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a b s t r a c t

3D reconstruction from a single 2D line drawing is an important but challenging problem in computer
vision. Existed methods usually fail when line drawings contain large degree of noise named sketch
errors. In this paper, we present an example-based approach to reconstructing 3D object, either planar or
curved, from a single-view line drawing with sketch errors. Our method is to first decompose the input
line drawing into primitive components and cluster them into local groups, then turn each group into 3D
shapes via a novel example-based algorithm, and lastly integrate those recovered 3D shapes from all
groups to build a final complete 3D model. Comprehensive experiments on a wide range of line drawings
depicting man-made objects show that the proposed approach outperform previous work, especially for
line drawings containing large degree of sketch errors.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Line drawing is one of the simplest and most direct means to
illustrate 3D objects. The human vision system is able to interpret
2D line drawings as 3D objects without endeavor. The emulation
of this ability is an important and long-standing research topic in
computer vision and graphics. Three dimensional reconstruction
from 2D line drawings benefits various applications such as re-
construction from conceptual sketches [1–4], interactive 3D
modeling from single images [5–7], and sketch-based 3D shape
retrieval [8–10].

The problem of 3D reconstruction from single 2D line drawing
is challenging since it is intrinsically ill-posed due to the missing of
the depth information. In order to resolve the ambiguity, some
researchers use additional information such as local regularity
cues, reference models, and gestures [11–16]. Differently, the rule-
based methods [1,17–23] usually reconstruct 3D objects by opti-
mizing an objective function built from a set of heuristic image-
based rules that summarize human visual perceptions. Generally,
rule-based methods can success for a large range of line drawings,
but might fail to obtain “good” results, e.g., vertices on a planar face
might not exactly lie on the same plane in the result model. This is
mainly due to the fact that heuristic rules cannot cover all cases
[24,25]. Imperfect line drawings and sketch errors also make those
rules to be less useful. Moreover, there is no principled way to tune
the parameters that balance each type of heuristic rules.

In this paper, we propose an example-based 3D reconstruction
approach, which is the comprehensive version of our preliminary
work published in [24]. We extend the previous algorithm to
handle wider range of 3D man-made objects, which are composed
of both planar and/or curved surfaces. Comprehensive experi-
ments are performed to evaluate the algorithm's performance on
line drawings consisting of both straight and curved segments. The
key insight of the proposed approach is that a complex 3D object,
especially a man-made object, can usually be decomposed into a
set of simpler primitive 3D shapes. For instance, the mechanical
object in Fig. 1(a) is a composition of 3D shapes shown in Fig. 1(c),
which can be generated from the six 3D parametric templates
shown in Fig. 1(d). This insight motivates us to adopt an example-
driven approach to reconstruct 3D objects from line drawings.

Given a line drawing with both straight and curved lines, our
method reconstructs the 3D object in four steps: (1) decompose
the input line drawing into simple components, (2) group these
components into part groups based on a set of structure
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Fig. 1. Illustration of example-based 3D reconstruction from single line drawing. The input 2D line drawing (a) is decomposed into a set of simpler components (c), each of
which can be reconstructed by fitting parametric templates from a database (d). These recovered 3D shapes are finally integrated to form the complete 3D model (b).
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constraints, (3) reconstruct the 3D geometry for each part group
using a novel example-based reconstruction algorithm, and
(4) integrate obtained 3D shapes into a final complete 3D object.
The core component of the proposed approach is the example-
based 3D reconstruction algorithm, where the reconstruction
problem is solved with a probabilistic graphical model. The pro-
posed framework is flexible to exploit other reconstruction algo-
rithms (e.g., rule-base approaches) if our example-based algorithm
fails to produce satisfactory results.

Our most prominent advantage over previous rule-based
methods is the robustness to sketch errors. The ruled-based
methods tend to fail to reconstruct plausible 3D geometries from
imperfect line drawings, because these rules only based on local
information of line drawings and sketch errors may easily violate
their assumptions. In the contrary, the proposed method does not
directly reconstruct 3D geometry of a line drawing with sketch
errors. Instead, we reconstruct 3D geometries by exploiting the
most plausible 3D examples (templates) that correspond to the
line drawing from the database with a global optimization strat-
egy. Naturally, the proposed approach is more robust than pre-
vious rule-based methods.
2. Related work

Here we generally discuss works related to computational in-
terpretation of line drawings, rule-based 3D reconstruction, and
3D reconstruction of curved objects.

