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Abstract We propose a mesh saliency detection approach
using absorbing Markov chain. Unlike most of the exist-
ing methods based on some center-surround operator, our
method employs feature variance to obtain insignificant
regions and considers both background and foreground cues.
Firstly,wepartition an inputmesh into a set of segments using
Ncuts algorithm and then each segment is over segmented
into patches based on Zernike coefficients. Afterwards, some
background patches are selected by computing feature vari-
ance within the segments. Secondly, the absorbed time of
each node is calculated via absorbing Markov chain with
the background patches as absorbing nodes, which gives
a preliminary saliency measure. Thirdly, a refined saliency
result is generated in a similar way but with foreground
nodes extracted from the preliminary saliencymap as absorb-
ing nodes, which inhibits the background and efficiently
enhances salient foreground regions. Finally, a Laplacian-
based smoothing procedure is utilized to spread the patch
saliency to each vertex. Experimental results demonstrate
that our scheme performs competitively against the state-of-
the-art approaches.
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1 Introduction

With the rapid development of digital scanners andmodeling
softwares, 3D mesh models are abundant in Internet. It is
worth considering that whether all the information in a 3D
shape is important for further mesh processing. It is known
that human beings tend to identify important regionswhen an
object comes into their eyes, and the recognition of important
regions is what 3D mesh saliency concentrates on. Besides,
3D mesh saliency has received considerable attentions from
graphics researchers due to its great value in graphics and
geometric computing, such as rendering [1],mesh smoothing
[2,3], mesh simplification [4,5], viewpoint selection [6,7],
shape matching [8,9] and so forth. Visual saliency has also
been applied in 3D printing [10], which greatly reduces the
printing time.

Recently, a set of new methods have been proposed
about mesh saliency computation. Most of them are pro-
posed to capture interesting regions according to the some
local contrast operators [4,11], and some multi-scale oper-
ators [2,8,12]. Lee et al. [4] advocate 3D mesh saliency by
means of center-surrounding contrast on Gaussian-weighted
mean curvatures. However, local changes of the curvature
may greatly influence the result. Wu et al. [2] propose a
novel approach to estimate mesh saliency, which combines
of both the local contrast and global rarity considerations.
They define the sum of feature distances between every two
vertices as global rarity, which may result in blurring of
saliency of some distinctive regions through the direct sum-
mation of descriptors’ distances. Shilane and Funkhouser [8]
obtain distinct regions using a shape-based search approach
in a training database. The shape saliency is changed with
the training database inevitably. Leifman et al. [12] consider
regions close to focus points to be more informative. But
the selection of the focus points is sensitive to the choice of
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different parameters. Tao et al. [11] estimate the saliency of
regions according to the relevance to background seeds. They
may generate incorrect saliency map when some unsalient
patches are identified as salient seeds using a local contrast
mechanism.

In this paper, a more faithful and robust mesh saliency
detection method is proposed based upon absorbing Markov
chain. It is known that human attention is firstly attracted by
the most representative salient elements and then the visual
attention will be transferred to other regions [11,13,14]. In
our model, four stages are adopted to imitate the process.
Taking a mesh as input, we first over-segment it into patches
based upon Ncuts andWu et al. [2]. Then, feature variance is
introduced to capture the background seedswhich are defined
as the patches belonging to the segment with minimum fea-
ture variance. We utilize the expected time to be absorbed on
a graph model which is constructed in a descriptor space to
measure the saliency value of each node.We further present a
procedure to enhance salient foreground regions and simulta-
neously inhibit the background regions via foreground cues.
Here, the foreground seeds represent the nodes with higher
saliency value. Finally, a Laplacian-based smoothing strat-
egy is adopted to spread the patch saliency to vertex saliency.
We summarize the contributions of this paper as follows:

• Absorbing Markov chain is applied to describe the trans-
formation of visual attention in mesh saliency detection.

• Feature variance is introduced to extract unsaliency seeds,
which is preferred over the local contrast mechanism.

