the input colour image,F is the mapping fromI to E

that needs to be learned by the neural network. Three convolutional
layers and a mapping layer are established in our implementation
(see Figure 3). In the first layer of the network, 512 16× 16 convolu-
tional kernels are applied to detect the outline features. In the second
layer, there are totally 512 1× 1 convolutional kernels, which are
expected to select appropriate lines so that they can be combined to
generate desired results. In the third layer, we use 512 kernels with
size of 8× 8 to generate suitable grey-scale variation, which plays
an important role in making the result close to real pencil drawings.

3.2. Training network

The most reliable training data for our vectorized network should be
the real structural outlines drawn by artists. But it is hard to collect a
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Figure 5: The flowchart of the training data generation. For each input image in the data set, we manually adjusted the half-window size of
the bilateral filter in F-DoG [KLC07] and the length of line segment in [LXJ12], while the rest of algorithm parameters remain unchanged.

large size of such data in practice. The structural outlines generated
by [LXJ12] are closest to the real case. Therefore, we would like to
leverage [LXJ12] to generate the training set.

The forward difference operation is one part of the outline gener-
ation framework of [LXJ12] to produce the gradient map for input
image. However, this operation is sensitive to noises and the chang-
ing of light in images, and is likely to produce messy contour lines
on areas with rich textures. We therefore replace the forward differ-
ence operation of [LXJ12] with F-DoG [KLC07], which could not
only reduce noise but also enhance the gradient response.

Since the accuracy of the training data is very important to the
neural network’s result, for each image in the data set, we manually
adjust the two parameters which have the biggest impact on the
outline appearance, until a visually satisfactory outline is achieved.
These two parameters include the half-window size of the bilateral
filter in F-DoG and the length of line segment in [LXJ12]. The
flowchart of our training data generation is provided in Figure 5. We
selected 800 satisfactory structural outlines of various images and
got 16 000 patches in 227× 227 size by randomly cut to compose
our training set. Though [LXJ12] is unable to achieve satisfactory
outline appearance in training images’ every location, with a large
number of training data, the CNN model will learn appropriate
treatments for different local regions, resulting in a network with a
global-level better versatility for all images.

For the network training, the loss functionL is defined in the
following:

L(E, G) = min
∑

‖E − G‖2, (3)

whereE is the result of the network. The loss is theL2 norm between
the network resultE and the expected resultG, which can help
improve the overall appearance of the output structural outline. We
apply the backpropagation algorithm to propagate the loss through
the network and the stochastic gradient descent algorithm to update
the weights, and finally obtain the trained model.

Here, we show the effectiveness of our CNN model through sev-
eral typical examples. In Figure 4(a), [LXJ12] is hard to obtain a
result which has no curve intersection at contours with large cur-
vature and simultaneously keep the hand-drawn sense at contours
with small curvature. Our CNN model has no problem in this case
(see the third picture in Figure 4b). In Figures 4(c) and (d), we
used the default algorithm parameters for [LXJ12]. It is easy to
find that [LXJ12] is relatively more sensitive to shadow and weaker
to preserve tiny structures compared to our CNN model. In Fig-
ure 4(c), because of shadow, many unnecessary wrinkles on the
face are produced by [LXJ12]; in Figure 4(d), the snowflakes with
tiny edges lose the circular shapes. These limitations may result
in detail damage. In contrast, our method is robust in these cases
(see the results of our CNN model in Figure 4). Another significant
benefit is that the outlines generated by our CNN model have ap-
propriate grey-scale and thickness variations. Moreover, although
there are some regions become discontinuous in some training ex-
amples (like the third row of Figure 5), the self-learning ability of
CNN makes up for this problem. Readers can see more evidence in
Section 5.

4. Penciled Stylization Model

A chromatic pencil drawing has a special tonal appearance that is
distinguished from other artistic styles. By observing a large number
of chromatic pencil drawings, we found their main colour character-
istic is presented through brightness and the saturation. To further
investigate this characteristic of the chromatic pencil drawings, we
have done some experiments on several real chromatic penciling
samples with various scenes. Figure 6 illustrates three samples and
their brightness distributions in the first and second columns. Ob-
viously, these examples have similar brightness distributions and
tend to aggregate at high intensities. The saturation distributions
of these examples have the similar circumstance, i.e. pixels of all
these examples aggregate at low saturations as shown in the third
column of Figure 6. We therefore conclude that the chromatic pencil
drawings have that common characteristic of high brightness and
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Figure 6: Three real chromatic pencil works are shown in (a),
with the corresponding brightness and saturation distributions in
(b) and (c), which share the common features of high brightness
and low saturation. In (b) and (c), horizontal axes denote bright-
ness and saturation, respectively, and vertical axes denote pixel
number.

low saturation. This observation is the base of the proposed penciled
stylization model.

