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a b s t r a c t

For accurately estimating the normal of a point, the structure of its neighborhood has to be
analyzed. All the previousmethods use some neighborhood centering at the point, which is
prone to be sampled from different surface patches when the point is near sharp features.
Thenmore inaccurate normals or higher computation costmay be unavoidable. To conquer
this problem, we present a fast and quality normal estimator based on neighborhood shift.
Instead of using the neighborhood centered at the point, we wish to locate a neighborhood
containing the point but clear of sharp features, which is usually not centering at the point.
Two specific neighborhood shift techniques are designed in view of the complex structure
of sharp features and the characteristic of raw point clouds. The experiments show that our
method out-performs previous normal estimators in either quality or running time, even
in the presence of noise and anisotropic sampling.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Estimating surface normals in a point cloud is a crucial preprocessing operation. High quality normals benefit numerous
point clouds processing algorithms, such as surface reconstruction [1], geometric primitive extraction [2], anisotropic
smoothing [3] and point based rendering [4]. Although it has been extensively studied, accurate computation near various
features in the presence of noise and non-uniform sampling is always a recurrent issue.

The normal of a point is approximated by analyzing the geometry structure of its local neighborhood. The methods
[1,5–7] use the whole neighborhood centered at the point on the assumption that the surface is smooth everywhere. Even
when different weights are assigned to all its neighbor points according to positions and initial normals, blurred edges are
unavoidable since points belonging to different surface regions are taken into consideration. To alleviate the problem, dif-
ferent voting techniques are employed, such as RNE [8] and HF [9]. However, some inaccurate normals may still exist in
the vicinity of sharp features with anisotropic sampling or large dihedral angles. There are also segmentation based ap-
proaches [10,11], that explicitly segment the anisotropic neighborhood into several isotropic sub-neighborhoods to avoid
using points of different surface regions. Higher performance is ensured with the cost of longer runtime.

In this paper, we present a brand novel approach to construct the neighborhood for fast normal estimation. Instead of
using the neighborhood centering at the current point, a set of neighborhoods containing the current point is evaluated
and the one with the most consistent normals is selected as the neighborhood of the current point. Thus the selected
neighborhood has more possibility to be isotropic, i.e. excluding points from different regions, which will lead to more
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faithful normal estimation. In the above core idea, the construction of the set of candidate neighborhoods is vital. In view of
the characteristic of point clouds and corner features, specific candidate neighborhoods constructionmethods are designed.
We also introduce a criterion considering both flatness and distance to evaluate the normals’ consistency of a neighborhood.
Thus our method can estimate normals accurately and fast even in the presence of noise and anisotropic sampling, while
preserving sharp features. The experiments illustrate the effectiveness of the proposed method. The contributions of this
paper are twofold:

• A novel perspective of constructing a neighborhood with consistent normals is presented for point cloud normal
estimation. No longer taking the current point as the center of the constructed neighborhood differentiates our method
from the existing normal estimators.

• Specific strategies for building a set of candidate neighborhoods are designed respecting the characteristic of point clouds,
which make our method fast and effective.

2. Related works

For point cloudmodels, the normal of a point depends on the points of its vicinity,which is usually a neighborhood center-
ing at the point. However, the surface of a 3Dmodel is usually not smooth everywhere, more likely to be piecewise smooth.
Thus the neighborhood of a point nearby feature areamight cross borders of differentmanifolds. To avoid the influence from
other manifolds, various methods are introduced. They may be roughly divided into three categories as follows.

To estimate the normal of a point, approaches in the first category take use of all the points of a neighborhood centering at
the point. Hoppe et al. [1] (PCA) estimate the normal by fitting a plane of the local neighborhood, which is fast to compute,
and works properly on smooth manifolds. However, for piecewise smooth surfaces, this method is unreliable. To get rid
of the influence from different manifolds, many variants were proposed. Cazals et al. [12] and Guennebaud et al. [5] use
quadrics and spheres in regression instead of planes. Nonetheless, spheres or quadrics are smooth surface, those methods
are still unreliable near sharp features. Pauly et al. [13] assign Gaussian weights to the neighbors when estimating the local
plane to weaken some points’ influence to the regression. Niloy et al. [7] propose a way to adaptively change the size of
neighborhoods, however anisotropic neighborhoods are still unavoidable for points on or very close to feature lines. All
those methods perform a regression on a neighborhood centering in the point whose normal is being estimated. When this
point is on edges and other sharp features, the influence from different manifolds is inevitable which leads to inaccurate
normal estimation near sharp features.