• Our model takes the diversity of foreground nodes into
consideration, which efficiently highlights the salient
region and suppresses the background region.

2 Related work

Visual saliency is a hot research topic in computer graphics,
which is used to identify perceptually important information
correlate to human vision systems. Recently, many effective
saliency detectionmodels have been developed,whichmakes
the research improve greatly.

Early works on saliency of a 3D shape concentrate on
calculating saliency in its 2D projection. Guy and Medioni
[15] compute a saliencymapbased upon edges in a 2D image,
and extend it to 3D meshes. Yee et al. [1] employ the method
of [13] to calculate a saliency measure based on projecting a
3Ddynamic scene to coarsely rendered 2Dmodel.Mantiuk et
al. [16] compress a 3D scene animation with a 2D saliency
algorithm. Frintrop et al. [17] present a saliency result for
fast detecting objects in 3D data.

Besides, some graphics researchers determine saliency
based on 3D structure directly. Shilane and Funkhouser [8]
compute the distinctive regions of an object by perform-

ing a shape-based search. Feixas et al. [6] developed an
approach for computing mesh saliency based on viewpoint
using mutual information between polygons. Castellani et
al. [18] take a scheme for locating and matching interesting
points in terms of multi-view of a mesh. Leifman et al. [12]
detect the interest regions based on the distance to the foci of
attention and apply it to viewpoint selection. Song et al. [19]
present a method to detect points of interest on 3D shapes
from the point view of spectral.

Moreover, many saliency detection algorithms of 3D
shapes are evolved from image saliency. Inspired by image
saliency work [13], Lee et al. [4] define mesh saliency of
an object in a multi-scale manner. Cheng et al. [20] per-
form a global contrast-based detection model via spatially
weighted distances of region features. Similar to global con-
trast method in [20], Wu et al. [2] measure mesh saliency
based on local contrast and global rarity. However, it is
difficult to obtain faithful results by tuning the parame-
ters. Enlightened by the spectral residual analysis taken in
Hou and Zhang [21], Song et al. [22] introduce the log-
Laplacian spectrum to analyse the attributes of a mesh. They
transform the spectral residual from the frequency domain to
the spatial domain at multi-scale to localise the salient areas.
Tao et al. [11] extend the idea of Yang et al. [23] to mesh
saliency detection. They cast it into a graph-based manifold
ranking problem and each ranked label characterizes the dif-
ference with background.

Besides themethods documented above, randomwalk has
been employed to detect saliency in images [24–27]. Jiang et
al. [24] present a method to identify the significant regions
according to the random walk time of each element to the
boundary of image. Illuminated by [24], we attempt to per-
form saliency detection process as a random walk issue on
3D geometry. However, considering the technical essence of
mesh saliency detection is different from image detection,
some hurdles should be tackled during the procedure, such
as how to find regions in a 3D surface corresponding to the
image boundary, how to connect the elements to capture the
underlying geometry and how to improve the saliency result.

3 Absorbing Markov chain

3.1 Mesh saliency and absorbing Markov chain

In this paper, we formulate mesh saliency detection via
absorbing Markov chain on a graph model. After overseg-
menting a mesh into some big segments and further into a
set of smaller patches, the mesh is represented by a graph
whose nodes are these patches and every two nodes close in
feature space of the patches are connected by an edge. We
consider the absorbing Markov chain which includes two
kinds of nodes (i.e., absorbing nodes and transient nodes) to
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measuremesh saliency. Patches in the segmentswith themin-
imum feature variance are selected as unsalient seed patches.
Once these seed patches are given, some virtual nodes, which
share the same features with the seed patches, are introduced
as absorbing nodes. The nodes represent the seed patches
and other patches are all transient nodes. We compute the
expected time to absorption (i.e., the absorbed time) for each
transient node. The absorbed time from each transient node
to the absorbing nodes measures the node’s global similarity
with all absorbing nodes. In other words, the absorbed time
measures the global similarity with all unsalient patches of
the patch. For the patches having similar appearance with
the unsalient seed patches, the random walk starting in their
corresponding nodes can easily reach the absorbing nodes
and thus has shorter absorbed time, while patches having
great contrast to the seed patches will have longer absorbed
time. So salient patches can be consistently separated from
the unsalient patches via the absorbed time. Based on the
above observation, we utilize absorbing Markov chain to
detect mesh saliency.