We build our penciled stylization model according to the real
colouring process, with modules: underpainting generation, detail
enhancement and texture rendering. The first step is to set a homo-
geneous overall tone with high brightness. The second step makes
dark compensation for underpainting, which uses the contrast infor-
mation between the light and shade of the input image. The third
step is to render the texture of chromatic pencil drawing and reduce
the colour saturation. Next, we give the details of the steps of our
penciled stylization model. All pixel values are normalized to the
range [0, 1].

4.1. Underpainting generation

Artists usually create an underpainting as the basic tone in the first
step of the colouring process. Our penciled stylization model has
also simulated this step. Specifically, we get a base mapB from the
input imageI by enhancing the global brightness while emphasizing
the edges.

As it is a brightness-related operation, we first convert the input
imageI from RGB to YUV colour space. Next, we apply the sketch
filter [KWY14] to the IY channel as following to obtain theMY

channel of an excessive bright mapM:

MY (x, y) = IY (x, y)/R(x, y), (4)

whereR denotes the response map through using the maximum
filter with kernel size of 5× 5 toIY , and (x, y) is the pixel location.
In the response mapR, the edges will be sharply modified, but the
non-edge areas are less affected.

After that, the triplet (MY , U, V ) is reconverted from YUV to
RGB colour space. Since the values ofIY andR are similar in
the areas without edges, the intensities of pixels at the correspond-
ing locations ofM will aggregate within a narrow range of high
brightness. Meanwhile, sinceIY andR are dissimilar on edges, the
intensities of pixels at the corresponding locations ofM will become
darker, as shown in Figure 7(b). After taking the average ofI and
M for each RGB channel, the resulting base mapB will have a soft
and pastel colour style as an underpainting image (see Figure 7c).

4.2. Detail enhancement using gamma expansion

Representing shading is a critical issue in the penciling procedure.
The artists usually achieve the effect by enhancing the dark cues in
the drawing. In general, shading information can be extracted from
the input image. However, the underpainting generation step which
enhances the global brightness will weaken the shading information.
Therefore, it is necessary to compensate the dark details of base map
B to obtain the tone mapD.

(a) (c)(b) (d)

Figure 7: Tone adjustment of our penciled stylization model. (a) Input image, (b) excessive bright mapM, (c) base mapB and (d) tone map
D. The corresponding brightness curves are shown in the bottom right corner of each image (horizontal axes denote brightness, and vertical
axes denote pixel number). The brightness curve of base mapB produced by taking the average of input image and excessive bright mapM

has a high global brightness. After dark detail enhancement, the brightness curve of tone mapD is expanded towards darker intensity, i.e.
there are more dark pixels in tone mapD.
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Instead of providing an accurate physical simulation to superim-
pose the dark colour to the base mapB [TNF99], we apply gamma
expansion to the intensity ofB with

D = Bγ . (5)

This operation will expand the pixel distribution curve towards
darker intensities, and hence enhance the contrast in bright areas.
This is equivalent to adding shading on the underpainting. In our ex-
periments, we find that a visual satisfactory result is generated with

γ = 1.4. If there are some noises in the result, an edge-preserving
filtering can be used for post-processing. We illustrate this detail
enhancement in Figure 7(d).

4.3. Pattern-based texture rendering

The material properties of the coloured pencil and the drawing pa-
per offer a unique texture appearance for chromatic pencil drawing.
Some previous methods [MNI01, YKM12, YMI04a, MJN05] sim-
ulate this appearance by generating the stroke directions of textures.

Original textured map T Optimized textured map 

Figure 8: Texture rendering. (Left) Three pencil texture patterns. (Right) Four textured maps. On the right side, we show the original textured
map (upper left), the optimized textured map (upper right) generated by Equations(6) and (7) using the top texture pattern on the left side
and the optimized textured maps (bottom left and bottom right, respectively) using the middle and bottom patterns on the left side.