Methods of the second category employ voting technique. Li et al. [8] propose a robust normal estimation method by
using all the neighbor points vote to a set of planes determined by arbitrary three neighbor points to select the best tangent
plane, which performs properly near sharp features. However, the parts of a neighborhood with higher density have more
influence on the kernel density function because it does not take sampling non-uniformity into account. Boulch et al. [9]
(HF) propose a uniform sampling technique to overcome the sampling non-uniformity and select the normal voted by the
majority of local fitting planes. However, when the dihedral angle between the two planes forming the edge is large, the
difference between normals produced by the triples sampled from the two planes is small. Then these normals are likely to
vote for the same bin, and the normal will be blurred near the edge.

The third category of normal estimators segments the neighborhood to locate an isotropic sub-neighborhood. Fleishman
et al. [14] segment the local neighborhood of a point into multiple outlier-free smooth regions. Using LRR, Zhang et al. [10]
segment the whole neighborhood into different segments and one of them is chosen as for normal estimation. The most su-
perior performance is obtainedwith the cost of much longer runtime. Liu et al. [11] improve [10] with a guided least squares
representation to segment the neighborhood with high quality but less runtime. However, all these explicit neighborhood
segmentation methods usually take higher computational cost and the estimated normals may still be unfaithful when the
neighborhood is not large enough.

Similar idea of using shifted neighborhood has been applied in the domain of image [15] and mesh filter [16]. However,
either image or mesh is a kind of structured representation, on which constructing and searching of shifted candidates are
considerably much easier. And they are still likely to build an anisotropic neighborhood for just searching square patches
or fixed n-ring faces when the expected neighborhood’s shape is narrow or contains narrow parts nearby feature areas. A
few outliers may not have major impact on filtering results, but it has great effect on the results of normal estimation. To
conquer the challenges brought by complex feature areas and point clouds’ structureless representation, we present two
specific neighborhood shift operations to build faithful neighborhoods for points near different types of features.

3. Overview

Given a point cloud P = {pi} as input, three steps are taken to estimate the normals. First, the K-nearest neighbors Ni are
computed for each point pi and pi is classified into three types by analyzing Ni: non-feature points, edge points and corner
points, which are detailed in Section 4. Then we use three strategies to construct an isotropic neighborhood of the current
point respectively. For each non-feature point, we just take Ni as its isotropic neighborhood Ni. For the rest feature points,
specific strategies are designed to build a set of candidate neighborhoods for each point accommodating the characteristic
of its type, which are explained in Sections 5.2 and 5.3 respectively. Section 5.1 presents an evaluation criterion to select
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one from the candidate set as the isotropic neighborhood Ni of a feature point. Finally, a more accurate normal is estimated
by PCA using the constructed neighborhood Ni for each point respecting sharp features. The overview of our method is
illustrated in Fig. 1 and concluded in Algorithm 1.

Algorithm 1 Pipeline of our method
Input: Point cloud P .
Output: Normal set {ni}

1: for pi ∈ P do
2: Find pi’s K-nearest neighbors Ni using kd-tree
3: Compute σ(Ni) by Eq. (1)
4: if σ(Ni) < Ωf then
5: Ni = Ni
6: else if σ(Ni) < Ωc then
7: Find Ni via Direction Constrained Shift (Algorithm 5.2)
8: else
9: Find Ni via Self-adaptive Shift (Algorithm 5.3)

10: Compute ni via PCA on Ni

4. Point classification

4.0.1. Feature points selection

We first distinguish feature points, that have a more complicated neighborhood, from non-feature points. Those feature
points are further classified into different types: edge points and corner points. We will give a brief introduction of the
feature detection method, and details are referred to in [10]. For each point pi, we compute a σ(Ni) for its neighborhood Ni
of size S:

σ(Ni) =
λ0

λ0 + λ1 + λ2
(1)

where λ0 < λ1 < λ2 are the singular values of the covariance matrix of Ni. The three singular values reflect the distribution
of the Ni along three orthogonal singular vectors. Thus σ(Ni) measures the confidence of how pi is close to some feature
regions. [10] computes a threshold Ωf , and each point pi with σ(Ni) greater than the threshold will be viewed as a feature
point. We denote the set of feature points as PF .

4.0.2. Classification of feature points

The feature points PF can be further classified into two categories: points near some edge between pairwise continued
2D manifolds PE and points near some corner where several manifolds join together PC . The corner point’s neighborhood is
more likely to have a larger surface variation. Thus, it is reliable to differ those two kinds of points via a threshold Ωc :

PC = {pi ∈ PF |σ(Ni) > Ωc}

PE = {pi ∈ PF |σ(Ni) ≤ Ωc}.
(2)

Experientially, we choose Ωc = 0.35. Note that the classification is impossible to be 100% precise. However, the incorrect
classification only increases the runtime of our method, and is unlikely to degenerate our result.