3.2 Principles of absorbing Markov chain

In this section, some of the basic knowledge on Markov
chains is described as follows: Given a set of states S =
{s1, . . . , sl , sl+1, . . . , sm}, the chain can successively walk
from one state to another. Translation probability denoted by
pi j is the probability ofmoving from state si to state s j , which
is irrelevant to the state before si . The chain can be com-
pletely described by them∗m transitionmatrixP. An ergodic
Markov chain is one that can start from any state to any state,
which is not necessarily in one step. A state si of a Markov
chain is named absorbing state when pii = 1. A Markov
chain is absorbing on condition that it has at least one absorb-
ing state, and the other state is called transient state. For each
one of the transient states, it is likely to be absorbed by one
absorbing state, which is not necessarily in a single step.

Given an absorbing chain consisted of m absorbing states
and n transient states, renumber the states such that all the
transient states are ranked to front. Then, the canonical form
of transition matrix P is expressed as follows:

P =
(
Q R
0 I

)
, (1)

where Q ∈ [0, 1]n∗n is the transition matrix, the element of
which is the probability of two transient states,R ∈ [0, 1]n∗m
denotes the probabilities from any transient state to any
absorbing state, 0 is the m ∗ n zero matrix and I is the m ∗m
identity matrix.

Given the canonical form of transition matrix P to an
absorbing chain, we can extractQ and obtain the fundamen-
tal matrix:

N = (I − Q)−1. (2)

The element ni j of N is the expected number of times that
the chain spends from the transient state si to the transient
state s j , and the sum

∑
j ni j gives the expected number of

times until the state si is absorbed. Let c denote n dimensional
column vector in which all of the entries are 1. Then, the time
of absorption of each transient state is given by

y = N ∗ c. (3)

4 Approach

4.1 Algorithm overview

We design four main steps to generate mesh saliency regions
of 3Dgeometricmodels, as shown inFig. 1. First,we segment
the inputmesh into segments based uponNcuts and each seg-
ment is partitioned into primitive patches based on Zernike
coefficients (Sect. 4.2). Then, the feature variance of per seg-
ment is calculated using all patches within it (Sect. 4.3). We
exploit all the patches whose segment has the minimum data
variance as background cues in our model. With a graph
constructed in the feature space (Sect. 4.4), the saliency map
is estimated via the expected absorbed time in an absorbing
Markov chain (Sect. 4.5).We describe the manner of refining
the saliency map via the foreground cues in detail (Sect. 4.6).
Finally, a smooth vertex-based saliency map is achieved by

Fig. 1 The functional pipeline of the proposed saliency detection model. a Original mesh. b Segmentation by Ncuts. cOver-segmentation. d Some
background nodes (red). e Saliency map by the background cues. f Saliency map by the foreground cues
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Algorithm 1: Mesh saliency detection based on absorb-
ing Markov chain

Input: A mesh and required parameters.
Steps 1: Segment the mesh into segments based on Ncuts
segmentation and then oversegment each segment into patches.
Steps 2: Choose some patches based on the feature variance of
segments as seed patches, and duplicate these nodes as absorbing
nodes.
Steps 3: Construct a graph G with all patches as transient nodes
plus (virtual) absorbing nodes.
Steps 4: Compute the transition matrix Q and then compute the
fundamental matrix N, thereby obtain the saliency map Sb.
Steps 5: Bi-segment Sb to form salient foreground nodes and
compute the saliency map S f .
Steps 6: Spread the patch saliency S f to each vertex by
Laplacian-based smoothing process.
Output: A saliency map.

a Laplace procedure among the patches. The pseudo-code of
our method is shown in Algorithm 1.