(a) (b) (c) (d)

Figure 9: An example for illustrating final result generation by fusing the outline and the textured map. (a) Input image. (b) Textured map.
(c) Structural outline. (d) Resulting image.

c© 2018 The Authors
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(a) (b) (c)

Figure 10: Comparison with [LXJ12]. (a) Input images. (b) The
results of [LXJ12]. (c) Our results. See texts in Section 5.1 for
detailed explanation.

[MJN05]

[YMI04a]

[YKM12]

Figure 11: Comparisons with [MJN05, YMI04a] and [YKM12].

[LXJ12] produces tonal textures without obvious stroke direction
by applying global exponential operation of selected pencil texture
patterns. In this step, our goal is not only rendering the pencil texture
but also reducing the colour saturation of tone mapD. We leverage
an efficient texture rendering algorithm to generate textured mapT

with sound texture appearance and globally low saturation.

Due to the noise and complex structures in input images, the tex-
ture generation model based on local gradient is not always reliable.
We therefore render out a textured mapT by merging the tone map
D and a texture templateP . P is set to be in the size equal to

(b)(a)

(d)(c)

Figure 12: Comparisons with [GEB16]. (a) Input image. (b) The
target style image of a real chromatic pencil drawing used for
[GEB16]. (c) The result of [GEB16]. (d) Our result.

the input image. It is synthesized from an appropriate monochrome
pencil texture pattern of real pencil drawing. Some texture pattern
examples, including two hatching patterns on the drawing paper
with fine and coarse textures and a crossing pattern, are shown in
the left side of Figure 8.

To retain the special appearance and ‘white-noise’ look of the
original texture patterns as well as reduce the saturation of the tone
mapD, We blend every pixel in the tone mapD and the white colour
(also known as the value of 1) for each RGB channel to obtain the
textured mapT . The proportion of blending is decided by the pixel
value at corresponding location of texture templateP . It can be
formulated as

T (x, y) = D(x, y)(1 − P (x, y)) + P (x, y). (6)

In Equation (6), the intensity ofP (x, y) controls the amount
of white colour blended withD(x, y). The lighter the intensity of
P (x, y) is, the lower saturated the colour ofT (x, y) is and vice
versa. It not only allows the textured mapT to have the similar
special pattern as the texture templateP , but also reduces the colour
saturation of the whole tone map.

Directly applying Equation (6) will produce an output with the
lack of colour contrast compared to the original input imageI . It
can be seen in the upper left image on the right side of Figure 8.
The reason is that the operation above only uses the original texture
templateP to control the amount of mixed white colour. It does not
consider the colour contrast of the input imageI . Hence, to take the
contrast information of the input image into account, we modify the
intensity ofP as follows:

P̂ (x, y) = P (x, y)β(IY (x,y)), (7)

c© 2018 The Authors
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Figure 13: More structural outlines and chromatic pencil drawing rendering results on outdoor natural landscape and architecture. The
example in row 3 was collected from the website of [LXJ12], the other examples were collected from Google image.

whereIY refers to the Y channel ofI in the YUV colour space,
andβ is a mapping function, takingIY as the parameter. For dark
areas ofI , we would like to blend less white colour (i.e. the pixel
value of the corresponding location in̂P should be much smaller
than the originalP ), which could be obtained by a high value ofβ.
The functionβ is defined as

β(i) = log(1/i) + 1. (8)

If the parameteri is equal to zero, we add a biasδ = 0.001 toi

to avoid the zero division.β works as a monotonically decreasing
function to map the value ofi in the range of [0, 1] into the range
of [1, log(1/δ) + 1].

Replacing the texture templateP with P̂ in Equation (6), we
obtain an optimized textured map̂T , as shown in the upper right
image on the right side of Figure 8. This modification of the texture
templateP helps retain original colour inD for darker areas, thus
increasing the colour contrast. In addition, our texture rendering
approach allows users to select favourite texture patterns. The two
images in the bottom lines of Figure 8 are results produced using
other two kinds of texture patterns.

4.4. Outline-texture fusion

At last, we combine the structural outlineE and textured map̂T to
obtain the final outputJ . We intend to assign colour toE as well as
preserve its original intensity variation. For this purpose, we convert
the textured map̂T into HSL colour space, and modify H, S and L
channels to embedE in T̂ . Let theT̂H , T̂S andT̂L represent the H,
S and L components of̂T , respectively. In the real painting, it is a
common way to choose the inherent hues of objects as the hues of
their contours. We thus setJH equal toT̂H ,

JH (x, y) = T̂H (x, y). (9)

Furthermore, to reveal and emphasize the structural outline from
T̂ , for each pixel, we increase the saturation ofT̂ by 1− E(x, y) in
S channel,

JS(x, y) = T̂S(x, y) + 1 − E(x, y), (10)

and decrease the colour brightness ofT̂ by multiplying E(x, y) in
L channel,

JL(x, y) = T̂L(x, y)E(x, y). (11)
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Figure 14: More structural outlines and chromatic pencil drawing rendering results on indoor scene, people and animal. The examples in
rows 1 and 2 were collected from the website of [LXJ12], the other examples were collected from Google image.