Computational interpretation of line drawings: This topic has
spanned more than four decades. Generally, existed work can be
roughly classified into three categories: (1) line labeling, (2) linear
programming based reconstruction, and (3) optimization-based
(rule-based) reconstruction. Interested readers may refer to [26–
28] for insightful surveys on earlier researches.

Line labeling focuses on finding a set of consistent labels from a
line drawing to test the correctness and/or realizability of the line
drawing [4,29], but it does not explicitly recover 3D objects. The
methods based on linear programming [30,31] reconstruct 3D
models by solving a linear system which is built from a set of
geometrical conditions that the model must fit. In general, linear
programming has difficulty to tolerate sketching errors that often
exist in a line drawing. Modern methods of 3D reconstruction
from line drawings are often optimization-based, which usually
determine the 3D geometry of a line drawing from the solution
that optimizes a certain objective function. Most previous opti-
mization-based 3D reconstruction methods [1,17–19,21,23,32]
only focus on planar objects. Being different from those methods
mentioned above, the proposed method in the work is a tempta-
tion to infer plausible 3D objects, either planar or curved, from
single line drawings using a data-driven solution.

Rule-based 3D reconstruction: Rule/regularity based algorithms
[7,33–35] are extensively used to reconstruct 3D objects or scenes
from single images. A recent survey [36] can be referred to explore
that direction. Here, we only discuss algorithms with single
drawing as input.

The recent advances [18,19,23] can reconstruct more complex
objects than previous works. Ref. [18] finds desired objects in
search space of much lower dimensions. This method works well
on complex line drawings with low degree of reconstruction
freedom (DRF), but increased DRF would make it less robust. Refs.
[19,23,37] tried to solve the hard optimization problem caused by
the dimensional disaster of a complex line drawing using a di-
vided-and-conquer strategy: first decompose the complex line
drawing into a set of parts, then reconstruct 3D shapes from these
parts with a rule-based algorithm, finally merge these 3D shapes
together to generate the final 3D object.

Our proposed method also utilizes a divided-and-conquer
strategy with individual parts reconstructed using example-based
algorithm. The example 3D shapes serve as template with internal
configurations, which usually lead to better results from line
drawings with sketch errors than rule-based algorithms. Most
rule-based 3D reconstruction methods assume that the faces are
given before the 3D reconstruction. In fact the face identification
problem is not trivial [38]. Without such assumption the proposed
example-based algorithm infers candidate 3D examples from a
pre-defined database, which avoids failure cases caused by un-
successful face identification.

3D reconstruction of curved objects: Recent research on this to-
pic are mainly rule based on [1,16,22,39]. Lipson and Shpitalni in
[1] solved the problem of reconstructing cylindricality by three
steps: first approximate a cylindrical face with a set of rectangular
faces; then reconstruct 3D geometry of rectangular faces using a
rule-based algorithm; finally fit curved faces to these rectangular
faces. Wang et al. [22] extended the idea in [1] to reconstruct more
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complex curved objects. They first distinguish curved faces from
planar faces, then convert the line drawings depicting curved
objects into generalized polyhedrons, lastly utilize optimization-
based approach to produce the final curved 3D objects. Xu et al.
presented a sketch-based modeling system in [16] to reconstruct
3D curve networks from 2D sketches, which also employed a rule-
based algorithm and require the design drawing to be of good
quality. The proposed method in this work uses a similar strategy
as in [22] to deal with line drawing parts representing curved
shapes: transforming the reconstruction of 3D curved shapes into
that of generalized polyhedrons. However we reconstruct the 3D
geometry of generalized polyhedrons with an example-based al-
gorithm rather than the rule-based one. Our experiments show
that the proposed method can produce better results for line
drawings with large degree of sketch errors.
1 The singular points of a curve are defined as the points having the maximal
distance to the straight line passing through the curve's two endpoints.
3. Overview

Generally, the main strategy is a procedure of divide-and-
conquer, similar to [40]. Refer to Fig. 2 when reading content in
this section.