4.2 Over-segmentation and feature descriptor

Similar to the image segmentation approach in [28,29],
we perform over-segmentation for each mesh considering
between segmentation quality and computational cost. We
employ the normalized cuts (Ncuts) [30] to generate a set
of segments for each mesh. The number of segments is 80
roughly in our numerical experiments, influenced by the
complexity of the shape. Then, the method of Wu et al. [2]
is employed to partition per segment into primitive patches.

Inspired by Wu et al. [2] and Tao et al. [11], we adopt the
descriptor of Zernike coefficients to compute mesh saliency.
Maximo et al. [31] introduce a robust surface descriptor
which is insensitive to triangle quality. The Zernike-basis
expansion of the heightmap of the surface surrounding a ver-
tex is used as its descriptor, which turns out to be rotated
invariantly. It describes the local shape around the vertex. To
compute the heightmap, a square sub-region of the tangent
plane with side length r is considered. The descriptor can
depict a wider range of surface shape with a bigger radius r .
As shown in Tao et al. [11], we use r = 3.0l in our imple-
mentation, where l = 0.5% of the longest diagonal of the
mesh’s bounding box. For each patch, its descriptor is defined
as the mean of descriptors of the vertices in this patch. We
compare Zernike-based patch descriptor and patch descriptor
based on curvature histogram in Fig. 2. Taking the top row as
an example, the hand, knee and facial regions of Armadillo
are considered significant usingZernike-based patch descrip-
tor, which is coherent with human visual system. However,
the saliency map using the patch descriptor based on curva-
ture histogram is not. Moreover, the saliency maps using the
Zernike-based patch descriptor are more close to the pseudo-

Fig. 2 Mesh saliency via absorbing Markov chain with patch descrip-
tor based on curvature histogram (the left column), Zernike-based patch
descriptor (the middle column) and the pseudo-ground truth (the right
column)

ground truth than that using the patch descriptor based on
curvature histogram.

4.3 Background nodes estimation

To generate stable background nodes for the absorbing
Markov chain, we estimate the feature variance of each seg-
ment p using all the features of the patches within it:

Sv(p) = 1

k

k∑
i=1

d2(z pi , z), (4)

where k is the number of patches within the segment p, z pi
is the Zernike descriptor of patch pi , z denotes the mean
Zernike descriptor of all patches in it and d(., .) is the Euclid-
ean distance between the feature descriptors. We choose all
the patches belonging to the segment with minimum feature
variance as the seed patches. Thus, it avoids the seed patches
scatter in a mesh, which enhances robustness of background
cues. Seed nodes generated by the method of Tao et al. [11]
are mainly located on the legs (39 red nodes in the leg and 15
red nodes in the body for the model), therefore, generating
many (virtual) absorbing nodes corresponding to these red
nodes in the leg. Thus, the absorbed time from the nodes on
the leg is less than that from nodes on the body (see Fig. 3).
And the body is detected as significant region, which is not
coherent with human perception. However, the saliency map
using our seed nodes achieves more faithful result.

4.4 Graph representation

As stated in [11], mesh saliency is different from image
saliency. Image saliency approach is designed to sepa-
rate the foreground object from background regions, while
mesh saliency is to obtain perceptually important points and
regions of shapes. Thus, the graph G(V, E) is constructed
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Fig. 3 Saliency generated by Markov random walk using our seed
nodes (the upper row) is more robust than that generated using seed
nodes in [11] (the bottom row). The left column shows the input model
with the seed patches (red). The other two columns show the final
saliency result using the corresponding seed nodes in left column as
background cues