5. Neighborhood shift for feature points

For a feature point pi, its original neighborhood Ni might be sampled from different 2D manifolds. Hence it is unreliable
to compute pi’s normal by applying PCA on Ni. But the normal can be represented by one of those manifolds. Instead
using Ni or finding a sub-neighborhood with consistent normals by segmentation explicitly, we wish to locate an isotropic
neighborhood Ni, sampled from just onemanifold, containing pi but shifted away from pi, as illustrated in Fig. 2. However, it
is not easy to construct such a neighborhood straightly on point clouds, since they are structureless. We actually construct
a set of candidate neighborhoods Ni = {Nij} all containing pi, and select one among them that is most likely to contain no
features.

5.1. Criteria for neighborhood selection

To select a neighborhood from Ni that is least likely to contain features, we define γ (Nij):

γ (Nij) = α1σ(Nij) + α2∥pi − pij∥, (3)
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Fig. 1. Pipeline of our algorithm.

where σ(Nij) is defined in Eq. (1), pij is the center point of Nij, and α1 and α2 are given parameters, we set α1 = 0.8 and
α2 = 0.2. The first item σ(Nij) measures surface variation of Nij, and we also think that the shifted neighborhood closer to
pi is more confident. The neighborhood with the minimal γ (Nij) will be selected.

5.2. Direction constrained shift for edge points

For a feature point pi ∈ PE , its candidate neighborhood set Ni could be all the neighborhoods centering at pij ∈ Ni
respectively. To reduce the evaluation cost, we wish that only non-feature point pij is considered since its neighborhood is
more likely to be clear of features. However if we use these neighborhoods directly, the selected best one may still contain
points sampled from the other side of feature edges because of non-uniform sampling. To cope with this problem, for pi’s
each neighbor pij ∉ PF , we construct a candidate neighborhood Nc

ij by selecting points from pij’s neighborhood Nij of size
S using a directional constraint which is introduced latter. If there is no such point in Ni, it indicates that pi is located in a
more complicated region, such as a narrow region with multiple feature lines. In this case, a small neighborhood of pi, with
S/3 points is chosen as the final Ni.

As shown in Fig. 3, given a non-feature neighbor pij, we compute a vector vij = pi − pij. The candidate neighborhood Nc
ij

is built by selecting pij’s neighbor pk
ij if the following condition is satisfied:
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Fig. 2. The left column is the original neighborhoods, which contain points from two or three surface patches, of an edge point and a corner point,
respectively. The right column shows the shifted neighborhoods of them. The shifted neighborhoods contain only points of the same surface patch, and
more faithful normal estimation depends.

Fig. 3. The construction of a candidate neighborhood for an edge point Pi . The feasible region is colored in gray, which is a combination of a half circle and
a half Euclidean space. We plot Pij ’s KNN. Those points in feasible region, colored in red, will be selected to compose a candidate neighborhood. The other
points, colored in yellow will be discarded. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

pk
ij ∈ Nc

ij, if

⟨vij, vjk⟩ ≤ 0
⟨vij, vjk⟩ > 0 and ∥vij∥ > ∥vjk∥

(4)

where vjk = pk
ij − pij, and ⟨, ⟩ is inner product in Euclidean space. Satisfying the directional constraint does not make sure

that all the constructed Nc
ij will be isotropic, but some of themwill, especially for the one with near right angles between vij

and the tangential direction of the feature line. The procedure is listed in Algorithm 5.2.

5.3. Self-adaptive shift for corner points

For a point pi ∈ PC , the best neighborhood selected via direction constrained shift may contain points from different
surfaces, as illustrated in Fig. 4, since the corner is formed by the intersection of a few local surface patches and the patches
are usually narrower or even far narrower than the patches formed on a feature line. To find a flat neighborhood in such a
complex region, we develop a self-adaptive method.

Given a feature point pi ∈ PC , a set of candidate neighborhoods Ni from seed points pij ∈ Ni is built. Instead of using the
directional constraint, we iteratively grow a neighborhood from each pij. We first initialize the candidate neighborhood Nc

ij
with a small neighborhood No

ij of pij with size Ko containing pi, and look through each point of Nij to decide whether to push
it into Nc

ij . We wish that each pushed point makes Nc
ij flatter, i.e.makes γ in Eq. (3) smaller. If we decide to push one point

into Nc
ij , its 5-nearest points are also pushed into Nc

ij since they stick close. Every time we decide to put in some points, we
also choose one point p to delete. Deleting p makes Nc

ij flattest among deleting other points, and also we need p ∉ No
ij . N

o
ij

is always kept in Nc
ij . This assures that N

c
ij represents the surface patch where pi and pij lie through the neighborhood shift.