On the divide stage, the input line drawing (a) is first decom-
posed into simpler parts with structural constraints between parts
specifying their relative spatial layout (b). Three types of structural
constraints are considered in this work – coplanariry Cplanar, curved
touching Ccurved, and proximity Cproximity, which are illustrated as
black, red, and green edges respectively. We cluster line drawing
parts into part groups so that edges within a group are coplanarity
constraints while curved contacting and proximity constraints
only occur between groups (c). The grouping of parts aims at a
bottom-up solution for the followed reconstruction problem.

On the conquer stage, we use an example-based algorithm to
complete the 3D reconstruction for each part group with candi-
date 3D examples. While for those without candidate 3D examples
(purple blocks) we use a rule-based algorithm [18] to perform the
reconstruction. Example-based and rule-based algorithms corre-
spond to 1 and 2 respectively. The projection of those 3D shapes
obtained from part groups (d) is similar to the input line drawing;
however their depth positions might be wrong. Lastly, we obtain
the final complete 3D object by adjusting the depth of the 3D
shapes corresponding to each part group to satisfy the Ccurved and
Cproximity constraints, see (e). We clarify some important modules in
our method as follows.

Input: Our method, with a coverage of both planar and curved
objects, operates on an edge-vertex graph representation for the
input line drawing. Specifically, the edge-vertex graph re-
presentation provides x- and y-coordinates of all vertices and the
information for edges and artificial lines. In our implementation,
straight edges are represented by pairs of vertices, and curved
edges are represented by Bezier curves.

Decomposition: We use the split face algorithm [41] to perform
the line drawing decomposition. Compared to the algorithm in
[23] that cannot ensure each separated part depicts a manifold, the
split face algorithm produces manifolds with simpler geometry
than those in [24]. Though the split face algorithm was proposed
for planar objects, it can be extended to separate the curved
components from the input line drawing.

3D reconstruction: This is the major module as well as the main
contribution of the proposed method. From above discussion we
know that 3D reconstruction is a bottom-up process which con-
tains two steps: (1) reconstructing 3D shapes from part groups;
then (2) adjusting (translating along the z-direction) the positions
of those 3D shapes to generate the final objects.

In this paper, we use a bold upper-case letter X to denote a 3D
point, and a bold lower-case letter x for its 2D projection on the
line drawing plane. We denote a 2D line drawing L without curved
edges by an undirected graph = ({ } )G Ex ,l

i , where { }xi are the 2D
vertices of L, and E are edges connecting these vertices. The re-
covered 3D shape S from L retains its topology while vertices be-
come their 3D counterparts, denoted as = ({ } )G EX ,s

i . In the da-
tabase, we define a 3D example object M as α= ({ } )G A E,M

i
M ,

where α is the parameter vector, Ai is the linear coefficient matrix
specifying the position of the ith vertex, and EM are the example's
edges. Under rigid transformation ( )R t, , the ith vertex in the 3D
example will be transformed to a new location α +AR ti .
4. 3D examples

We manually build a 3D example database consisting of 72
planar examples and 40 curved examples, covering most common
basic shapes composing man-made objects. For each line drawing
part, we find a set of candidate 3D examples that share the same
topology. A part with curved edges must match with curved 3D
examples. We use the algorithm in [42] to check the isomorphism
between two graphs.

To achieve a good generalization ability, we use a set of para-
meters for each example to represent wider range of candidate 3D
shapes. For instance, cuboid is determined by three parameters –

width a, height b, and depth c; square frustum is determined by
five parameters – length b and d, width a and c, and height e; and
cuboid is determined by two parameters – radius r and height d,
see Fig. 3.

Given a parametric 3D example in the database, the 3D co-
ordinates of each of its vertices can usually be expressed as a linear
function of the parameter vector. For example, vertices X1 and X2
on the square frustum in Fig. 3(b) can be represented as [ ]⊤a b2 , 2 , 0
and [ + + ]⊤a c b d e, , , both of which can be reformulated as a
product of a 3�5 matrix and the parameter vector
α = [ ]⊤a b c d e, , , , of the example. In general, for a 3D example with
m vertices and n parameters, its 3D shape can be determined by m
fixed matrices whose elements have a form of × n3 and an n-
dimensional vector containing all the parameters. Therefore, it is
easy to know that we can obtain an instance 3D shape of a 3D
example by fixing its parametric vector. Note that the re-
presentation using a parametric vector is also applicable to a 3D
curved object in this paper since it has been approximated by a
polyhedron.