Fig. 4 Visualization of two typical rows of the transition matrix Q.
Current nodes, colored in red, and the transition probability from them
to their neighbors are illustrated in the left and right columns respectively

with patches V as nodes and edges E depicting the connec-
tivity between patches in the descriptor space, which reflect
the shape structure information. Each node is connected to
the nodes within the radius s in the feature space, where s
is two-thirds of the maximal feature distance. The weight of
the edges encodes the affine relation. The higher value rep-
resents stronger connect relation between two nodes. In this
work, the weight wi j is defined as:

wi j = e−||zi−z j ||/σ 2
i, j ∈ V, (5)

where zi and z j denote the patch descriptor corresponding to
two adjacent nodes i and j , and σ is a constantwhich controls
the strength of the weight. Thus, the affinity matrix W =
(wi j )n∗n corresponding to the graph G(V, E) is obtained
naturally.

Fig. 5 Mesh saliency refined with the foreground nodes. From left to
right: saliency map via absorbing Markov chain with background cues,
saliency map with the foreground cues, the pseudo-ground truth [32]

Fig. 6 Comparisons of curvature map (left) and saliency map (right)

In the graph G(V, E), we construct the (virtual) absorb-
ing nodes by duplicating the seed patches, and all nodes in
V are considered as the transient nodes. Then, a new graph
G(V , E) is built. Here, V denotes both the (virtual) absorb-
ing nodes and all nodes in V . E represents all edges in E and
relationship between the (virtual) absorbing nodes and the
transient nodes. The affinity matrixA = (ai j )n∗m depicts the
weights between the transient nodes and the (virtual) absorb-
ing nodes, the element of which is defined as:

ai j =

⎧⎪⎨
⎪⎩

wi j1 j1 ∈ N (i)

1 j1 = i

0 otherwise,

(6)

Table 1 Run times for computing mesh saliency

Model Verts
(K)

Descriptor
computation
(s)

Over
segmentation
(s)

Nodes
selection
(s)

Saliency
detection
(s)

Saliency
refinement
(s)

Hand 7 12.488 5.23 0.38 0.034 0.040

Bird 2 10.326 1.59 0.08 0.004 0.003

Vase 15 25.19 20.63 1.203 0.151 0.160

Gargoyle 25 50.834 50.55 3.06 0.62 0.66

Human 15 34.115 15.71 1.38 0.17 0.17
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Fig. 7 Experiments of mesh saliency. Our salient results are listed on the top part and the corresponding pseudo-ground truth Chen et al. [32] is
shown on the bottom part
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where N (i) denotes the neighborhood of transient node i in
the feature space, and j1 denotes the seed patch correspond-
ing to the (virtual) absorbing node j . Then, the canonical
form of transition matrix P of the graph model G(V , E) is

P =
(
Q R
0 I

)
, (7)

where P is a row-normalized matrix, Q = D−1W, R =
D−1A, 0 is the m ∗ n zero matrix, I is the m ∗ m identity
matrix, and D = diag{dii }n∗n , the element of which is dii =∑n

j=1 wi j + ∑m
j=1 ai j . A visualization of Q is illustrated in

Fig. 4. Therefore, the fundamental matrix N is calculated by
Eq. 2.

4.5 Saliency detection via background cues

The absorbed time y is obtained using Eq. 3 and normalized
it to the range [0, 1]. The saliency map Sb can be written as:

Sb(i) = y∗(i) i = 1, 2, . . . , n, (8)

where i indexes a transient node on the absorbing Markov
chain, and y∗ denotes the normalized vector. As illustrated
in the first column of Fig. 5, most salient region can be high-
lighted through the randomwalk framework. However, some
background region may not be adequately inhibited. To alle-
viate this problem, the saliency result is further improved via
the foreground cues.

4.6 Saliency refinement via foreground cues

Because the expected absorbed number of times depend on
the appearance weights on the path and their spatial dis-
tance on the graph model, some background region close
to foreground nodes may be salient. Taking diversity of the
foreground nodes into consideration, we present a process to
suppress the background region based upon the foreground
cues.