The above two operations only modify the colour of pixels be-
longing to the structural outlinesE, while the colours of the rest
pixels remain unchanged. A fusion result is shown in Figure 9.

5. Experiments and Analysis

In this section, we compare our framework with the state-of-the-
art methods. Followed by a user study, where we provide a quan-

titative analysis for PencilArt and other two baseline methods. In
addition, we have demonstrated the efficiency of PencilArt by a time
analysis.

5.1. Results and comparisons

Five most representative work has been compared with PencilArt.
Since [LXJ12] is the most related work, the major comparison
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Standard
Devia�on

Overall Visual Effect Outline Colour Texture

Ours LXJ12 GEB16 Ours LXJ12 GEB16 Ours LXJ12 GEB16 Ours LXJ12 GEB16

0.59 0.49 0.63 0.65 0.52 0.64 0.62 0.49 0.66 0.74 0.47 0.73

User sta�s�cs: 72% male, 28% female. 72% twen�es, 21% thir�es, 7% for�es.

Figure 15: Statistical analysis of user investigation. The horizontal
axis of the box plot represents the four evaluation aspects. The
vertical axis represents the statistical score given by participants.
Standard deviation of statistical results and participants’ attribute
information have also been provided.

has been made between [LXJ12] and PencilArt in this section.
To achieve a fair comparison, the experimental results of [LXJ12]
were downloaded from its website. Some visual comparison re-
sults can be seen in Figure 10. The three earlier work has not
published the code, therefore we used the best results from their
papers for the comparison. The selected examples can be seen in
Figure 11. The result of [GEB16] was obtained via its author’s
code, which is shown in Figure 12. We used different texture pat-
terns for each image. Figure 10 used dotted pattern. The first row
of Figure 11 used hatching pattern, and the others used crossing
pattern.

In Figure 10, we can see that our results have a style differ-
ent from [LXJ12] in terms of structural outline and tone. Rela-
tively, structural outlines in our results have clearer structure in
highly textured regions (see the hair and face in row 1, the messy
leaves and grass in rows 2 and 3 and the buildings with com-
plex contours in row 4) and richer colour. This may be benefit-
ted by the vectorized convolutional network and outline-texture
fusion employed in PencilArt. Moreover, our results have the
colour style perceptually closer to the real chromatic pencil draw-
ing than [LXJ12]. It is because our penciled stylization model is
tailored for coloured pencil, rather than applying the original tone
adjustment mechanism used for monochrome pencil drawing in
[LXJ12].

In Figure 11, the representative example from [MJN05] and
[YMI04a] are, respectively, shown in the first and second rows.
Both of these two work is segmentation-based method. From the re-
sults, we can see it is hard to produce a desired segmentation when
the input image has rich details (see the image in the first row).
Although segmentation-based method could highlight the stroke
directions within each region, it easily results in the loss of struc-
tural information. In addition, both the two work generates tone
through the colour information of each region (e.g. [MJN05] uses
the average colour, and [YMI04a] blends stroke layers with two
colours). Unsmooth tonal change [MJN05] and unpleasant colour

appearance [YMI04a] can be observed in the examples due to poor
region segmentation and inappropriate colour blending. The result
generated by [YKM12] in the third row has smooth directional tex-
tures. However, its tone has a significant gap with real chromatic
pencil drawing. It is because [YKM12] only makes a simple com-
bination of the original photo and the textures, ignoring, to some
degree, the colour style difference between the natural photo and
chromatic pencil drawing.

In addition, we have also compared our results with some general
style transfer methods. In our experiment, we compared PencilArt
with the state-of-the-art style transfer method [GEB16]. We show
the comparison in Figure 12. We can find the result of [GEB16]
has chaotic textures and weaker structural outline. Its style is closer
to oil painting rather than chromatic pencil drawing, which may
be partially caused by the fact that [GEB16] does not make any
optimization specialized for chromatic penciling style.