For curved examples in the database, we use parametric poly-
hedrons as alternative representations so that they can fit into our
preliminary pipeline in [24]. Accordingly we need to transform the
2D line drawing depicting a curved solid into a new line drawing
before the reconstruction. Following [22], a curved edge is ap-
proximated by two polygonal lines, where the new virtual vertices
locate at the curve's singular points.1 For instance, the cylinder in
Fig. 4 is approximated by a cuboid, where v1 and v2 are two virtual
vertices. The main reason to use alternative polyhedron re-
presentation for a curved object is that the reconstruction of a
polyhedron is much easier than a curved object whose geometry
can be uniquely determined by the reconstructed polyhedron.
5. Constraints for reconstruction

Two types of constraints are considered in this work for solving
the ill-posed reconstruction problem. First, projection constraint
states that the projection of the reconstructed 3D objects should
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Fig. 2. Overview of the proposed reconstruction framework, see details in Section 3. (For interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)
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Fig. 3. Three instances from the database of 3D examples: (a) cuboid, (b) square frustum, and (c) cylinder.

Fig. 4. (a) A line drawing whose edge-vertex graph consists of two connected components, a cylinder on top of a hexagonal prism. (b) By fitting curves in the line drawing
with polygonal lines (v1 and v2 are virtual vertices), the cylinder is approximated by a cuboid. Artificial lines (thin straight lines) are added to the line drawing to indicate
coplanar constraints between faces.
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be consistent with line drawings. Second, structural constraint are
relationships between parts specifying their relative spatial layout
in the complete 3D model. We define three types of structural
constraints: coplanarity ( Cplanar), curved contacting ( Ccurved), and
proximity (Cproximity). Both coplanarity and curved contacting con-
straints are defined between a pair of faces from two different
parts: Cplanar describes the coplanarity between two planar faces,
while Ccurved specifies the contacting constraint between two
curved faces or a planar face and a curved face. Fig. 5 shows in-
stances of structural constraints on various line drawings.

Given a planar polygon P and a point q coplanar with P, we know
that q can be expressed as a linear combination of vertices in P, e.g.,
Green coordinates [24]. Suppose that two 3D examples, M1 and M2,
have two coplanar faces, C1 and C2. A point on the coplanar plan can
be expressed as a linear combination of vertices in C1 (or C2),
consequently as αB1 1 (or αB2 2), where Bi is the coefficient matrix and
αi is the parameter vector for exampleMi. In the 2D line drawing, we
encode coplanar vertices in both coplanar faces. Given the assump-
tion of isometric projection, the 3D position of a coplanar vertex can
be calculated using the encoded linear representation.

The proximity constraint Cproximity is defined between a pair of
parts, and in our implementation is introduced only for isolated
parts with no coplanarity or curved contacting constraints with
others. Our algorithm automatically detects isolated parts and
their closest peer, between which a proximity constraint is added.

The projection and coplanarity constraints will be respected for
reconstruction within each part group, see Section 6; while the
proximity and curved contacting constraints will guide the in-
tegration of 3D shapes recovered from part groups into the final
complete 3D model, see Section 7.
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Fig. 5. Illustrations of constraints between line drawing parts. Face pairs constrained by Cplanar (a)–(f) and Ccurved (g)–(h) are specified by artificial line pairs and are shadowed
by pink–blue color pairs. ( )L L,1 2 in (h) are constrained by Cproximity . We also show the reconstructed 3D shapes beneath the corresponding line drawings. (For interpretation
of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 6. A line drawing depicting a lamp (a) is decomposed into simpler parts (b), which form a single part group. 3D example candidates (c) are matched from the database to
recover individual parts w.r.t. the coplanar constraints between parts. The final result 3D model is shown in (d).
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6. Example-based 3D reconstruction