The saliency map obtained by Eq. 8 is binary segmented
using an adaptive threshold, from which the nodes of fore-
ground regions could be selected as the seednodes.Weexpect
that the selected nodes could cover perceptual important
points and regions asmuch as possible. In our experiment, the
threshold β is set to be the mean value of the entire saliency
map.

Given the seed nodes, we duplicate these nodes as the
virtual absorbing states, while all nodes in the mesh as the
transient states in the Markov chain. Similar to the former
stage, the absorbed time y is computed using Eq. 3 when the
fundamentalmatrix is formed.Wenormalize the complement
of y as the saliency map, and then denote it as S f . Finally, a

Laplacian-based smoothing procedure is employed to spread
the patch saliency to each vertex.

Figure 5 shows two examples where some insignificant
regions are better suppressed using foreground cues, and then
the salient regions are highlighted. The results are highly
consistent with pseudo-ground truth. Note that although high
curvature regions tend to bemore salient, high curvature does
not mean high saliency. As shown in Fig. 6, the saliency of
many high curvature regions of the hair is actually low.

5 Experimental results

In this section, we evaluate the proposed method on a variety
of object shapes from the Stanford 3D Scanning Reposi-
tory, the Princeton Segmentation Benchmark [33] and the
Watertight Track of the 2007 SHREC Shape-based Retrieval
Contest. We present its comparisons with six state-of-the-
art mesh saliency detection methods: Lee et al. [4], Wu et
al. [2], Shilane and Funkhouser [8], Leifman et al. [12],
Tao et al. [11], Song et al. [22] and pseudo-ground truth.
The data from [32] are used as pseudo-ground truth. It is
collected from an online user study, which utilizes a regres-
sion model trained by a leave-one-out procedure for meshes
of the same categories. Our algorithm is implemented on
a PC with Intel(R) Core(Tm) i7-4790K CPU @ 4.00 GHz
and 32 GB RAM. Table 1 shows the performance of our
method. The run time of our algorithm mainly consumes
at the preprocessing stage, including descriptor computation

Fig. 8 Saliency results of our method (the top row) and the method in
[4] (the bottom row). Our results are less influenced by local changes
of the curvature. Furthermore, our method generates large meaningful
salient regions
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Fig. 9 Saliency results of our method (the top row) and the method in
[8] (the bottom row). Note the differences in the face areas and the legs

Fig. 10 Saliency results of our method (the top row) and the method
in [2] (the bottom row). Note the differences in the antennae and legs
of the Ant model, and the hair of the Girl model

Fig. 11 Saliency results of our method (the top row) and the method
in [12] (the bottom row). Taking the face areas of Venus as an example,
some salient region could miss using [12] (such as the nose)

Fig. 12 Saliency results of our method (the top row) and the method
in [11] (the bottom row). Note differences in the head of the bird, and
the feet and the tail of the deer model

Fig. 13 Saliency results of our method (the top row) and the method
in [22] (the bottom row). Note differences in lens of the Glasses model
and the face areas of the Armadillo

and over-segmentation. For a model with 15 K vertices, the
overall time requires about 53.96 s. The two saliency maps
computing take about 0.16 and 0.165 s, respectively.

5.1 Algorithm performance

Figure 7 shows comparisons of our saliency results with
the corresponding pseudo-ground truth. As can be seen, our
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Fig. 14 Mesh saliency results of Lee et al. [4] (the left column), Leifman et al. [12] (the second column), Wu et al. [2] (the third column), Song et
al. [22] (the fourth column), Tao et al. [11] (the fifth column), our method (the sixth column), and the pseudo-ground truth (the right column)

Fig. 15 Comparisons of preliminary saliency results (without saliency refinement) with different σ . The results shown from left to right are
obtained with σ of 10−2 ∗ 0.3, 10−2 ∗ 0.5, 10−2 ∗ 2/3, 10−2 ∗ 0.75 and 10−2 ∗ 1.0, respectively
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results are to a large extent consistentwith the pseudo-ground
truth.