By contrast, our results have sharper contours and more percep-
tually acceptable tones. Our CNN-based outline generator and pen-
ciled stylization model make partial contribution. Moreover, using
texture patterns globally also helps PencilArt produce more natural
texture. All these features enable PencilArt to output results with
clear structure outlines and stable tones and textures, thus make the
results more like real chromatic pencil drawings.

Figures 13 and 14 demonstrate structural outlines and chro-
matic pencil drawings produced by PencilArt on several represen-
tative examples depicting various scenes. In Figure 13, the im-
ages of outdoor natural landscape and architecture contain richer
textures and shorter line structures but have relatively simpler
tones; especially, the image in the third line contains both sim-
ple and complex textures. In Figure 14, the images of indoor scene
(the first and the bottom lines) have regular object structures and
large regions with single colours; people in the second line have
a variety of facial expressions and complex patterns of clothes;
the animal in the third image has fine hair with blurred back-
ground. The results on these various examples indicate our CNN
model is powerful to generate desirable structural outlines and our
framework is effective to produce high-quality chromatic penciling
style.

5.2. User study

In this section, we present the quantized comparison results. We
evaluated PencilArt by comparing it with two baseline methods:
[LXJ12] and [GEB16]. The target style for [GEB16] is provided by
the same style image in Figure 12. PencilArt was implemented with
Matlab, and the results of [LXJ12] and [GEB16] were produced via
the source codes from the authors of these two papers ([LXJ12] and
[GEB16] used Matlab and Lua, respectively).

Total 40 test examples were randomly chosen. Some were col-
lected from the experimental data of the comparison methods, and
the others were collected from Google. These images have various
styles such as figure painting, landscape painting and still life. Fifty
people participated in the user study, contributing a total of 47 valid
user ratings. A small percentage of participates major in art; the
other participates major in computer science. More user attribute
information is listed at the bottom of the Figure 15.
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(a) (d)(c)(b)

Figure 16: Five examples for user study. (a) Input images. (b), (c) and (d) are the results of PencilArt, [LXJ12] and [GEB16], respectively.

Four aspects have been evaluated in the user study. (1) Overall
visual effect. It is an overall visual quality scale. (2) Outline
quality. Unlike those brush-based artworks such as oil painting and
watercolour painting, chromatic pencil drawing prefers clear outline
structure and strong hand-drawn feeling. Results having clearer
outlines and stronger hand-drawn feelings were rated with higher
scores. (3) Colour quality. The colour of chromatic pencil drawing is
characterized with high brightness and low saturation. Better results
in terms of colour quality should have higher brightness and lower

saturation. (4) Texture quality. Better results should have stronger
pencil textures reflecting the characteristics of coloured pencils
and drawing paper such as stroke overlapping and ‘white noise’
effects.

In our study, rating satisfaction increases by a scale from 1 to
5 for each aspect. To avoid bias, the results of the three methods
were randomly arranged for each test example. In Figure 15,
the statistical analysis of the user investigation data is shown
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through boxplot. The standard deviations for each method in
the four aspects are also provided. The quantized result of the
study demonstrates that PencilArt has achieved significantly better
effects in every aspect against the other two methods. Although
the standard deviation of PencilArt is slightly higher than [LXJ12],
most of the ratings assigned to PencilArt are higher than those
of [LXJ12]. Figure 16 shows some examples used in the user
study.

5.3. Efficiency analysis

We tested the total running time of PencilArt and [LXJ12]. Both two
methods were implemented by Matlab. We ran the two methods
on a PC with Intel i5 CPU (2.20 GHz, dual-core), and tested six
representative examples. The results are shown in the line chart of
Figure 17. We can see that our method takes less time in all the
examples. Besides, as the size of the test image increases, the time
of PencilArt grows much slower than that of [LXJ12].

Table 1 lists the running time for each step of [LXJ12] and ours.
Among the three steps, outline generation takes the most computa-
tional cycles in PencilArt. The time is close to that taken by [LXJ12].
It indicates that CNN used for outline generation achieves better re-
sults and does not sacrifice much efficiency. For tone adjustment
and texture rendering steps, [LXJ12] uses stroke multiplication to
simulate repeatedly sketching at the same place in hand drawings.
It needs a large amount of computation to optimize each stroke
point. As the size of the image increases, the amount of calcula-
tion will greatly increase. In contrast, due to our light-weight algo-
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Figure 17: The time analysis on input images in different sizes. The
green line represents the time performance of [LXJ12], and the blue
line represents ours.