The reconstruction algorithm takes one part group as the input,
see Fig. 6. For each part in the group, a set of 3D examples with the
same topology as the line drawing part is retrieved from the da-
tabase. An undirected graphical model is proposed to find the best
3D examples that fit all line drawing parts (projection constraint)
and follows the coplanarity constraints between parts. The output
of this step is a set of 3D examples with corresponding parameters
– α, R , and t (Fig. 7).
6.1. Undirected graphical model

The task of the example-based 3D reconstruction is to infer the
shape of a 3D part corresponding to each line drawing part Li. We
assume that each 3D part Si is determined by a set of variables

= { }q c R t, ,i ik ik ik , = …k n1, 2, , i, where ni is the number of candi-
date 3D examples for the ith line drawing part, cik has a boolean
value indicating whether the kth example is selected, and (Rik, tik,
αik) are the rotation matrix, the translation vector and the para-
meter vector for the kth candidate example, respectively.

Given a part group = { }L Li , the best choice of { }qi is to



Fig. 7. (a) The input 2D line drawing. (b) Reconstructed 3D object. (c) Line drawing parts L1�7. (d) Graphical model for the line drawing where observed nodes L1�7 are
marked by shadow.
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maximize the posteriori probability ({ }| ) ∝ ( |{ })· ({ })P q L P L q P qi i i . To
formulate this probability, we assume { }qi possess Markov prop-
erty and build an undirected graphical model, where each ob-
servation node Li denotes a line drawing part and each latent node
qi denotes the corresponding 3D example Si. Our graphical model
contains two kinds of edges: one type of edge connects Li and qi,
which ensures the projection constraints, the other type connects
two 3D parts qi and qj, which ensures the coplanarity constraints.

Given undirected graphical model with Markov property, we have
( |{ }) = ∏ ( | )P L q P L qi i i i and ϕ ψ({ }) = ∏ ( )· ∏ ( )( )∈P q q q q,i i i i j Q i j, ,

where Q is the set of edges among { }qi , ϕ (·) and ψ (· ·), are potential
functions [43]. Then we can reformulate the posterior probability as

∏ ∏ ∏ψ ϕ({ }| ) ∝ ( | )· ( )· ( )
( )( )∈

P q L P L q q q q, ,
1

i
i

i i
i j Q

i j
i

i
,

whose maximizing procedure is equivalent to

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑ ∑λ λ λ( | ) + ( ) + ( )

( ){ } { }∈

E L q E q q E qmin , ,
2q

i
i i

i j Q
i j

i
i1 2

,
3

i

where ( | ) = − ( | )E L q P L qlogi i i i , ψ( ) = − ( )E q q q q, log ,i j i j ,
ϕ( ) = − ( )E q qlogi i , and λi controls the weight for each term. For all

experiments in this paper, we set λ = 301 , λ = 12 , and λ = 0.053 .
The first term ( | )E L qi i in (2) is the negative log likelihood term

corresponding to the projection constraint, which is defined as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑( | ) = ∥ − ∥

( )= ∈

E L q c K X x ,
3

i i
k

n

ik
v V

ik
v

i
v

1

2
i

i

where Vi is the set of vertices in the basic line drawing part Li,
α= +AX R tik

v
ik ik

v
ik ik is the 3D position of the vertex v after rotation

and translation, Aik
v is the matrix of the candidate 3D model Mik

that corresponds to the vertex v, and xi
v is the 2D coordinate of the

vertex v, and K is the orthogonal projection matrix with the form

⎛
⎝⎜

⎞
⎠⎟=K 1 0 0

0 1 0
.

The second term ( )E q q,i j in (2) corresponds to the coplanarity
constraints. Recall that the 3D position of a coplanar vertex can be
computed by using encoded linear coefficients on either one of
involved 3D examples. Ideally, a coplanar vertex shared by qi and
qj has exactly the same 3D positions produced by qi and qj. Ideally,

( )E q q,i j would be formulated as a set of equation constraints like
=X Xik jl, which are 3D positions for a shared coplanar vertex

produced by qi and qj with their kth and lth 3D examples
respectively. However, these non-linear equation constraints
usually make it hard to find a feasible solution, thus we instead
convert them into soft constraint using the following quadratic
form:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑ ∑( ) = ∥ − ∥