Fig. 4 illustrates the original neighborhood Ni of a corner point pi and the final shifted neighborhood Ni.
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Algorithm 2 Direction Constrained Shift
Input: pi, Nij for every pij ∈ Ni

Output: pi’s shifted neighborhood Ni

1: Let the candidate neighborhood set Ni be empty
2: Find all the non-feature points in Ni, denote them as N ′

i
3: if N ′

i ! = ∅ then
4: for pij ∈ N ′

i do
5: Nc

ij = ∅

6: for pk
ij ∈ Nij do

7: if pk
ij satisfies Eq. 4 then

8: Nc
ij = Nc

ij ∪ {pk
ij}

9: Ni = Ni ∪ {Nc
ij}

10: Ni = argmin
Nc
ij∈Ni

γ (Nc
ij)

11: else
12: Ni = A small neighborhood of pi with S/3 points
13: return Ni

Algorithm 3 Self-adaptive Shift
Input: pi, Nij for every pij ∈ Ni

Output: pi’s shifted neighborhood Ni

1: Let the candidate neighborhood set Ni be empty
2: for pij ∈ Ni do
3: Nc

ij = No
ij

4: p = argmin
p∈Nij/No

ij

γ (Nc
ij ∪ {p})

5: Nc
ij = Nc

ij ∪ {p and its 5 nearest points}
6: p′

= argmin
p′∈Nc

ij/N
o
ij

γ (Nc
ij/{p

′
})

7: Nc
ij = Nc

ij/{p
′
}

8: Ni = Ni ∪ {Nc
ij}

9: Ni = argmin
Nc
ij∈Ni

γ (Nc
ij)

10: return Ni

Fig. 4. The construction of a candidate neighborhood for a corner point. The current point pi is shown in a green delta, and its original neighborhood
is marked by the dotted circle. For its neighbor pij , shown in a green star, our self-adaptive method starts from a small neighborhood of pij , and grows
gradually to build a candidate neighborhood clear of features. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)



J. Cao et al. / Journal of Computational and Applied Mathematics 329 (2018) 57–67 63

Fig. 5. Comparison on Octahedron containing sharp edges with shallow angles. 50% noise is added. From left to right, they are the results of PCA, RNE,
HF_cubes, HF_points, HF_unif, LRR and our algorithm. From top to bottom rows are the visualization of bad points colored in red, estimated normals,
rendering using surfels and the result statistics of each algorithm, respectively. The result of our method is comparable with LRR but with far less running
time. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

6. Experiment results

In this section, we make comparison between our method and some state-of-the-art methods: PCA [1], RNE [8], HF [9]
and LRR [10], in view of sharp features, sampling anisotropy and noise. According to the sampling strategy, HF has three
versions: HF points, HF cubes and HF unif .

To compare those algorithms’ performance in a quantitative way, the two criteria, the Root Mean Square measure
(RMSτ ) [9] and Number of Bad Points (NBP) are evaluated. They are defined as:

RMSτ =


1
|P|


p∈P

f ( np,np)2,

where

f (np,np) =


npnp, if npnp < τ
π/2, otherwise,

np is the ground truth normal of p, and np is the estimated normal of p. npnp is the angle betweennp andnp. We set τ = 10◦.
Those points whose errors are more than 10° are considered as bad points, and NBP are number of the bad points.

All the noise we use in our experiments are Gaussian noise, with different standard deviation as % of the mean distance
between points. Empirically, we choose the parameters for our algorithm, we let Ko = 60, S = 100. Other parameters were
set to default if they are not mentioned.

Note that our method applied in this paper is in MATLAB version, which has a negative effect in our algorithm. On the
other hand, this means our method has more potential in efficiency.

6.1. Comparison on feature preservation

Comparison on Octahedron containing sharp edges with shallow angles. In Fig. 5, we compare all the methods on the
20k Octahedron model with 50% noise. The sharp edges of it are generated by the intersection of two planes with shallow
angles. We can see that PCA overly smooths the normals near sharp edges. Thus there are many mistakes around the edges.
RNE, HF_points and HF_cubes blur the edges in less degree but still are inferior to LRR and our method. HF_unif performs
properly on edge feature, but fails in corners. The reason of the inferiority of HF for such case is that normals produced by
triples sampled from different sides of a feature line are likely to vote for the same bin when the dihedral angle is shallow.
Uncorrected normals by LRR and our algorithm distribute very close to edges and many of them are unavoidable since
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Fig. 6. Comparison on real scanned data. The result of PCA is shown on left side, and the result of ours is shown on right side.