Table 1: Comparison of the running time for each step (unit: seconds).

Outline Tone Texture

Resolution [LXJ12] Ours [LXJ12] Ours [LXJ12] Ours

640× 480 0.23 1.41 1.37 0.64 1.80 0.94
800× 800 0.97 2.03 2.61 0.83 4.03 1.01

1080× 820 1.41 2.43 3.98 1.12 7.46 1.07
1280× 960 2.11 2.92 5.32 1.57 10.0 1.22
1440× 900 2.25 3.05 5.67 1.71 12.8 1.26
1600× 1200 3.82 3.89 8.44 2.56 29.4 1.58

rithm design, our method spends much less time than [LXJ12] in
tone adjustment and texture rendering steps, especially on large-size
images.

6. Extended Applications

There are several potential applications could be explored based
on PencilArt. Apart from user-defined texture pattern, colour cus-
tomization and outline stylization may also enhance the user’s cre-
ativity on chromatic penciling.

6.1. Dominant colour customization

The proposed method can be combined with existing techniques to
produce more interesting applications. For instance, recent colour
transfer methods such as [CFL*15] and [WZL*17] can be combined
with our method to facilitate the art creation with more diverse visual
senses. We have made such an attempt. As illustrated in Figure 18,
we generated a chromatic pencil drawing shown in Figure 18(b) by
applying PencilArt on the input image in Figure 18(a). Assisted by
a dominant colour palette, we changed some dominant colours and
produced a new chromatic pencil drawing shown in Figure 18(c).
Note that existing colour transfer methods like [WZL*17] can usu-
ally complete the colour transfer process within several seconds.
The combination of these two techniques can much help the artists
in inspiring their imaginations.

6.2. Chromatic outline stylization

PencilArt also allows chromatic outline stylization where artists may
use the outlines in uniform hue to express some specific feelings.
For instance, they may use brown outlines to express warmness, use
pink outlines to express romance. This can be achieved by replacing
Equation (9) with the following term:

JH (x, y) =
{
h, (x, y) ∈ E,

T̂H (x, y), otherwise,
(12)

whereh is the colour hue specified by the user, andJH , T̂H are the H
component in HSL colour space forJ , T̂ . This term will change the

(a) (b) (c)

Figure 18: Dominant colour customization via palette editing. (a)
Input image and its dominant colours. (b) Chromatic penciling out-
put of PencilArt; the bottom palette shows its dominant colours. (c)
New art generated by changing the middle two colours of the palette
of (b) to two blue colours shown in the palette at the bottom of (c).
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BrownBlack

BluePink

Figure 19: Specifying the colour style of structural outlines. From
top to bottom and from left to right: results with black, brown, pink
and blue outlines.

(a) (b)

Figure 20: Limitations. Input and output examples are, respec-
tively, shown in (a) and (b). Some inappropriate colour is assigned
to some structural outlines of the foreground object (the flower)
because edges are detected from the background (the blue curtain).

hue of outlines to the specified colour. Note that if theh is set to 0 (it
means that the user uses black outline), the correspondingJS(x, y)
in Equation (10) should be set to 0. Four examples in Figure 19 are
shown to illustrate this feature.

7. Conclusions

We have presented a new non-photorealistic rendering framework
named as PencilArt to generate chromatic pencil drawings from
natural photos. PencilArt can well render the structural outlines,
tones and textures much closer to real drawings painted by coloured
pencils than other existing methods. In addition to basic chromatic
penciling features, PencilArt can also offer the user several extra
customization features. Our implementation uses CNN to generate
structural outlines, and produces tones and textures by approximat-
ing the major features of real chromatic pencil drawings. We have
compared our results with several state-of-the-art work. Compre-
hensive experiments demonstrate the effectiveness of our method.

Limitations and future work. PencilArt currently has some mi-
nor limitations. For instance, as the outline’s hue is directly extracted
from the input image, it sometimes happens that some background
colours are assigned to the structural outlines of the foreground ob-
jects. We illustrate this case in Figure 20 where the pink contour of
the flower is contaminated by the colour of the curtain. In our future
work, we would like to take advantage of semantic information to
improve the outline fusion result. Another limitation is the training
data for outline generation. We have not used real outline drawings
created by artists in the training process. We believe that our result
quality can be improved if real artist-drawn data can be used as the
training data.
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