( )= = ∈ ( )

E q q c c X X, ,
4

i j
k

n

l

n

ik jl
v V i j

ik
v

jl
v

1 1 ,

2
i j

where ( )V i j, is the coplanar vertices shared by qi and qj.
The third term ( )E qi denotes the negative prior of qi. According

to Gestalt psychology, one of the most influential theories with a
long history asserts that human beings are innately driven to
perceive objects as simple as possible [44]. Therefore, it is rea-
sonable to define ( )E qi by the number of parameters ηik in the kth
3D example for qi as

∑ η( ) =
( )=

E q c .
5

i
k

n

ik ik
1

i

6.2. Solution for the graphical model

The objective function in (2) is a six-order polynomial and
subject to a binary constraint ∈ { }c 0, 1ik and a orthogonal con-
straint =⊤

×IR Rik ik 3 3. It is not easy to solve this problem directly. To
obtain an optimal solution, we design an alternative minimization
algorithm and relax the binary constraint ∈ { }c 0, 1ik to be a
continuous linear inequality constraint ≤ ≤c0 1ik . We first present
how to initialize parameters α( )c R t, , ,ik ik ik ik and then detail the
steps of alternative minimization.
6.2.1. Initial setting
We initial equal weights for all the ni candidates for Li as
=c n1/i k i, . The projection constraint is used to calculate initial va-

lues of Rik, tik and αik by solving the optimization problem as
follows:

∑ α∥ ( + ) − ∥

= ( )
∈

⊤

K A

I

R t x

R R

min ,

s. t. , 6

v V

v v 2

where the subscripts i and k for R , Av, α and t, and the subscript i
for xv and V are omitted for conciseness, V is the set of the
vertices in Li, xv denotes the 2D vertices in Li, and I is the identity
matrix.
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Algorithm 1. Initialization of parameters R , t and α.
Inp
1

2
3

Inp

1

2

3

4

ut: Generate random values for ( )R 0 , ( )t 0 and α( )0 , ←i 0;
. Fix ( )R i , find optimal ( + )t i 1 and α( + )i 1 by solving

⎧
⎨⎪

⎩⎪

α

α

′ ( ) =

′ ( ) =
( ) =

αf

f

R t

R t

t

, , 0,

, , 0,

3 0;
t

. Fix ( + )t i 1 and α( + )i 1 , and find optimal ( + )R i 1 using [45];

. If α α| ( ) − ( )| >( ) ( ) ( ) ( + ) ( + ) ( + ) −f f eR t R t, , , , 1i i i i i i1 1 1 5, then
← +i i 1 and goto step 1;

turn +Ri 1, +ti 1, and α +i 1;
Re

The four steps used to solve Eq. (6) are summarized in Algo-
rithm 1, which utilizes an alternative minimization strategy. De-
note the object function in Eq. (6) as α( )f R t, , , which is a quadratic
function of t and α when R is fixed. We can obtain the minimal
value for t and α by setting two corresponding partial derivatives
equal to 0 in step 3. With the assumption of orthogonal projection,
the translation along the z-axis ( ( )t 3 ) is irrelevant to (·)f , therefore
we set it to 0. In step 4, we alternatively fix t and α and update R
using the method in [45]. Given obtained initialization of c, R , α,
and the first two entries of t, we further estimate the initial value
for ( )t 3 by setting the derivative of function (2) w.r.t. ( )t 3 to 0,
which results in a set of linear equations. Then the optimal solu-
tion for ( )t 3 can be computed by solving these linear equations.

Algorithm 2. Finding the optimal solution ∼c, ∼
R , ∼t, and α∼.
ut: Initialize ∼( )c 0 ,
∼( )
R

0
, ∼( )t 0 , and α∼( )0 using Algorithm 1; ←i 0.