Fig. 7. Comparison on Fandisk containing complexneighborhood structure. 50%noise is added. From left to right, they are the results of PCA, RNE,HF_cubes,
HF_points, HF_unif, LRR and our algorithm. From top to bottom rows are the visualization of bad points colored in red, estimated normals, rendering using
surfels and the result statistics of each algorithm, respectively. The result of our method is comparable with LRR but with far less running time. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

some points on one side of a feature line may turn into another side of the edge after adding noise by disturbing the points’
position. On this model, our algorithm performs nearly as good as LRR’s, which is tens of times slower than ours. This also
demonstrates that our algorithm achieved the same effect of neighborhood segmentation with a much lower cost. The
candidate neighborhoods contain at least one correct segmentation and we just need to find it.

Comparison on Fandisk containing complex neighborhood structure. Many points’ neighborhood of the Fandisk
model may contain multiple feature lines, such as the points in the marked narrow-band regions in Fig. 7. The complex
neighborhood structure challenges previous normal estimators. Thus we test the performance of those algorithms over
neighborhoods with multi-features on the Fandisk model with 26k points and 50% noise. Fig. 7 shows that PCA, RNE,
HF_cubes, HF_points and HF_unif generate much bad points around the circled narrow bending band region. Our algorithm
and LRR perform better on the region, andmost bad points are distributed along the edges.We can also see, from the second
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Fig. 8. Our method is robust to anisotropic sampling. For tetrahedron, numbers of points on its four surface are at a ratio of 1:2:3:4. For cube, it is 1:2:6
for right, up and front surface, and surfaces on the opposite position have same number of points. 50% noise are add to both of the models.

row, that although other algorithms overly smooth the normals around features, our algorithm remains the discontinuity
of normals properly, almost as good as LRR. This illustrates that our neighborhood shift operations can handle complex
neighborhood. Considering the computational cost, our algorithm is pretty promising.

Comparison on real raw data. To illustrate the capability of our algorithm to handle the real data, we run ourmethod on
a scanned point data and present the results in Fig. 6. The data suffers certain scale of noises and outliers from the procedure
of scanning. Compared with PCA, we see that while the smooth regions are rendered pleasingly using our normals, the
features are also preserved favorably.
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Fig. 9. Ourmethod is robust to noise. RMSτ and NBP of RNE, HF_cubes, HF_points, HF_unif, LRR and ourmethod on Cube and Octahedron at different noise
level are shown in the top and bottom rows, respectively.

6.2. Comparison on robustness to noise and sampling density

To evaluate the robustness of our method to noise, we apply RNE, HF_cubes, HF_points, HF_unif, LRR and our method on
simple geometric models including Cube and Octahedron with varying Gaussian noise levels. In Fig. 9, we list the results.
Although the performance of all themethods drops with the increase of the noise level, our algorithm is only inferior to LRR.

Fig. 8 shows that our method is robust to non-uniform sampling. In this experiment, a non-uniformly sampled cube
model with 21k points and a tetrahedron with 10k points are tested and each of them has 50% of noise. In view of RMSτ

and NBP , our method is again only inferior to LRR and superior than other methods. The values of RMSτ and NBP for the
two models are reported in the bottom row of the figure. The experiment shows that our self-adaptive neighborhood shift
algorithm can find a neighborhood without crossing features even when the point cloud is non-uniformly sampled.

7. Conclusion

In this paper, we present a feature-preserving normal estimation method via neighborhood shift. Two specific
neighborhood shift techniques are introduced considering the characteristic of sharp features and point clouds. The shifted
neighborhood does not necessarily center at the point for which we are estimating the normal. But it tends to be isotropic,
i.e.clear of sharp features, and then a quality normal can be estimated on it. The experiments exhibit that faithful normals
are estimated with relatively low computational cost comparing with the existing state-of-the-art methods.

One limitation of themethod is that evaluating all candidate neighborhoods of a point with very large neighborhoodmay
be impractical. Hence themethodmay be not robust to large noise and some extreme cases when only small neighborhoods
are explored. To overcome the problem, we would like to integrate some random strategy to improve the neighborhood
shift operations in future.
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