Figure 8 compares our resultswith those of [4]. Our results
are less influenced by frequent local changes of curvature.
For instance, the hand and facial regions of the gargoyle and
the handle of the vase are considered significant by our algo-
rithm, whereas the results captured by [4] are disjointed.

Figure 9 compares our results with those from [8]. Our
method is able to detect some small salient regions, such as
the ears, eyes and mouth of the horse model. However, [8]
can only mark the entire head of the horse as distinct, since
the smallest regions they employ to estimate saliency have
radius 0.25 times the radius of the entire object.

Figure 10 compares our results with those of [2], in which
local contrast and global rarity are considered. However, they
may lead to the missing of some significant regions because
the concept of global rarity is expressed as the sum of feature
distances between every two vertices. Our method marks the
facial features and the hair of the girl, and the antennae and
legs of the ant, while they are not captured by [2].

Figure 11 compares our results with those of [12]. Both
20% of the most distinct vertices and the extreme vertices
are considered as focus points in [12], while some saliency
regions that are not close to focus points are missed. Note
that our algorithm captures the nose of the Venus and the
eyes of the horse, but [12] fails to achieve this.

Figure 12 compares our results with those of [11]. The
head, legs and tail of the deer and the head of the bird are
detected as salient by our method, while the results of the
competing method are disorganized.

Figure 13 compares our results with those of [22].
Although in [22] the entire head of the Armadillo is marked,
we detect more detailed regions, such as the ears, the mouth,
and the eyes. Our algorithm captures the knees, which are not
captured by [22]. In addition, their approach fails to mark the
lens of the Glass, while it is captured by our method.

Figure 14 illustratesmore comparison results. Ourmethod
detects the salient regions of the models more close to the
pseudo-ground truth. However, the results of others, to a cer-
tain extent, are confused.

5.2 Influence of parameters on mesh saliency detection

Parameter σ As the value of σ influences the graph con-
struction, we also show saliency results (without saliency
refinement) using different σ . As shown in Fig. 15, the
saliency results in the last three columns perform better
than the first two columns. Besides, diffusion time of σ =
10−2 ∗2/3 is shorter than the last two columns. Thus, we use
σ = 10−2 ∗ 2/3 empirically.

Sampling and number of segments The locations of the
seed patches are influenced by the number of segments and
different sampling densities. However, the saliency maps of

Fig. 16 Our method is insensitive to the number of segments. a Input
mesh. b, e Are segmentations with 84 and 164 segments, respectively.
The background seeds (red) and saliency maps generated using b and
e are shown in the rest two columns

Fig. 17 Our method is sampling insensitive. The models in a and e
have 25 and 12K vertices, respectively. b–d Illustrate the segmentation,
background seeds (red) and the saliency map of a. And f–h show those
of e

our method are robust to these factors (see Figs. 16, 17).
In all the experiments, we segment the input model into 80
segments which will be further divided into 3000 patches
roughly.

6 Conclusion

In this paper, we propose a novel mesh saliency detection
methodbased on randomwalk framework.Unlikemost of the
prior methods focusing on local contrast metrics, we utilize
data variance to capture the robust background nodes in our
model. Using the time property of absorbing Markov chains,
a two-stage process with background and foreground cues
is adopted to generate the saliency maps based on the graph
constructed in feature space. The first stage aims to localize
salient regions roughly.Moreover, to separate the foreground
salient regions from the background regions better, the sec-
ond stage is applied. Furthermore, the proposed method runs
on a variety of shapes, which validates convincing results
with comparisons against state-of-the-art approaches.
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Fig. 18 Failure case. Saliencymapof ourmethod (left) and the pseudo-
ground truth [32] (right)

However, our scheme does not take shape extremities sug-
gested by Leifman et al. [12] into consideration. As shown
in Fig. 18, our method cannot capture the whole ears and
it marks the spine as saliency region, which is not in accord
with the pseudo-ground truth provided by Chen et al. [32]. In
the future, we plan to fuse shape extremities into our method.
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