. Fix
∼( )
R

i
, ∼( )t i , and α∼( )i , and find ∼( + )c i 1 by solving the quadratic

programming problem:

∑α( ) ≤ ≤ ( ) =∼∼ ∼∼∼( ) ( ) ( )

=
∼ g c kc R t .0 c 1min , , , , s. t , 1.

i i i

k

n

i
c

1

i

. Fix ∼( + )c i 1 , ∼( )t i , and α∼( )i , and find
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6.2.2. Alternative minimization
After initialization, the solution to (2) is found as follows. For

ease description, let = { }∼ cc ik , = { }
∼
R Rik , = { }∼t tik and α α= { }∼

ik , and
denote the objective function in (2) as α( )∼∼ ∼∼

g c R t, , , . Although (·)g is
a six-order polynomial, it is a quadratic function if any three of ∼c,
∼
R , ∼t, and α∼ are fixed. Using this property, we design an alternative
minimization algorithm listed in Algorithm 2, where we alter-
natively fix three variables in each of the first three steps. After
solving (2) in the continuous relaxation version, we obtain the
binarized vector ci by setting its maximum component to 1 and all
the other components to 0.
7. Generation of the final 3D object

After reconstructing the 3D shapes from each part group, we
may still not achieve a complete reconstruction. This is because
those 3D shapes may not connect with each other in 3D space,
despite the fact that the projection of these 3D shapes composes a
line drawing similar to the input (the projection of these 3D
shapes is ideally the same with the input). Therefore we need to
translate those 3D shapes along the z direction to make them
connect with each other to generate the final 3D object. Two types
of structural constraints, curved contacting and proximity, are
considered for adjusting the layout of obtained 3D shapes. The
positions { }oi of 3D shapes obtained from part groups are opti-
mized as follows:

∑ ∑μ α{| ( ) − | + · ( )} + |

( )| ( )

( )∈ ( )∈
o o o o

o o

min , ,

, , 7

i j C
i j i j

i j C

i j

, ,curved proximity

where (· ·), is the minimum translational distances (MTD) [46],
defined as the length of the shortest relative translation that re-
sults in the objects being in contact, μ is a predefined parameter
which controls a desired (normalized) amount of the intersections
in Ccurved structures, ( )O O,i j is a measure for the symmetry, α is
the weight to balance the intersection and the symmetry.

Generally, minimizing | (· ·) |, is to make two shapes to touch
and minimizing μ| (· ·) − |, is to make two shapes to intersect by a
penetration amount μ. In the implementation (· ·), is approxi-
mated with the angle between normal directions of two contact-
ing faces (at least one is curved). In our experiments, μ is set to
0.05 times of the average size of 3D shapes constrained by
Cproximity, and the balancing weight is α = 0.1. We fix the position of
o1 by setting its depth to 0 and optimize Eq. (7) using a hill
climbing algorithm [47].

Existing algorithms for computing MTD of two 3D shapes
mainly focus on convex polyhedra, so they cannot be directly used
in this work since our shapes might be curved or concave. In our
implementation, we approximate curved shapes by their convex
hulls and use the algorithm in [48] to compute MTD. The result 3D
shape from a complex part group is usually composed of more
than one primitive shapes. To compute MTD in this case, we
compute MTD to each of its constituent shape and use the mini-
mum MTD as the final result.
8. Experiments and discussion

In this section, we demonstrate the effectiveness of our ex-
ample-based 3D (E3D) reconstruction algorithm on line drawings
that depict various man-made objects. We implemented the pro-
posed method with MATLAB based on our preliminary work
published in [24]. Compared to the preliminary version, the pro-
posed method mainly expands the coverage of the 3D re-
construction algorithm from only planar objects to a wider range
of objects: both planar and curved objects. Since our preliminary
version has conducted some experiments to evaluate the perfor-
mance (robustness to different levels of sketch errors) of E3D on
planar objects, in this paper, we conduct major experiments to
evaluate the performance of E3D on curved objects.

The first experiment is designed to evaluate the effectiveness
and robustness of the proposed method on line drawings with
only coplanarity constraints Cplanar. The rule-based algorithm [22]



Fig. 8. Comparison between the proposed E3D and rule-based algorithm [22] on two line drawings with only coplanar constraints Cplanar . We run each test with different
noise level s indicated at the bottom of the disturbed line drawing. Reconstruction results are organized in two columns with two views: rule-based on the left, and E3D on
the right.

Fig. 9. Reconstruction results on a line drawing with only curved contacting and proximity constraints, Ccurved and Cproximity . The noise level s for tests in (a)–(e) are 0.00,
0.0.1, 0.02, 0.04, and 0.08, respectively.

C. Zou et al. / Pattern Recognition 60 (2016) 543–553550



Fig. 10. The reconstruction results for a teapot line drawing from four different perspectives. The teapot body and spout are connected by a proximity constraint Cproximity .

Fig. 11. Reconstruction results of our method on various complex line drawings.
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is selected as the baseline. We manually built two 3D objects using
AutoCAD, and generated their orthogonal projections as shown in
Fig. 8. Both of those objects can be regarded as a combination of a
set of simple 3D shapes that have the corresponding 3D examples
in the database in our method. We add Gaussian noise to the line
drawing with zero mean and five levels of variance
σ = { }0.00, 0.01, 0.02, 0.04, 0.08 .

Fig. 8 illustrates the reconstruction results of two methods for
two line drawings with various levels of noise. Both methods can
generate successful reconstructions with sketch error σ ≤ 0.02.
However, the rule-based approach fails to obtain plausible
reconstructions with sketch error σ ≥ 0.04. In contrast, E3D can
still achieve good results even with sketch error σ = 0.08. This
experiment shows that the proposed method is more robust to
sketch error on than the rule-based method.

The second experiment is designed to evaluate the performance
of E3D on line drawings only with curved contacting and proxi-
mity constraints, Ccurved and Cproximity. The rule-based algorithm
[22] cannot reconstruct a complete 3D object from such a line
drawing due to the existence of isolated parts. In this experiment,
we create a 3D object with AutoCAD and generated five line
drawings by adding various levels of Gaussian noise. The



Fig. 12. A 3D scene synthesized by the proposed method.

C. Zou et al. / Pattern Recognition 60 (2016) 543–553552
reconstruction results are shown in Fig. 9. We can see that the
proposed method can achieve plausible results even with high
level of sketch error σ = 0.08.

The third experiment studies the influence of view directions for
line drawings with only proximity constraints Cproximity. We draw a
3D teapot and generate line drawings by projecting the 3D wire-
frame from four different perspectives. These four line drawings as
well as their reconstruction results are shown in Fig. 10. We can
see that the connection between teapot body and spout are cor-
rectly reconstructed in (a) and (b), while results in (c) and
(d) show less plausible connection. The experiment indicates that
the proposed E3D approach is more likely to produce plausible
results from line drawings with joints shown from a side view.

The forth experiment tests the performance of the proposed
method on various line drawings depicting complex man-made
objects, see Fig. 11. Some (not all) line drawing parts in (c), (f), and
(g) have no corresponding 3D examples in our current database, so
their 3D shapes were obtained by the algorithm [22]. The final 3D
object is achieved from 3D shapes generated by both the example-
based and rule-based algorithms, which show that the framework
proposed in this work is compatible.

The last experiment demonstrates the capability of our example-
based approach for reconstructing larger scale scenes. Fig. 12
shows the line drawing and reconstructed 3D models of a scene
composed of a chair, a desk, and objects on the desk. With the help
of a pair of artificial lines on the ground between chair and desk,
our method treats the two line drawings depicting a chair and a
desk as two parts. Moreover, the proposed method can also be
used to reconstruct 3D models from images, which has been de-
monstrated in our preliminary work [24].
9. Conclusions

The proposed method is the comprehensive version of the
work published in [24]. In our preliminary work, we have pro-
posed an example-based 3D reconstruction method to recover
planar objects from single line drawings, and demonstrated that
the example-based algorithm is much more robust than previous
methods for the reconstruction of planar objects. Our contribu-
tions in this work are two folds: (1) we extend the example-based
algorithm to handle both curved and planar objects; and (2) we
proposed a flexible framework that can integrate both example-
base and rule-based algorithms into a unique pipeline, which in-
herently takes the advantages of each integrated reconstruction
algorithm. We have designed comprehensive experiments to
evaluate the performance of our method . The results in both this
work and the preliminary version show that the proposed algo-
rithm can robustly reconstruct both curved and planar complex
objects from single line drawings. Moreover, our algorithm also
has the potential of reconstructing large scale objects (e.g., scenes)
from single line drawings.
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